
Disconnected Manifold Learning for Generative
Adversarial Networks: Appendix

Appendix A Algorithm

Algorithm 1 Disconnected Manifold Learning WGAN with Prior Learning (DMWGAN-PL). Re-
place Vd and Vg according to Eq 5 and Eq 6 in lines 7 and 15 for the Modified GAN version
(DMGAN-PL).

Precondition: p(z) prior on Z , m batch size, k number of discriminator updates, ng number of
generators, λ = 1, λ′ = 10 and λ′′ = 1000 are weight coefficients, α = 0.999 is decay rate, and
t = 0

1: repeat
2: for j ∈ {1 . . . k} do
3: {xi}mi=1 ∼ pr(x) . A batch from real data
4: {zi}mi=1 ∼ p(z) . A batch from Z prior
5: {ci}mi=1 ∼ r(c; ζ) . A batch from generator’s prior
6: {xig}mi=1← G(zi; θci) . Generate batch using selected generators
7: gw ←∇w 1

m

∑
i

[
D(xi;w)−D(xig;w) + λ′Vregul

]
8: w← Adam(w, gw) . Maximize Vd wrt. w
9: end for

10: {xi}mi=1 ∼ pr(x)
11: {zi}mi=1 ∼ p(z)
12: {ci}mi=1 ∼ r(c; ζ)
13: {xig}mi=1← G(zi; θci)
14: for j ∈ {1 . . . ng} do
15: gθj ←∇θj 1

m

∑
i

[
D(xig;w)− λ lnQ(xig; γ)

]
. θj is short for θcj

16: θj ← Adam(gθj , θj) . Maximize Vg wrt. θ
17: end for
18: gγ ←∇γ 1

m

∑
i lnQ(xig; γ)

19: γ ← Adam(gγ , γ) . Minimize Lc wrt. γ
20: gζ ←∇ζ 1

m

∑
i

[
H(Q(xi; γ), r(c; ζ))

]
− αtλ′′H(r(c; ζ))

21: ζ ← Adam(gζ , ζ) . Minimize Lprior wrt. ζ
22: t← t+ 1
23: until convergence.

Utilizing the modified GAN objectives, discriminator and generator maximize the following:

Vd = Ex∼pr(x) [lnD(x;w)] + Ec∼p(c),x∼pg(x|c) [ln(1−D(x;w))] (5)

Vg = Ec∼p(c),x∼pg(x|c) [lnD(x;w)]− λLc (6)

Where pg(x|c) is the distribution induced by the cth generator modeled by a neural network G(z; θc),
and D(x;w) : X → [0, 1] is the discriminator function. We add the single sided version of penalty
gradient regularizer with a weight λ′ to the discriminator/critic objectives of both versions of DMGAN
and all our baselines:

Vregul = −Ex∼pl(x)
[
max(||∇D(x)||2 − 1, 0)2

]
(7)

Where pl(x) is induced by uniformly sampling from the line connecting a sample from pr(x) and a
sample from pg(x).

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Appendix B Network Architecture

Table 2: Single Generator Models MNIST

Operation Kernel Strides Feature Maps BN Activation

G(z): z ∼ Uniform[−1, 1] 100
Fully Connected 4× 4× 128 - ReLU
Nearest Up Sample 8× 8× 128 -
Convolution 5× 5 1× 1 8× 8× 64 - ReLU
Nearest Up Sample 16× 16× 64 -
Convolution 5× 5 1× 1 16× 16× 32 - ReLU
Nearest Up Sample 28× 28× 32 -
Convolution 5× 5 1× 1 28× 28× 1 - Tanh

D(x) 28× 28× 1
Convolution 5× 5 2× 2 14× 14× 32 - Leaky ReLU
Convolution 5× 5 2× 2 7× 7× 64 - Leaky ReLU
Convolution 5× 5 2× 2 4× 4× 128 - Leaky ReLU
Fully Connected 1 - Sigmoid

Batch size 32
Leaky ReLU slope 0.2
Gradient Penalty weight 10
Learning Rate 0.0002
Optimizer Adam β1 = 0.5 β2 = 0.5
Weight Bias init Xavier, 0

Table 3: Multiple Generator Models MNIST

Operation Kernel Strides Feature Maps BN Activation Shared?

