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Abstract

Deep-embedding methods aim to discover representations of a domain that make
explicit the domain’s class structure and thereby support few-shot learning. Dis-
entangling methods aim to make explicit compositional or factorial structure. We
combine these two active but independent lines of research and propose a new
paradigm suitable for both goals. We propose and evaluate a novel loss function
based on the F statistic, which describes the separation of two or more distribu-
tions. By ensuring that distinct classes are well separated on a subset of embedding
dimensions, we obtain embeddings that are useful for few-shot learning. By not
requiring separation on all dimensions, we encourage the discovery of disentan-
gled representations. Our embedding method matches or beats state-of-the-art, as
evaluated by performance on recall@k and few-shot learning tasks. Our method
also obtains performance superior to a variety of alternatives on disentangling, as
evaluated by two key properties of a disentangled representation: modularity and
explicitness. The goal of our work is to obtain more interpretable, manipulable,
and generalizable deep representations of concepts and categories.

The literature on deep embeddings (Chopra et al., 2005; Yi et al., 2014a; Schroff et al., 2015; Ustinova
& Lempitsky, 2016; Song et al., 2016; Vinyals et al., 2016; Snell et al., 2017) addresses the problem
of discovering representations of a domain that make explicit a particular property of the domain
instances. We refer to this property as class or category or identity. For example, a set of animal
images might be embedded such that animals of the same species lie closer to one another in the
embedding space than to animals of a different species. Deep-embedding methods are trained using
a class-aware oracle which can be queried to indicate whether two instances are of the same or
different class. Because this paradigm can handle an arbitrary number of classes, and because the
complete set of classes does not have to be specified in advance—as they would be in an ordinary
classifier—deep embeddings are useful for few-shot learning. A small set of examples of novel
classes can be projected into the embedding space, and an unknown instance can be classified by its
proximity to the embeddings of the labeled examples.

Similar to deep embeddings, the literature on disentangling attempts to discover representations of a
set of instances, but rather than making explicit a single property of the instances (class), the goal
is to make explicit multiple, independent properties, which we refer to as factors. For example, a
disentangled representation of animals might include factors indicating its size, length of its ears, and
whether it has feet or fins. We will later be more rigorous in defining a disentangled representation,
but for now we operate with the informal notion that the factors form a compositional or distributed
representation such that with relatively few factors and relatively few values of each factor, the
factor values can be recombined to span the set of instances. Disentangling has been explored using
either a fully unsupervised procedure (Chen et al., 2016; Higgins et al., 2017) or a semi-supervised
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procedure in which a factor-aware oracle can be queried to specify a factor along with sets of
instances partitioned by factor value (Reed et al., 2014; Kingma et al., 2014; Kulkarni et al., 2015;
Karaletsos et al., 2015; Reed et al., 2015).

Despite their overlapping and related goals, surprisingly little effort has been made to connect research
in deep embeddings and disentangling. There are two obvious ways to make the connection. First, a
factor-aware oracle might be used to train deep embeddings (instead of a class-aware oracle), and
hopefully disentangled representations would emerge. Second, a class-aware oracle might be used to
train disentangled representations (instead of a factor-aware oracle), and hopefully an embedding
suitable for few-shot learning would emerge. We primarily pursue the former approach, but briefly
explore the latter as well.

In the next section, we propose a deep-embedding method that is suitable for both few-shot learning
of novel classes and for disentangling factors. After describing the algorithm and showing that it
obtains state-of-the-art results on the recall@k task that is ordinarily used to evaluate embeddings,
we turn to analyzing how well the algorithm disentangles the factors that contribute to class identity.
To perform a rigorous evaluation, we put forth formal, quantifiable criteria for disentanglement,
and we show that our algorithm outperforms other state-of-the-art deep-embedding methods and
disentanglement methods in achieving these criteria.

