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Abstract

The co-occurrence of multiple diseases among the general population is an impor-
tant problem as those patients have more risk of complications and represent a large
share of health care expenditure. Learning to predict time-to-event probabilities for
these patients is a challenging problem because the risks of events are correlated
(there are competing risks) with often only few patients experiencing individual
events of interest, and of those only a fraction are actually observed in the data. We
introduce in this paper a survival model with the flexibility to leverage a common
representation of related events that is designed to correct for the strong imbalance
in observed outcomes. The procedure is sequential: outcome-specific survival
distributions form the components of nonparametric multivariate estimators which
we combine into an ensemble in such a way as to ensure accurate predictions
on all outcome types simultaneously. Our algorithm is general and represents
the first boosting-like method for time-to-event data with multiple outcomes. We
demonstrate the performance of our algorithm on synthetic and real data.

1 Introduction

There is now significant evidence that the progressions of many diseases interact with one another
such that the prediction of events of interest, for example death due to breast cancer in a population
of women, will be influenced by their simultaneous risks of developing related diseases, such as
cardiovascular or pulmonary diseases [19, 20]. A central problem in survival analysis is to predict
the relationship between variables and survival, which is especially challenging when a number of
different correlated events might occur - i.e., there are competing risks. Current approaches jointly
model competing risks in an attempt to capture shared latent biological traits or common risk factors.
In the presence of multiple events however, jointly modelling these conditions leads to predictive
models that neglect individual diseases with lower incidence. Clinical prognosis tools may result in
high overall accurate predictions rates while also having unacceptably low performance with respect
to an underrepresented disease outcome, which strongly reduces their explanatory power for practical
purposes. The design of therapies and medical planning relies on survival estimates of predictive
models. Examples of similar settings can be found in many fields beyond medicine including failure
analysis in engineering and prediction of multiple economic events in economics.

The focus of this work is to provide a new interpretation of boosting algorithms [11] in a multitask
learning framework [8] that extends this family to time-to-event data with multiple competing
outcomes. Motivated by the ideas discussed above, we specifically intend to leverage the heterogeneity
present in large modern data sets, the complexity in underlying relationships between events/tasks
and the strong imbalance often observed between events/tasks. The aim is a flexible simultaneous
description of the likelihood of different events over time that we achieve by estimating full probability
distributions, in contrast to single time prediction problems such as regression or classification.
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Figure 1: Boosting in the Toy Example.

We develop a boosting algorithm in which each task-specific time-to-event distribution is a component
of a multi-output function. A distinctive feature is that each weak estimator (whose performance is
sub-optimal) learns a shared representation between tasks by recursively partitioning the observed
data (analogous to the construction of trees) from all related tasks using a measure of similarity
between instances that involves all related tasks. This means that we learn a shared representation
directly from selecting appropriate subsets of patients, which may experience different events, but
which have a common time-to-event trajectory. Since this partitioning scheme is applied recursively,
learned relationships (and predictions) are adaptive to the complexity of the problem and, in addition,
no assumptions on the data generating process, such as accelerated failure times or proportional
hazards (common in most survival models [22, 17]) have to be posed. We construct an ensemble by
weighting the sample data such as to bias the next weak multivariate estimator towards mis-predicted
instances. What distinguishes our weighting scheme from existing boosting methods is that while
the output of each weak estimator is a multivariate probability distribution, the data only provides
the specific event that occurred and the time of occurrence and thus we introduce new notions of
"prediction correctness" that apply in our setting.

Why is boosting useful for competing risks? A toy example we show in Figure 1 may help to
illustrate our method. We consider a population that experiences one of two events, death due to
cardiovascular diseases (CVD) or breast cancer. (For simplicity we ignore censoring). Each patient
is characterized by its body mass index (BMI), cholesterol level and age at menarche. The medical
fact is that increased BMI increases the risk of both breast cancer and CVD; increased cholesterol
increases the risk of CVD but is irrelevant for breast cancer; increased age at menarche decreases
the risk of breast cancer but is irrelevant for CVD. (Note that the same patients are represented in all
panels of Figure 1 - the vertical position remains the same while their horizontal position changes due
to different features being considered). The panels show three iterations of boosting using a stump as
a weak predictor; the best partition of the data in each case is shown with the yellow threshold. The
first stump recognizes BMI as best separating event times (on average), but mispredicts survival of
patient (a) (that has high survival despite having high BMI) and (b) for which the contrary is true.
Iteration 2, encouraged by the higher weight of (a), considers a split along the cholesterol level and is
able to better describe (a)’s survival (its high survival is due to a low cholesterol level). Iteration 3,
after repeatedly mispredicting (b) in iteration 1 and 2, splits based on age at menarche which explains
(b)’s low survival.