G(z): z ∼ Uniform[−1, 1] 100 N
Fully Connected 4× 4× 32 - ReLU N
Nearest Up Sample 8× 8× 32 - N
Convolution 5× 5 1× 1 8× 8× 16 - ReLU N
Nearest Up Sample 16× 16× 16 - N
Convolution 5× 5 1× 1 16× 16× 8 - ReLU N
Nearest Up Sample 28× 28× 8 - N
Convolution 5× 5 1× 1 28× 28× 1 - Tanh N

Q(x), D(x) 28× 28× 1
Convolution 5× 5 2× 2 14× 14× 32 - Leaky ReLU Y
Convolution 5× 5 2× 2 7× 7× 64 - Leaky ReLU Y
Convolution 5× 5 2× 2 4× 4× 128 - Leaky ReLU Y
D Fully Connected 1 - Sigmoid N
Q Convolution 5× 5 2× 2 4× 4× 128 Y Leaky ReLU N
Q Fully Connected ng - Softmax N

Batch size 32
Leaky ReLU slope 0.2
Gradient Penalty weight 10
Learning Rate 0.0002
Optimizer Adam β1 = 0.5 β2 = 0.5
Weight Bias init Xavier, 0

The pre-trained classifier used for metrics is the ALL-CNN-B model from Springenberg et al. [2]
trained to test accuracy 0.998 on MNIST and 1.000 on Face-Bed.

2

Table 4: Single Generator Models Face-Bed

Operation Kernel Strides Feature Maps BN Activation

G(z): z ∼ Uniform[−1, 1] 100
Fully Connected 8× 8× 512 - ReLU
Nearest Up Sample 16× 16× 512 -
Convolution 5× 5 1× 1 16× 16× 256 - ReLU
Nearest Up Sample 32× 32× 256 -
Convolution 5× 5 1× 1 32× 32× 128 - ReLU
Nearest Up Sample 64× 64× 128 -
Convolution 5× 5 1× 1 64× 64× 3 - Tanh

D(x) 32× 32× 3
Convolution 5× 5 2× 2 32× 32× 128 - Leaky ReLU
Convolution 5× 5 2× 2 16× 16× 256 - Leaky ReLU
Convolution 5× 5 2× 2 8× 8× 512 - Leaky ReLU
Fully Connected 1 - Sigmoid

Batch size 32
Leaky ReLU slope 0.2
Gradient Penalty weight 10
Learning Rate 0.0002
Optimizer Adam β1 = 0.5 β2 = 0.5
Weight Bias init Xavier, 0

Table 5: Multiple Generator Models Face-Bed

Operation Kernel Strides Feature Maps BN Activation Shared?

G(z): z ∼ Uniform[−1, 1] 100 N
Fully Connected 8× 8× 128 - ReLU N
Nearest Up Sample 16× 16× 128 - N
Convolution 5× 5 1× 1 16× 16× 64 - ReLU N
Nearest Up Sample 32× 32× 64 - N
Convolution 5× 5 1× 1 32× 32× 32 - ReLU N
Nearest Up Sample 64× 64× 32 - N
Convolution 5× 5 1× 1 64× 64× 3 - Tanh N

Q(x), D(x) 64× 64× 3
Convolution 5× 5 2× 2 32× 32× 128 - Leaky ReLU Y
Convolution 5× 5 2× 2 16× 16× 256 - Leaky ReLU Y
Convolution 5× 5 2× 2 8× 8× 512 - Leaky ReLU Y
D Fully Connected 1 - Sigmoid N
Q Convolution 5× 5 2× 2 8× 8× 512 Y Leaky ReLU N
Q Fully Connected ng - Softmax N