1 Using the F statistic to separate classes

Deep-embedding methods attempt to discover a nonlinear projection such that instances of the same
class lie close together in the embedding space and instances of different classes lie far apart. The
algorithms mostly have heuristic criteria for determining how close is close and how far is far, and
they terminate learning once a solution meets the criterion. The criterion can be specified by a
user-adjustable margin parameter (Schroff et al., 2015; Chopra et al., 2005) or by ensuring that
every within-class pair is closer together than any of the between-class pairs (Ustinova & Lempitsky,
2016). We propose a method that determines when to terminate using the currency of probability and
statistical hypothesis testing. It also aligns dimensions of the embedding space with the underlying
generative factors—categorical and semantic features—and thereby facilitates the disentangling of
representations.

For expository purposes, consider two classes, C = {1, 2}, having n1 and n2 instances, which
are mapped to a one-dimensional embedding. The embedding coordinate of instance j of class
i is denoted zij . The goal of any embedding procedure is to separate the coordinates of the two
classes. In our approach, we quantify the separation via the probability that the true class means in
the underlying environment, µ1 and µ2, are different from one another. Our training goal can thus
be formulated as minimizing Pr (µ1 = µ2 | s(z), n1, n2), where s(z) denotes summary statistics of
the labeled embedding points. This posterior is intractable, so instead we operate on the likelihood
Pr (s(z) | µ1 = µ2, n1, n2) as a proxy.

We borrow a particular statistic from analysis of variance (ANOVA) hypothesis testing for equality of
means. The statistic is a ratio of between-class variability to within-class variability:

s = ñ

∑
i ni(z̄i − ¯̄z)2∑
i,j(zij − z̄i)2

where z̄i = 〈zij〉 and ¯̄z = 〈z̄i〉 are expectations and ñ = n1 + n2 − 2. Under the null hypothesis
µ1 = µ2 and an additional normality assumption, zij ∼ N (µ, σ2), our statistic s is a draw from a
Fisher-Snedecor (or F ) distribution with degrees of freedom 1 and ñ, S ∼ F1,ñ. Large s indicate
that embeddings from the two different classes are well separated relative to two embeddings from
the same class, which is unlikely under F1,ñ. Thus, the CDF of the F distribution offers a measure of
the separation between classes:

Pr (S < s|µ1 = µ2, ñ) = I

(
s

s+ ñ
,

1

2
,
ñ

2

)
(1)

where I is the regularized incomplete beta function, which is differentiable and thus can be incorpo-
rated into an objective function for gradient-based training.
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Several comments on this approach. First, although it assumes the two classes have equal variance,
the likelihood in Equation 1 is fairly robust against inequality of the variances as long as n1 ≈ n2.1
Second, the F statistic can be computed for an arbitrary number of classes; the generalization of the
likelihood in Equation 1 is conditioned on all class instances being drawn from the same distribution.
Because this likelihood is a very weak indicator of class separation, we restrict our use of the F
statistic to class pairs. Third, this approach is based entirely on statistics of the training set, whereas
every other deep-embedding method of which we are aware uses training criteria that are based on
individual instances. For example, the triplet loss (Schroff et al., 2015) attempts to ensure that for
specific triplets {z11, z12, z21}, z11 is closer to z12 than to z21. Objectives based on specific instances
will be more susceptible to noise in the data set and may be more prone to overfitting.

1.1 From one to many dimensions

Our example in the previous section assumed one-dimensional embeddings. We have explored two
extensions of the approach to many-dimensional embeddings. First, if we assume that the Euclidean
distances between embedded points are gamma distributed—which turns out to be a good empirical
approximation at any stage of training—then we can represent the numerator and denominator in
the F statistic as sums of gamma random variables, and a variant of the unidimensional separation
measure (Equation 1) can be used to assess separation based on Euclidean distances. Second, we
can apply the unidimensional separation measure for multiple dimensions of the many-dimensional
embedding space. We adopt the latter approach because—as we explain shortly—it facilitates
disentangling.

For a given class pair (α, β), we compute

Φ(α, β, k) ≡ Pr (S < s | µαk = µβk, nα + nβ − 2)

for each dimension k of the embedding space. We select a set, Dα,β , of the d dimensions with largest
Φ(α, β, k), i.e., the dimensions that are best separated already. Although it is important to separate
classes, they needn’t be separated on all dimensions because the pair may have semantic similarity or
equivalence along some dimensions. The pair is separated if they can be distinguished reliably on a
subset of dimensions.