Survival data in the presence of competing risks is often highly heterogeneous, the process of boosting
is effective for identifying patients that do not conform to a general pattern; a fact further exacerbated
when only few examples are available from each type or if imbalance is large.

2 Problem Formulation

The set up we consider is best defined within the context of medical patients at risk of mutually
exclusive outcomes, such as causes of death, referred more generally as tasks in other domains. In
this context the goal of multitask learning is to estimate cumulative incidence functions (CIFs):

F1, ..., FK : X × T → [0, 1] (1)
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Fk represents the probability of a specific event of type k happening before time t, Fk(t|X) = p(T ≤
t, Z = k|X)1. This relationship is estimated from an observational sample of the random tuple
{X, T, Z} where the input space X describes patient characteristics - typically Rd -, T ∈ R+ defines
the time to event and Z is the type of event observed Z ∈ {∅, 1, ...,K}. A particularity of time-to-
event data is that often the outcome will not be observed for every patient (e.g. a patient follow-up
might be interrupted) however event-free survival is known up to a censoring time independent of
(X, T ) (a common assumption in the survival literature that ensures consistency of our estimates).
This is the defining property of survival data and makes our setting distinct from classical supervised
problems. We write zi = ∅ for a right censored observation and zi = 1, ...,K to denote the occurrence
of one of K competing events.

The key idea is to exploit the shared structure of F1, ..., FK by estimating them jointly, rather than
independently, in the hope of improving prediction performance for all tasks. We aim to learn
prognostic models F̂k such as to minimize the discrepancy between predicted and actual survival
status,

Lk(F̂ ) := E
1

τ

∫ τ

0

(
I(T ≤ t, Z = k)− F̂k(t|X)

)2
dt, L(F̂ ) =

1

K

∑
k

Lk(F̂ ) (2)

which is extended on the right hand side to consider multiple tasks simultaneously by averaging over
k. In addition, we define the cause-specific hazard function, or subdistribution hazard,

λk(t|X) = lim
dt→0

p(t ≤ T ≤ t+ dt, Z = k|T ≥ t,X)/dt (3)

It represents the instantaneous risk of experiencing an end-point related to cause k and indicates the
rate at which mortality with respect to that cause progresses with time. The cumulative cause specific
hazard is Λk(t) =

∫ t
0
λk(s)ds.

3 Model Description

In this section we present our main contribution: a nonparametric boosting algorithm for jointly
estimating survival distributions for multiple tasks we call Survival Multitask Boosting (SMTBoost).
Boosting algorithms iteratively train simple predictive models on weighted samples of the data such
as to encourage improvement on those data points that are mis-predicted in previous iterations. The
following subsections will detail first the training procedure of weak predictors and then will provide
the ensemble approach that results in flexible task-specific time-to-event distributions.

3.1 Weak predictors

Weak predictors are trees composed of leaves and nodes. Leafs define a partition for the data and
are responsible for making predictions and nodes guide examples towards appropriate leaves using
binary splits based on boolean-valued rules. We seek a binary recursive partitioning scheme -rules
that partition the data at each node- resulting in the greatest difference of task-specific and overall
time-to-event distributions.

3.1.1 Splitting rule

The key in growing trees lies in the split rule used to recursively separate the population in homoge-
neous nodes. In the context of competing risks homogeneity of time-to-event outcomes otherwise
measured with the log-rank test statistic and model deviance in single event survival settings are
not applicable. We opt instead for a modified version of Gray’s test statistic [14, 16] that explicitly
compares CIFs Fk between two populations. Gray proposed a non-parametric log-rank test statistic
defined as a weighted sum of differences in estimates of the sub-distribution hazards λk, that effec-
tively generalizes the log-rank test to competing risks. In order to measure similarity with respect to
all causes simultaneously, we combine the task-specific splitting rules across the event types k and
optimize for a weighted sum of Gray’s statistic over all tasks (weighted by an asymptotic estimate of

1Also called subdistribution function because it does not converge to 1 as t → ∞, but to p(Z = k), the
expected proportion of task k events. However, the CIFs for all possible event types will always add up to the
distribution function of T .
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Figure 2: An example of partition of node C0 into C1 and C2 based on Gray’s test statistic for
two tasks. The estimated CIFs get updated based on the resulting partition (defined by x = δ) that
maximizes Gray’s test statistic, a composite measure of the difference between the CIFs in each
subset.

the variance of each statistic, see [14] for details). Figure 2 illustrates this procedure for a single split.
For conventional survival analysis, when a single event is analyzed in isolation, Gray’s test statistic
reduces to a log-rank test statistic commonly used in survival trees.