Batch size 32
Leaky ReLU slope 0.2
Gradient Penalty weight 10
Learning Rate 0.0002
Optimizer Adam β1 = 0.5 β2 = 0.5
Weight Bias init Xavier, 0

3

Table 6: Single Generator Models Disjoint Line Segments

Operation Kernel Strides Feature Maps BN Activation

G(z): z ∼ Uniform[−1, 1] 100
Fully Connected 128 - ReLU
Fully Connected 64 - ReLU
Fully Connected 2 -

D(x) 2
Fully Connected 64 - Leaky ReLU
Fully Connected 128 - Leaky ReLU
Fully Connected 1 - Sigmoid

Batch size 32
Leaky ReLU slope 0.2
Gradient Penalty weight 10
Learning Rate 0.0002
Optimizer Adam β1 = 0.5 β2 = 0.5
Weight Bias init Xavier, 0

Table 7: Multiple Generator Models Disjoint Line Segments

Operation Kernel Strides Feature Maps BN Activation Shared?

G(z): z ∼ Uniform[−1, 1] 100 N
Fully Connected 32 - ReLU N
Fully Connected 16 - ReLU N
Fully Connected 2 - ReLU N

Q(x), D(x) 2
Fully Connected 64 - Leaky ReLU Y
Fully Connected 128 - Leaky ReLU Y
D Fully Connected 1 - Sigmoid N
Q Fully Connected 128 Y Sigmoid N
Q Fully Connected ng - Softmax N

Batch size 32
Leaky ReLU slope 0.2
Gradient Penalty weight 10
Learning Rate 0.0002
Optimizer Adam β1 = 0.5 β2 = 0.5
Weight Bias init Xavier, 0

4

Appendix C DMGAN on MNIST dataset

Table 8: Inter-class variation in MNIST under GAN modified objective with gradient penalty [1]. We
show the Kullback Leibler Divergence, KL(p || g), its inverse KL(g || p), and the Jensen Shannon
Divergence, JSD(p || g) for true data and each model, where p and g are the distribution of images
over classes using ground truth labels and a pretrained classifier respectively. Each row corresponds
to the g retrieved from the respective model. The results show that DMGAN-PL captures the inter
class variation better that GAN. We run each model 5 times with random initialization, and report
average divergences with one standard deviation interval

Model KL Reverse KL JSD

Real 0.0005 std 0.0002 0.0005 std 0.0002 0.0001 std 0.0000
GAN-GP 0.0210 std 0.0029 0.0205 std 0.0030 0.0052 std 0.0007
DMGAN-PL 0.0020 std 0.0009 0.0020 std 0.0009 0.0005 std 0.0002

0 1 2 3 4 5 6 7 8 9
Modes

0

1000

2000

3000

4000

5000

6000

7000

M
SD

Average Distance over Modes
Real
DMGAN-PL
GAN-GP

(a) Intra-class variation

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Sa
m

pl
e

Ra
tio

Sample Quality

Real
DMGAN-PL
GAN-GP

(b) Sample quality

Figure 7: MNIST experiment under GAN modified objective with gradient penalty. (a) Shows
intra-class variation. Bars show the mean square distance (MSD) within each class of the dataset
for real data, DMGAN-PL model, and GAN model, using the pretrained classifier to determine
classes. On average, DMGAN-PL outperforms GAN in capturing intra class variation, as measured
by MSD, with larger significance on certain classes. (b) Shows the ratio of samples classified with
high confidence by the pretrained classifier, a measure of sample quality. We run each model 5 times
with random initialization, and report average values with one standard deviation intervals in both
figures. 10K samples are used for metric evaluations.

Appendix D MNIST qualitative results

(a) Real Data (b) DMWGAN-PL (c) WGAN-GP

Figure 8: Samples randomly generated from (a) MNIST dataset, (b) DMWGAN-PL model, and (c)
WGAN-GP model. Notice the better variation in DMWGAN-PL and the off manifold samples in
WGAN-GP (in 6th column, the 2nd and 4th row position for example). The samples and trained
models are not cherry picked.