For a training set or a mini-batch with multiple instances of a set of classes C, our embedding
objective is to maximize the joint probability of separation for all class pairs (α, β) on all relevant
dimensions, Dα,β . Framed as a loss, we minimize the log probability:

LF = −
∑
{α,β}∈C

∑
k∈Dα,β

ln Φ(α, β, k)

Figure 1.1 shows an illustration of the algorithm’s behavior. We sample instances xα1..N , xβ1..M
from classes α and β, and chooseN andM such thatN ≈M . The neural net encodes these instances
as embeddings zα1..N and zβ1..M , with dimensions k = 1..D. The variable φ(α, β) indicates the
degree of separation for each dimension, where high values (darker) indicate better separation. In this
case, dimension 2 has the best separation, with low within-class and high between-class variance.
The algorithm maximizes the d largest values of φ(α, β), and sets the loss for all other dimensions
equal to zero.

This F -statistic loss has four desirable properties. First, the gradient rapidly drops to zero once classes
become reliably separated on at least d dimensions, leading to a natural stopping criterion; the degree
of separation obtained is related to the number of samples per class. Second, in contrast to other
losses, the F-statistic loss is not invariant to rotations in the embedding space; this focus on separating
along specific dimensions tends to yield disentangled features when the class structure is factorial or
compositional. Third, embeddings obtained are relatively insensitive to the one free parameter, d.
Fourth, because the loss is expressed in the currency of probability it can readily be combined with
additional losses expressed similarly (e.g., a reconstruction loss framed as a likelihood). The following
sections demonstrate the advantages of the F -statistic loss for classification and for disentangling
attributes related to class identity.

1For two classes, the F -statistic is equivalent to the square of a t-statistic. To address the potential issue of
unequal variances, we explored replacing the F statistic with the Welch correction for a t statistic, but we found
no improvement in model performance, and we prefer formulating the loss in terms of an F statistic due to its
greater generality.
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Figure 1: Illustration of the behavior of the F -statistic loss
for a pair of classes in a minibatch. We sample instances
xα1..N , xβ1..M from classes α and β. The neural net
encodes these instances as embeddings zα1..N and zβ1..M ,
with dimensions k = 1..D. The activations are indicated
by the intensity of the blue color. The variable φ(α, β)
indicates the degree of separation for each dimension,
where high values (darker circle) indicate better separation.
In this case, dimension 2 has the best separation, with
low within-class and high between-class variance. The
algorithm maximizes the d largest values of φ(α, β), and
sets the loss for all other dimensions equal to zero.

2 Identity classification

In this section, we demonstrate the performance of the F -statistic loss compared to state-of-the-art
deep-embedding losses on identity classification. The first task involves matching a person from
a wide-angle, full-body photograph, taken at various angles and poses. For this task, we evaluate
using two datasets—CUHK03 (Li et al., 2014) and Market-1501 (Zheng et al., 2015)—following
the methodology of Ustinova & Lempitsky (2016). The second task involves matching a bird from a
wide angle photograph; we evaluate performance on the CUB-200-2011 birds dataset (Wah et al.,
2011). Five-fold cross validation is performed in every case. The first split is used to tune model
hyper-parameters, and we report accuracy on the final four splits. This same procedure was used to
evaluate the F -statistic loss and four competitors.

2.1 Training details

For CUHK03 and Market-1501, we use the Deep Metric Learning (Yi et al., 2014b) architecture,
following Ustinova & Lempitsky (2016). For CUB-200-2011, we use an inception v3 (Szegedy
et al., 2016) network pretrained on ImageNet, and extract the 2048-dimensional features from the
final pooling layer. We treat these features as constants, and optimize a fully connected net, with
1024 hidden ReLU units. For every dataset, we use a 500-dimensional embedding. All nets were
trained using the ADAM (Kingma & Ba, 2014) optimizer, with a learning rate of 10−4 for all losses,
except the F-statistic loss, which we found benefitted from a slightly higher learning rate (2× 10−4).
For each split, a validation set was withheld from the training set, and used for early stopping. To
construct a mini-batch for training, we randomly select 12 identities, with up to 10 samples of
each identity, as in Ustinova & Lempitsky (2016). In addition to the F -statistic loss, we evaluated
histogram (Ustinova & Lempitsky, 2016), triplet (Schroff et al., 2015), binomial deviance (Yi et al.,
2014a), and lifted structured similarity softmax (LSSS) (Song et al., 2016) losses. For the triplet loss,
we use all triplets in the minibatch. For the histogram loss and binomial deviance losses, we use all
pairs. For the F -statistic loss, we use all class pairs. The triplet loss is trained and evaluated using L2