3.1.2 Leaf node predictions

Leaf nodes are responsible for predictions. Based on the final partition we compute task specific
distributions with nonparametric estimators from the theory of counting processes. Let Cj denote
the index set of training examples with leaf node membership j. Let Nk(t) and N(t) denote the
number of events of type k and of any type recorded before time t respectively, Y (t) the number
of individuals at risk at time t and t(0) < t(1) < ... < t(m) the ordered distinct event times (these
quantities refer to leaf node j only, we omit the subscript j for readability). We compute task-specific
survival at leaf node j with the nonparametric Aalen-Johansen estimator [1],

F̂k(τ) =

∫ τ

0

Ŝ(t)dΛ̂k(t) (4)

where probability of event-free survival Ŝ is estimated with the Kaplan Meier estimator and the
cumulative hazard function Λ̂k is estimated with the Nelson-Aalen estimator,

Ŝ(t) =
∏

i:t(i)≤t

(
1−

N(t(i))−N(t(i−1))

Y (t(i))

)
, Λ̂k(t) =

∑
i:t(i)<t

Nk(t(i))−Nk(t(i−1))

Y (t(i))
(5)

The leaf nodes partition the sample space so the above construction defines the task-specific and
overall cumulative incidence functions for the tree,

F̂k(t;xi) =
∑
j

I(i ∈ Cj)F̂k,j(t), F̂ (t;xi) =
∑
k

F̂k(t;xi) (6)

where the subscript j refers to CIFs estimated based on each leaf of the resulting tree. This process al-
lows to obtain completely nonparametric estimates of survival. In complex problems, and particularly
from a medical perspective, this is important because subtle signals in heterogeneous populations are
often unknown a priori and need to be discovered from relationships in the data.

3.2 Ensemble approach by boosting

In the traditional boosting framework, misclassified examples are up-weighted to bias the next weak
predictor to improve previous predictions. The contrast with time-to-event settings is that model
outputs are probability distributions over time and hence notions of correctness of model predictions
need to be accommodated. We use the extended loss function introduced in (2), that captures the joint
performance over all tasks and gives a measure of the individual empirical error:

ei =
1

Kτ

∑
k

∫ τ

0

Ŵi(t)
(
I(Ti ≤ t, Zi = k)− F̂ (t;xi)

)2
dt (7)

where Ŵi(t) are estimated inverse probability of censoring weights.
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Each iteration m of the boosting procedure grows a tree F (m) on a weighted random fraction s of
the training data. A decomposition of the error suggests improved performance with uncorrelated
weak predictors (see the supplementary material), which we encourage by randomly sub-sampling
the data; empirically we have found this to impact performance favourably. The algorithm proceeds
by re-weighting all samples in our training data as a function of the individual prediction error e(m)

i

with (7) and a measure of overall confidence in predictions of the mth tree, β(m). Those examples
with poor event predictions get increased updated weights where β(m) is set to control the magnitude
of this update: more confident trees leading to larger updates. β(m) is adjusted to lie in the interval
(0, 1); note that random guessing of survival probabilities results in an average error ε(m) of 1/3
which any weak predictor F (m) is assumed to improve upon. Final time-to-event distributions for
each task are computed from a weighted average of all weak predictors, weighted proportional to
their confidence β(m). In contrast to existing boosting methods [9, 25, 11, 13], the output is not in
the form of a discrete class label or a real valued number, but a set of distribution functions. One of
the main contributions of this paper is to explicitly extend discrete label boosting to nonparametric
multivariate density estimation. We present all algorithmic details in Algorithm 1.

Algorithm 1 Multitask Boosting
Input: time-to-event data with multiple tasks D = {(Xi, Ti, Zi)}i of size n, number of iterations M ,
initial weights w(1)

i ∝ 1, sampling fraction s.
for m = 1 to M do

1. Let D∗ be a randomly sampled fraction s of training data D with distribution w(m).
2. Learn weak model F (m) : X × T → [0, 1]K on D∗.
3. Calculate prediction error e(m)

i for each instance i with equation (7).
4. Calculate adjusted error of F (m), ε(m) =

∑
i e

(m)
i w

(m)
i .