5

Appendix E Face-Bed qualitative results

(a) Real Data (b) WGAN-GP

(c) MIX+GAN (d) DMWGAN (MGAN)

(e) DMWGAN-PL

Figure 9: Samples randomly generated from each model. Notice how models without prior learning
generate off real-manifold images, that is they generate samples that are combination of bedrooms
and faces (hence neither face nor bedroom), in addition to correct face and bedroom images. The
samples and trained models are not cherry picked.

6

(a) MIX+GAN (b) DMWGAN (MGAN) (c) DMWGAN-PL

Figure 10: Samples randomly generated from the generators of each model (each column corresponds
to a different generator). Notice how MIX+GAN and DMWGAN both have good generators together
with very low quality generators due to sharing the two real image manifolds among all their 5
generators (they uniformly generate samples from their generators). However, DMWGAN-PL has
effectively dropped the training of redundant generators, only focusing on the two necessary ones,
without any supervision (only selects samples from the last two). Samples and models are not cherry
picked.

7

Appendix F Importance of Mutual Information

As discussed in Section 3, maximizing mutual information (MI) between generated samples and the
generator ids helps prevent separate generators from learning the same submanfiolds of data and
experiencing the same issues of a single generator model. It is important to note that even without the
MI term in the objective, the generators are still "able" to learn the disconnected support correctly.
However, since the optimization is non-convex, using the MI term to explicitly encourage disjoint
supports for separate generators can help avoid undesirable local minima. We show the importance
of MI term in practice by removing the term from the generator objective of DMWGAN-PL, we call
this variant DMWGAN-PL-MI0.

(a) (b) (c) (d)

Figure 11: (a, b) shows DMWGAN-PL-MI0 (without MI), at 30K and 500K training iterations
respectively. (c, d) shows the same for DMWGAN-PL (with MI). See how MI encourages generators
to learn disjoint supports, leading to learning the correct disconnected manifold.

0 1 2 3 4 5 6 7 8 9
Modes

0

1000

2000

3000

4000

5000

6000

7000

M
SD

Average Distance over Modes
Real
DMWGAN-PL
DMWGAN-PL-MI0

(a) Intra-class variation

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Sa
m

pl
e

Ra
tio

Sample Quality

Real
DMWGAN-PL
DMWGAN-PL-MI0

(b) Sample quality

Figure 12: MNIST experiment showing the effect of mutual information term in DMWGAN-PL.
(a) Shows intra-class variation. Bars show the mean square distance (MSD) within each class of
the dataset for real data, DMGAN-PL model, and DMWGAN-PL-MI0 model, using the pretrained
classifier to determine classes. (b) Shows the ratio of samples classified with high confidence by
the pretrained classifier, a measure of sample quality. We run each model 5 times with random
initialization, and report average values with one standard deviation intervals in both figures. 10K
samples are used for metric evaluations.

Table 9: Inter-class variation measured by Jensen Shannon Divergence (JSD) with true class distri-
bution for MNIST and Face-Bedroom dataset, and FID score for Face-Bedroom (smaller is better).
We run each model 5 times with random initialization, and report average values with one standard
deviation interval

Model JSD MNIST ×10−2 JSD Face-Bed ×10−4 FID Face-Bed

DMWGAN-PL-MI0 0.13 std 0.01 0.26 std 0.11 7.80 std 0.14
DMWGAN-PL 0.06 std 0.02 0.10 std 0.05 7.67 std 0.16

References
[1] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Improved

training of wasserstein gans. In Advances in Neural Information Processing Systems, pages 5769–5779,
2017.

8

[2] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving for simplicity:
The all convolutional net. arXiv preprint arXiv:1412.6806, 2014.

9

	Algorithm
	Network Architecture
	DMGAN on MNIST dataset
	MNIST qualitative results
	Face-Bed qualitative results
	Importance of Mutual Information