distances. The F -statistic loss is evaluated using L2 distances. As in Ustinova & Lempitsky (2016),
embeddings obtained discovered by the histogram and binomial-deviance losses are constrained to
lie on the unit hypersphere; cosine distance is used for training and evaluation. For the F -statistic
loss, we determined the best value of d, the number of dimensions to separate, using the validation
set of the first split. Performance is relatively insensitive to d for 2 < d < 100. For CUHK03 we
chose d = 70, for Market-1501 d = 63, and for CUB-200 d = 3. For the triplet loss we found that
a margin of 0.1 worked well for all datasets. For binomial deviance and LSSS losses, we used the
best settings for each dataset as determined in Ustinova & Lempitsky (2016). Code for all models is
available at https://github.com/kridgeway/f-statistic-loss-nips-2018

2.2 Results

Embedding procedures are typically evaluated with either recall@k or with a few-shot learning
paradigm. The two evaluations are similar: using held-out classes, q instances of each class are
projected to the embedding space (the references) and performance is judged by the proximity of
a query instance to references in the embedding space. We evaluate with recall@1 or 1-nearest
neighbor, which judges the query instance as correctly classified if the closest reference is of the
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Loss CUHK03 Market-1501 CUB-200-2011
F-Statistic 90.17% ± 0.44% 84.21% ± 0.44% 55.22% ± 0.75%
Histogram 86.07% ± 0.73% 84.46% ± 0.23% 58.89% ± 0.89%

Triplet 81.18% ± 0.61% 80.59% ± 0.64% 45.09% ± 0.80%
Binomial Deviance 85.37% ± 0.45% 84.12% ± 0.27% 59.05% ± 0.73%

LSSS 85.75% ± 0.62% 83.46% ± 0.48% 54.68% ± 0.49%

Figure 2: Recall@1 results for our F -statistic loss and four competitors across three data sets. Shown
is the percentage correct classification and the standard error of the mean. The best algorithm(s) on a
given data set are highlighted.

same class. This is equivalent to a q-shot learning evaluation; for our data sets, q ranged from 3 to 10.
(For readers familiar with recall@k curves, we note that relative performance of algorithms generally
does not vary with k, and k = 1 shows the largest differences.)

Table 2 reports recall@1 accuracy. Overall, the F -statistic loss achieves accuracy comparable to the
best of its competitors, histogram and binomial deviance losses. It obtains the best result on CUHK03,
ties on Market-1501, and is a tier below the best on CUB-200. In earlier work (Anonymized Citation,
2018), we conducted a battery of empirical tests comparing deep metric learning and few-shot
learning methods, and the histogram loss appears to be the most robust. Here, we have demonstrated
that our F -statistic loss matches this state-of-the-art in terms of producing domain embeddings that
cluster instances by class. In the remainder of the paper, we argue that the F -statistic loss obtains
superior disentangled embeddings.

3 Quantifying disentanglement

Disentangling is based on the premise that a set of underlying factors are responsible for generating
observed instances. The instances are typically high dimensional, redundant, and noisy, and each
vector element depends on the value of multiple factors. The goal of a disentangling procedure is
to recover the causal factors of an instance in a code vector. The term code is synonymous with
embedding, but we prefer ‘code’ in this section to emphasize our focus on disentangling.

The notion of what constitutes an ideal code is somewhat up for debate, with most authors preferring
to avoid explicit definitions, and others having conflicting notions (Higgins et al., 2017; Kim & Mnih,
2017). The most explicit and comprehensive definition of disentangling (Eastwood & Williams,
2018) is based on three criteria, which we refer to—using a slight variant of their terminology—as
modularity, compactness, and explicitness.2 In a modular representation, each dimension of the code
conveys information about at most one factor. In a compact representation, a given factor is associated
with only one or a few code dimensions. In an explicit representation, there is a simple (e.g., linear)
mapping from the code to the value of a factor. (See Supplementary Materials for further detail.)