5. Calculate confidence in individual weak models β(m) = ε(m)

2/3−ε(m) :

6. Update data distribution w(m+1)
i ∝ w(m)

i (β(m))1−e
(m)
i .

end for
Output: Final predictions Ff , the weighted average of F (m) for 1 ≤ m ≤M using log(1/β(m)) as
the weight of model F (m).

3.3 Variable importance

Understanding the influence of variables on each specific task is of crucial importance in medicine
and other domains. The approach we use is based on a comparison of the prediction error (2) when
a variable is randomly shuffled (such that the dependence between the response and the variable in
broken) in comparison to the original best fit, similarly to [26] who have shown similar procedures to
be effective in many practical settings. The randomization effectively voids the effect of a variable.
The intuition is that variables used as splitting rules in many tree configurations will significantly alter
individual predictions (when the variable value is shuffled in each patient) suggesting high predictive
power relative to other variables. Let e∗m,j denote the error of tree m over the training data with
variable j randomly shuffled and em the error without shuffling. We define the importance of variable
j, as the weighted average of prediction error differences,∑

m log(1/β(m))|em − e∗j,m|∑
m log(1/β(m))

(8)

Task-specific variable importance measures can be computed by considering the error only over the
task specific component (i.e. using Lk instead of L in equation 2).

4 Related Work

Survival analysis under competing risks departs from more common supervised learning problems
by asking both what event will occur and when that event will occur. A number of recent papers
[22, 17, 5, 3, 4] only consider a single event of interest and are thus not directly applicable to
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our context. We focus instead on contrasting with approaches which, like the present paper, treat
competing risks.

Parametric models The most common techniques for the analysis of such data model explicitly
some form of a cause-specific hazard (presented in (3)) as a parametric function of descriptive
variables. [21] and later [10] are familiar examples of this approach. Applications of boosting
[23, 15, 6], albeit in a gradient boosting framework which is very different to ours, have been
proposed to improve parameter optimization by pursuing parameter updates that result in the steepest
ascent of Cox’s partial likelihood. With the exception of [6] all other works only consider one event
types. A major downside of all the above is their dependence on proportional hazards - hazard rates
between any two patients need to be in constant proportion over time - and their need to specify
covariate interactions beforehand. By contrast, our work makes no such assumptions.

Tree-based models Closer to our work are tree-based approaches to competing risks. [16] extended
Random Forests [7] to time to event estimation under competing risks. They propose a parallel
ensemble in which fully grown trees are built independently on a bootstrapped sample of the data. As
was empirically observed in classification problems in [24], the performance on important subsets of
the population is undermined by the small contribution of underrepresented tasks to the construction
of each tree. For this reason several authors [12] have suggested modifications that re-balance the
data by over/under sampling subsets of the data. However our experiments using this approach,
reported in section 5 produced only mixed results. By boosting, our model implicitly corrects for this
imbalance by encouraging successive trees to improve performance on underrepresented tasks when
they are mis-predicted. [5] use multivariate random forests within a parametric Bayesian mixture
model in which the components of the mixture describe each task individually.

Other Machine Learning models The approach to competing risks in terms of a multi-tasking
learning problem is not new to the present work. For example, [2] builds a model that couples this
point of view with a representation in terms of deep multi-task Gaussian Processes with vector-valued
kernels. However, the objective in [2] is to predict fixed time risk (e.g. 1 year mortality) rather than
to predict full survival curves, which is our objective here. [18] is closer to the present work in that it
shares the objective of predicting cause-specific survival probabilities, but the methodology is quite
different, exploiting a deep learning architecture with shared and task specific layers.

5 Experiments

5.1 Evaluation Protocol

We measure performance with a common metric used in the literature: the cause-specific concordance
index (C-index). Formally, we define the (time-dependent) concordance index (C-index) for a cause
k as follows [27]:

Ck(t) := P(F̂k(t;Xi) > F̂k(t;Xj)|{zi = k} ∧ {Ti ≤ t} ∧ {Ti < Tj ∨ δj 6= k}) (9)

where F̂k(t;Xi) is the predicted CIF for a test patient i. The time-dependent C-index as defined
above corresponds to the probability that predicted cause-specific survival probabilities are ranked in
accordance to the actual observed survival times given the occurrence of an event and corresponding
cause. The C-index thus serves as a measure of the discriminative power for a cause of interest of a
model and can be interpreted as an extension of the AUROC for censored data. Random guessing
corresponds to a C-index of 0.5 and perfect prediction to a C-index of 1.

