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Abstract

Estimating a vector x from noisy linear measurements Ax + w often requires
use of prior knowledge or structural constraints on x for accurate reconstruction.
Several recent works have considered combining linear least-squares estimation
with a generic or “plug-in” denoiser function that can be designed in a modu-
lar manner based on the prior knowledge about x. While these methods have
shown excellent performance, it has been difficult to obtain rigorous performance
guarantees. This work considers plug-in denoising combined with the recently-
developed Vector Approximate Message Passing (VAMP) algorithm, which is
itself derived via Expectation Propagation techniques. It shown that the mean
squared error of this “plug-and-play" VAMP can be exactly predicted for high-
dimensional right-rotationally invariant random A and Lipschitz denoisers. The
method is demonstrated on applications in image recovery and parametric bilinear
estimation.

1 Introduction

The estimation of an unknown vector x0 ∈ R
N from noisy linear measurements y of the form

y = Ax0 +w ∈ R
M , (1)

where A ∈ R
M×N is a known transform and w is disturbance, arises in a wide-range of learning

and inverse problems. In many high-dimensional situations, such as when the measurements are
fewer than the unknown parameters (i.e., M ≪ N ), it is essential to incorporate known structure on
x0 in the estimation process. A fundamental challenge is how to perform structured estimation of
x0 while maintaining computational efficiency and a tractable analysis.

Approximate message passing (AMP), originally proposed in [1], refers to a powerful class of algo-
rithms that can be applied to reconstruction of x0 from (1) that can easily incorporate a wide class
of statistical priors. In this work, we restrict our attention to w ∼ N (0, γ−1

w I), noting that AMP
was extended to non-Gaussian measurements in [2, 3, 4]. AMP is computationally efficient, in that
it generates a sequence of estimates {x̂k}∞k=0 by iterating the steps

x̂k = g(rk, γk) (2a)

vk = y −Ax̂k + N
M
〈∇g(rk−1, γk−1)〉vk−1 (2b)

rk+1 = x̂k +ATvk, γk+1 = M/‖vk‖2, (2c)
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initialized with r0 = ATy, γ0 = M/‖y‖2, v−1 = 0, and assuming A is scaled so that ‖A‖2F ≈ N .

In (2), g : RN ×R → R
N is an estimation function chosen based on prior knowledge about x0, and

〈∇g(r, γ)〉 := 1
N

∑N
n=1

∂gn(r,γ)
∂rn

denotes the divergence of g(r, γ). For example, if x0 is known to

be sparse, then it is common to choose g(·) to be the componentwise soft-thresholding function, in
which case AMP iteratively solves the LASSO [5] problem.

Importantly, for large, i.i.d., sub-Gaussian random matrices A and Lipschitz denoisers g(·), the
performance of AMP can be exactly predicted by a scalar state evolution (SE), which also provides
testable conditions for optimality [6, 7, 8]. The initial work [6, 7] focused on the case where g(·) is
a separable function with identical components (i.e., [g(r, γ)]n = g(rn, γ) ∀n), while the later work
[8] allowed non-separable g(·). Interestingly, these SE analyses establish the fact that

rk = x0 +N (0, I/γk), (3)

leading to the important interpretation that g(·) acts as a denoiser. This interpretation provides
guidance on how to choose g(·). For example, if x is i.i.d. with a known prior, then (3) suggests
to choose a separable g(·) composed of minimum mean-squared error (MMSE) scalar denoisers
g(rn, γ) = E(xn|rn = xn +N (0, 1/γ)). In this case, [6, 7] established that, whenever the SE has
a unique fixed point, the estimates x̂k generated by AMP converge to the Bayes optimal estimate of
x0 from y. As another example, if x is a natural image, for which an analytical prior is lacking, then
(3) suggests to choose g(·) as a sophisticated image-denoising algorithm like BM3D [9] or DnCNN
[10], as proposed in [11]. Many other examples of structured estimators g(·) can be considered; we
refer the reader to [8] and Section 5. Prior to [8], AMP SE results were established for special cases
of g(·) in [12, 13]. Plug-in denoisers have been combined in related algorithms [14, 15, 16].

An important limitation of AMP’s SE is that it holds only for large, i.i.d., sub-Gaussian A. AMP
itself often fails to converge with small deviations from i.i.d. sub-Gaussian A, such as when A is
mildly ill-conditioned or non-zero-mean [4, 17, 18]. Recently, a robust alternative to AMP called
vector AMP (VAMP) was proposed and analyzed in [19], based closely on expectation propagation
[20]—see also [21, 22, 23]. There it was established that, if A is a large right-rotationally invariant
random matrix and g(·) is a separable Lipschitz denoiser, then VAMP’s performance can be exactly
predicted by a scalar SE, which also provides testable conditions for optimality. Importantly, VAMP
applies to arbitrarily conditioned matrices A, which is a significant benefit over AMP, since it is
known that ill-conditioning is one of AMP’s main failure mechanisms [4, 17, 18].

Unfortunately, the SE analyses of VAMP in [24] and its extension in [25] are limited to separable
denoisers. This limitation prevents a full understanding of VAMP’s behavior when used with non-
separable denoisers, such as state-of-the-art image-denoising methods as recently suggested in [26].
The main contribution of this work is to show that the SE analysis of VAMP can be extended to
a large class of non-separable denoisers that are Lipschitz continuous and satisfy a certain conver-
gence property. The conditions are similar to those used in the analysis of AMP with non-separable
denoisers in [8]. We show that there are several interesting non-separable denoisers that satisfy these
conditions, including group-structured and convolutional neural network based denoisers.