Researchers who have previously attempted to quantify disentangling have considered different
subsets of the modularity, compactness, and explicitness criteria. In Eastwood & Williams (2018),
all three are included; in Kim & Mnih (2017), modularity and compactness are included, but
not explicitness; and in Higgins et al. (2017), modularity is included, but not compactness or
explicitness. We argue that modularity and explicitness should be considered as defining features of
disentangled representations, but not compactness. Although compactness facilitates interpretation
of the representations, it has two significant drawbacks. First, forcing compactness can affect the
representation’s utility. Consider a factor θ ∈ [0◦, 360◦] that determines the orientation of an object in
an image. Encoding the orientation in two dimensions as (sin θ, cos θ) captures the natural similarity
structure of orientations, yet it is not compact relative to using θ as the code. Second, forcing a
neural network to discover a minimal (compact) code may lead to local optima in training because
the solution space is highly constrained; allowing redundancy in the code enables many equivalent
solutions.

2We developed our disentangling criteria and terminology in parallel with and independently of Eastwood
& Williams (2018). We prefer our nomenclature and also our quantification of the criteria because their
quantification requires determination of two hyperparameters (an L1 regularization penalty and a tree depth for a
random forest). Nonetheless, it is encouraging that multiple research groups are converging on essentially the
same criteria.
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In order to evaluate disentangling performance of a deep-embedding procedure, we quantify modular-
ity and explicitness. For modularity, we start by estimating the mutual information between each
code dimension and each factor.3 If code dimension i is ideally modular, it will have high mutual
information with a single factor and zero mutual information with all other factors. We use the
deviation from this idealized case to compute a modularity score. Given a single code dimension
i and a factor f , we denote the mutual information between the code and factor by mif , mif ≥ 0.
We create a “template” vector ti of the same size as mi, which represents the best-matching case of
ideal modularity for code dimension i:

tif =

{
θi if f = arg maxg(mig)

0 otherwise,

where θi = maxg(mig). The observed deviation from the template is given by

δi =

∑
f (mif − tif )2

θ2i (N − 1)
, (2)

where N is the number of factors. A deviation of 0 indicates that we have achieved perfect modularity
and 1 indicates that this dimension has equal mutual information with every factor. Thus, we use
1− δi as a modularity score for code dimension i and the mean of 1− δi over i as the modularity
score for the overall code. Note that this expectation does not tell us if each factor is well represented
in the code. To ascertain the coverage of the code, the explicitness measure is needed.

Under the assumption that factors have discrete values, we can compute an explicitness score for
each value of each factor. In an explicit representation, recovering factor values from the code should
be possible with a simple classifier. We have experimented with both RBF networks and logistic
regression as recovery models, and have found logistic regression, with its implied linear separability,
is a more robust procedure. We thus fit a one-versus-rest logistic-regression classifier that takes the
entire code as input. We record the ROC area-under-the-curve (AUC) of that classifier. We quantify
the explicitness of a code using the mean of AUCjk over j, a factor index, and k, an index on values
of factor j.

In the next section, we use this quantification of modularity and explicitness to evaluate our F -statistic
loss against other disentangling and deep-embedding methods.

4 A weakly supervised approach to disentanglement

Previously proposed disentangling procedures lie at one of two extremes of supervision: either entirely
unsupervised (Chen et al., 2016; Higgins et al., 2017), or requiring factor-aware oracles—oracles that
name a particular factor and provide sets of instances that either differ on all factors except the named
factor (Kulkarni et al., 2015) or are ordered by factor-specific similarity (Karaletsos et al., 2015; Veit
et al., 2016). The unsupervised procedures suffer from being underconstrained; the oracle-based
procedures require strong supervision.