Baseline Algorithms We compare our model with 9 baseline algorithms described in section 4. We
consider the proportional hazards model on the cause specific hazard (Cox) [21], the proportional
hazards model on the subdistribution hazard (Fine-Gray) by [10] and the boosting approach to
parameter optimization from [6]. These three baselines encode a linear effect of variables on survival
and do not require hyper-parameter tuning except [6] for which the number of boosting iterations
is optimized by cross-validation. As nonparametric alternatives we consider Random Forests for
survival data under competing risks (RSF) [16] and also a weighted version (Weighted RSF) that
attempts to mitigate task imbalance by sampling low incidence instances with higher probability such
as to achieve balanced tasks in each bootstrapped sample. The size of the ensembles was optimized by
cross-validation while the remaining hyper-parameters were set to default values. We compare with
the Gaussian process model (DMGP) [2] with the suggested hyperparameters configurations and the
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Deep Learning architecture (DeepHit) [18] with hyperparameters optimized with a validation set. We
have in addition evaluated SMTBoost on each cause separately, denoted SMTBoost (sep.), by using
the logrank test statistic instead of Gray’s test (see section 3.1.1) and the deep neural network for
survival prediction (DeepSurv) [17] - also evaluated on each cause separately as it does not consider
competing risks - to understand the benefit of considering all causes jointly. On all experiments we
train SMTBoost with a tree-depth of 3 and 250 boosting iterations, our default parameter settings.

5.2 Synthetic Studies

This section explores the ability of SMTBoost to recover complex survival patterns.

5.2.1 High Dimensional and Heterogeneous data

X ∼ U(0, 1), T 1 ∼ exp(X2
1+sin(X2+X3)+2X4+2X5), T 2 ∼ exp(X1+X2+X3+2X6+2X7)

This challenging setting mimics data that might be expected in genetic studies or medical data from
electronic health records in which the two tasks reflect heterogeneous interactions between patient
variables. We generate 1000 event times T , each with probability 0.5 from tasks 1 or 2, based on
100 variables drawn from a uniform distribution. A random subset of 20% of generated times are
censored by transforming their event time: C ← U(0, T ). Only a very small number of variables,
7 out of 100, are set to influence time to event. The first 3 generated variables are shared between
tasks, while variables 4 and 5 influence task 1 only, and variables 6 and 7 influence task 2 only. All
remaining variables are introduced as noise.

Figure 3: Variable importance in high dimensional
setting.

As a first experiment we aim to evaluate and
demonstrate the validity of our task specific
variable importance procedure introduced in
section 3.3. Results (normalized) are shown
in Figure 3. For each variable two estimates
are presented: one deriving from the error on
task 1 predictions only, and one considering
the error on task 2 only. We note first that
even in high dimensional settings with a lot
of noise, SMTBoost is able to distinguish be-
tween influential and noise variables. In ad-
dition SMTBoost captures the larger effect
of task-specific variables but, due to the pres-
ence of censoring, also overestimates the im-
portance of variables that are present in only one of the two tasks.

In a second experiment we evaluate model task-specific predictions in comparison to baseline
algorithms introduced in section 5.1 with the C-index averaged over all time horizons t. We present
these results on the two last columns of Table 1. Performance on task 1 demonstrates the representation
ability of the more flexible approaches (tree based, deep learning and gaussian process) but outperform
only marginally for task 2 which has linear covariate influence. The performance of the tree-based
approaches on both tasks suggests that these are more efficient in high-dimensional settings. In
comparison to SMTBoost we believe that it is the stronger focus (by boosting) on divergent instances
that leads to the gain in performance with respect to RSF and weighted RSF because the exponential
transformation of covariate interactions for both tasks leads to highly divergent event times even
between observations that have similar covariate values.