We propose an oracle-based training procedure with an intermediate degree of supervision, inspired
by the deep-embedding literature. We consider an oracle which chooses a factor and a set of instances,
then sorts the instances by their similarity on that factor, or into two groups—identical and non-
identical. The oracle conveys the similarities but not the name of the factor itself. This scenario is
like the Sesame Street (children’s TV show) game in which a set of objects are presented and one is
not like the other, and the child needs to determine along what dimension it differs. Sets of instances
segmented in this manner are easy to obtain via crowdsourcing: a worker is given a set of instances
and simply told to sort them into two groups by similarity to one another, or to sort them by similarity
to a reference. In either case, the sorting dimension is never explicitly specified, and any nontrivial
domain will have many dimensions (factors) from which to choose. Our unnamed-factor oracle is a
generalization of the procedure used for training deep embeddings, where the oracle judges similarity
of instances by class label, without reference to the specific class label. Instead, our unnamed-factor
oracle operates by choosing a factor randomly and specifying similarity of instances by factor label,
without reference to the specific factor.

3In this work, we focus on the case of factors with discrete values and codes with continuous values. We
discretize the code by constructing a 20-bin histogram of the code values with equal width bins, and then
computing discrete mutual information between the factor-values and the code histogram.
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We explore two datasets in which each instance is tagged with values for several statistically inde-
pendent factors. Some of the factors are treated as class-related, and some as noise. First, we train
on a data set of video game sprites—60 × 60 pixel color images of game characters viewed from
various angles and in a variety of poses (Reed et al., 2015). The identity of the game characters
is composed of 7 factors—body, arms, hair, gender, armor, greaves, and weapon—each with 2–5
distinct values, leading to 672 total unique identities which can be instantiated in various viewing
angles and poses. We also explore the small NORB dataset (LeCun et al., 2004). This dataset is
composed of 96× 96 pixel grayscale images of toys in various poses and lighting conditions. There
are 5 superordinate categories, each with 10 subordinate categories, a total of 50 types of toys. Each
toy is imaged from 9 camera elevations and 18 azimuths, and under 6 lighting conditions. For our
experiments, we define factors for toy type, elevation, and azimuth, and we treat lighting condition
as a noise variable. For simplicity of evaluation, we partition the values of elevation and azimuth to
create binary factors: grouping elevation into low (0 through 4) and high (5 through 8) buckets and
azimuth values into right- (0 through 16) and left-(18 through 34) facing buckets, leading to a total of
200 unique identities.

4.1 Training Details

For the sprites dataset, we used the encoder architecture of Reed et al. (2015) as well as their embed-
ding dimensionality of 22. For small NORB, we use a convolutional network with 3 convolutional
layers and a final fully connected layer with an embedding dimensionality of 20. For the convolutional
layers, the filter sizes are (7× 7, 3× 3, 3× 3), the filter counts are (48, 64, 72), and all use a stride
of 2 and ReLU activation. For the F -statistic loss, we set the number of training dimensions d = 2.
Again, all nets were trained using the ADAM optimizer, with the same learning rates as used for the
classification datasets.

We construct minibatches in a manner analogous to how we did for deep embeddings with class-based
training (Section 3). For factor-based training, we select instances with similarity determined by
a single factor to construct a minibatch. For each epoch, we iterate through the factors until we
have trained on every instance with respect to every factor. Each minibatch is composed of up to 12
factor-values. For example, a minibatch focusing on the hair color factor of the sprites dataset will
include samples of up to 12 hair colors, with multiple instances within each hair color. We train with
up to 10 instances per factor-value for triplet and histogram. For the F -statistic loss, we found that
training with up to 5 instances per factor-value helps avoid underfitting.

For both datasets, we evaluated with five-fold cross validation, using the conjunction of factors to
split: the 7 factors for sprites and 3 (toy type, azimuth, and elevation) for norb. For each split, the
validation set was used to determine when to stop training, based on mean factor explicitness. The
first split was used to tune hyper-parameters, and the test sets of the remaining four splits are used to
report results. For these experiments, we compare the F -statistic loss to the triplet and histogram
losses; other losses using Lp norm or cosine distances should yield similar results. We also compare
to the β-variational auto-encoder, or β-VAE (Higgins et al., 2017), an unsupervised disentangling
method that has been shown to outperform other unsupervised methods such as InfoGAN (Chen
et al., 2016). The generator net in the β-VAE has the same number of layers as the encoder. The
number of filters and the size of the receptive field in the generator are mirror values of the encoder,
such that the first layer in the encoder has the same number of output filters that the last layer in the
generator has as input. For the β-VAE, training proceeds until the reconstruction likelihood on the
held-out validation set stops improving.

4.2 Results

Figure 3 shows the modularity and explicitness scores for representations learned on the sprites and
small NORB datasets (first and second rows, respectively) using triplet, histogram, and F -statistic
losses. Modularity scores appear in the first column; for modularity, we report the mean across
validation splits and embedding dimensions. Explicitness scores appear in the second column; for
explicitness, we report the mean across validation splits and factor-values. (The sprites dataset has 7
factors and 22 total factor-values. The small NORB has a total of 3 factors and 54-factor values.) The
F -statistic loss achieves the best modularity on both datasets, and the best explicitness on the small
NORB dataset. On the Sprites dataset, all of the methods achieve good explicitness.

Figure 4 compares modularity and explicitness of representations for the F -statistic and β-VAE, for
various settings of β. The default setting of β=1 corresponds to the original VAE (Kingma & Welling,
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Modularity Explicitness Figure 3: Mean modularity and explicit-
ness scores for the triplet, histogram, and
F -statistic losses on the small NORB and
Sprites datasets. The F -statistic loss dom-
inates the other methods in three of the
comparisons, and although the F -statistic
loss has a slight numerical advantage in
Sprites explicitness, the advantage is not
statistically reliable (comparing histogram
to F -statistic with a paired t-test, p>.20).
Essentially, all methods are at ceiling in
Sprites explicitness. Black bars indicate ±
one standard error of the mean.
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2013). As β increases, modularity improves but explicitness worsens. This trade off has not been
previously reported and points to a limitation of the method. The first bar of each figure corresponds
to the F -statistic loss trained with the unnamed-factor oracle, and the second bar corresponds to
the F -statistic loss trained with a class-aware oracle. The class-aware oracle defines a class as a
unique conjunction of the component factors (e.g., for small NORB the conjunction of object identity,
azimuth, and elevation). It is thus a weaker form of supervision than the unnamed-factor oracle
provides, and is analogous to the type of training performed with deep-embedding procedures, where
the oracle indicates whether or not instances match on class without naming the class or its component
factors. Both F -statistic representations are superior to all variants of the β-VAE. The comparison is
not exactly fair because the β-VAE is unsupervised whereas the F -statistic loss is weakly supervised.
Nonetheless, the β-VAE is considered as a critical model for comparison, and we would have been
remiss not to do so.

5 Discussion and future work

The F -statistic loss is motivated by the goal of unifying the deep-embedding and disentangling
literatures. We have shown that it achieves state-of-the-art performance in the recall@1 task used
to evaluate deep embeddings when trained with a class-aware oracle, and achieves state-of-the-art
performance in disentangling when trained with an unnamed-factor oracle. The ultimate goal of
research in disentangling is to develop methods that work in a purely unsupervised fashion. The
β-VAE is the leading contender in this regard, but we have shown a troubling trade off obtained with
the β-VAE through our quantification of modularity and explicitness (Figure 4), and we have shown
that unsupervised training cannot at present compete with even weakly supervised training (not a
surprise to anyone). Another contribution of our work to disentangling is the notion of training with
an unnamed-factor oracle or a class-aware oracle; in previous research with supervised disentangling,
the stronger factor-aware oracle was used which would indicate a factor name as well as judging
similarity in terms of that factor. Our goal is to explore increasingly weaker forms of supervision.
We have taken the largest step so far in this regard through our examination of disentangling with a
class-aware oracle (Figure 4), which should serve as a reference for others interested in disentangling.

Our current research focuses on methods for adaptively estimating d, the hyper-parameter governing
the number of dimensions trained on any trial. Presently, d determines the loss behavior for all pairs

8



of classes, and must be tuned for each data set. Our hope is that we can adaptively estimate d for
each pair of identities on the fly.
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