5.3 Real data studies: SEER

We investigate a patient population extracted from the Surveillance, Epidemiology, and End Results
(SEER) repository similarly to [2]. The data contains 72, 809 patients of which 14.4% died due
to Breast cancer, 1.7% due to cardiovascular diseases (CVD) and 6.1% due to other causes. The
remaining patients were censored. We give a more detailed description in the Supplementary material.
Performance is evaluated with the cause-specific C-index (section 5.1), averaged over equally spaced
times of 10 months from registration to the last observed event. Table 1 gives all performance results;
these are averages over 4 fold cross-validation estimates and confidence bands are standard deviations.
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Models Breast Cancer CVD Other Synthetic T 1 Synthetic T 2

Cox 0.773± 0.02 0.639± 0.03 0.688± 0.02 0.612± 0.01 0.705± 0.01

CoxBoost 0.774± 0.02 0.642± 0.03 0.678± 0.02 0.613± 0.01 0.705± 0.01

Fine-Gray 0.777± 0.02 0.636± 0.03 0.682± 0.02 0.613± 0.01 0.706± 0.01

RSF 0.789± 0.03 0.722± 0.03 0.643± 0.02 0.654± 0.01 0.720± 0.01

Weighted RSF 0.778± 0.03 0.730± 0.03 0.645± 0.02 0.645± 0.01 0.717± 0.01

DeepHit [18] 0.800± 0.01 0.662± 0.01 0.684± 0.01 0.652± 0.01 0.720± 0.01

DMGP [2] 0.801± 0.02 0.732± 0.03 0.646± 0.02 0.651± 0.01 0.718± 0.01

DeepSurv [17] 0.781± 0.02 0.659± 0.03 0.685± 0.03 0.629± 0.01 0.710± 0.01

SMTBoost (sep.) 0.795± 0.02 0.721± 0.04 0.660± 0.03 0.631± 0.01 0.710± 0.01

SMTBoost 0.819± 0.02 0.766± 0.03 0.688± 0.02 0.664± 0.01 0.721± 0.01

Table 1: C-index figures (higher better) and standard deviations on the SEER and synthetic dataset.

Source of gain Patients suffering from chronic diseases tend to be very heterogeneous, mortality
rates can be highly divergent even within narrow phenotypes. The limitations imposed by proportional
hazard models to model this kind of data are evident from the performance results on both Breast
Cancer and CVD outcomes. Predictions of other causes tend to benefit from simpler modelling
approaches as SEER predominantly records patient information related to Cancer (see Supplement)
which suggests that few predictive variables are available for other causes. Performance gains
of SMTBoost are largest with respect CVD outcomes which illustrates its ability to handle low
incidence tasks (only 1.7% of events relate to CVD). Both DeepHit and DMGP are competitive as
they leverage the influence of shared risk factors but underperform SMTBoost. The results suggest
that boosting to handle imbalance is crucial to improve predictions.

Figure 4: Mean C-index results (higher better).

5.3.1 Further exploring imbalanced heterogeneous data

We constructed an additional more general synthetic experiment designed to express complex and
heterogeneous survival patterns between 2 tasks to further understand performance in imbalanced
data sets. Consider the following data generation process,

X ∼ U(0, 1), T 1 ∼ exp(log(αT1 X) + αT2 X
2), T 2 ∼ exp(αT3 X)

Variables X and parameters α1, α2, α3 are each of dimension 5 whose components are drawn at
random from a uniform distribution. For each task we investigate predictive performance as a function
of task prevalence by analyzing 4 scenarios with different task proportions in the resulting data. For
instance a first balanced scenario for task 1 would involve a split: 50% censored, 25% task 1, 25%
task 2. We generate 5 data sets (by sampling variables and parameters randomly) of 1000 instances for
each individual scenario and set a random 50% of the population to be uniformly censored. We show
performance results in Figure 4, as a function of task 1 and task 2 occurrence in the data. As expected,
all models have their performance deteriorate the fewer samples available but we observe increasing
relative performance gains for both SMTBoost and weighted RSF, the only two approaches that
attempt to correct for the imbalance.
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6 Conclusion

We have introduced a boosting-based algorithm for survival analysis with multiple outcomes, designed
to handle the heterogeneity present in modern medical data sets, including highly imbalanced data
and high dimensional feature spaces. Our experiments on synthetic and real medical data have
demonstrated large performance improvements over current techniques and show the advantage
of a boosting framework, already observed in classification and regression problems, in the field
of time-to-event analysis. From a medical perspective our model contributes towards the field of
“individualized medicine”. Our hope is that based on our model clinicians can improve long term
prognosis and more accurately weight the benefits of a treatment for each individual patient whose
characteristics may lead her to behave differently than the average.
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