An extended version with all proofs and other details are provided in [27].

2 Review of Vector AMP

The steps of VAMP algorithm of [19] are shown in Algorithm 1. Each iteration has two parts: A
denoiser step and a Linear MMSE (LMMSE) step. These are characterized by estimation functions
g1(·) and g2(·) producing estimates x̂1k and x̂2k. The estimation functions take inputs r1k and r2k
that we call partial estimates. The LMMSE estimation function is given by,

g2(r2k, γ2k) :=
(
γwA

TA+ γ2kI
)−1 (

γwA
Ty + γ2kr2k

)
, (4)

where γw > 0 is a parameter representing an estimate of the precision (inverse variance) of the noise
w in (1). The estimate x̂2k is thus an MMSE estimator, treating the x as having a Gaussian prior
with mean given by the partial estimate r2k. The estimation function g1(·) is called the denoiser and
can be designed identically to the denoiser g(·) in the AMP iterations (2). In particular, the denoiser
is used to incorporate the structural or prior information on x. As in AMP, in lines 5 and 11, 〈∇gi〉
denotes the normalized divergence.

2



Algorithm 1 Vector AMP (LMMSE form)

Require: LMMSE estimator g2(·, γ2k) from (4), denoiser g1(·, γ1k), and number of iterations Kit.
1: Select initial r10 and γ10 ≥ 0.
2: for k = 0, 1, . . . ,Kit do
3: // Denoising
4: x̂1k = g1(r1k, γ1k)
5: α1k = 〈∇g1(r1k, γ1k)〉
6: η1k = γ1k/α1k, γ2k = η1k − γ1k
7: r2k = (η1kx̂1k − γ1kr1k)/γ2k
8:

9: // LMMSE estimation
10: x̂2k = g2(r2k, γ2k)
11: α2k = 〈∇g2(r2k, γ2k)〉
12: η2k = γ2k/α2k, γ1,k+1 = η2k − γ2k
13: r1,k+1 = (η2kx̂2k − γ2kr2k)/γ1,k+1
14: end for
15: Return x̂1Kit

.

The main result of [24] is that, under suitable conditions, VAMP admits a state evolution (SE) anal-
ysis that precisely describes the mean squared error (MSE) of the estimates x̂1k and x̂2k in a certain
large system limit (LSL). Importantly, VAMP’s SE analysis applies to arbitrary right rotationally
invariant A. This class is considerably larger than the set of sub-Gaussian i.i.d. matrices for which
AMP applies. However, the SE analysis in [24] is restricted separable Lipschitz denoisers that can
be described as follows: Let g1n(r1, γ1) be the n-th component of the output of g1(r1, γ1). Then, it
is assumed that,

x̂1n = g1n(r1, γ1) = φ(r1n, γ1), (5)

for some function scalar-output function φ(·) that does not depend on the component index n. Thus,
the estimator is separable in the sense that the n-th component of the estimate, x̂1n depends only on
the n-th component of the input r1n as well as the precision level γ1. In addition, it is assumed that
φ(r1, γ1) satisfies a certain Lipschitz condition. The separability assumption precludes the analysis
of more general denoisers mentioned in the Introduction.

3 Extending the Analysis to Non-Separable Denoisers

The main contribution of the paper is to extend the state evolution analysis of VAMP to a class
of denoisers that we call uniformly Lipschitz and convergent under Gaussian noise. This class
is significantly larger than separable Lipschitz denoisers used in [24]. To state these conditions
precisely, consider a sequence of estimation problems, indexed by a vector dimension N . For each
N , suppose there is some “true" vector u = u(N) ∈ R

N that we wish to estimate from noisy
measurements of the form, r = u + z, where z ∈ R

N is Gaussian noise. Let û = g(r, γ) be some
estimator, parameterized by γ.

Definition 1. The sequence of estimators g(·) are said to be uniformly Lipschitz continuous if there
exists constants A, B and C > 0, such that

‖g(r2, γ2)− g(r1, γ1)‖ ≤ (A+B|γ2 − γ1|)‖r2 − r1‖+ C
√
N |γ2 − γ1|, (6)

for any r1, r2, γ1, γ2 and N .

Definition 2. The sequence of random vectors u and estimators g(·) are said to be
convergent under Gaussian noise if the following condition holds: Let z1, z2 ∈ R

N be two se-

quences where (z1n, z2n) are i.i.d. with (z1n, z2n) = N (0,S) for some positive definite covariance
S ∈ R

2×2. Then, all the following limits exist almost surely:

lim
N→∞

1

N
g(u+ z1, γ1)

Tg(u+ z2, γ2), lim
N→∞

1

N
g(u+ z1, γ1)

Tu, (7a)

lim
N→∞

1

N
uTz1, lim

N→∞

1

N
‖u‖2 (7b)

lim
N→∞

〈∇g(u+ z1, γ1)〉 =
1

NS12
g(u+ z1, γ1)

Tz2, (7c)
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for all γ1, γ2 and covariance matrices S. Moreover, the values of the limits are continuous in S, γ1
and γ2.

With these definitions, we make the following key assumption on the denoiser.

Assumption 1. For each N , suppose that we have a “true" random vector x0 ∈ R
N and a denoiser

g1(r1, γ1) acting on signals r1 ∈ R
N . Following Definition 1, we assume the sequence of denoiser

functions indexed by N , is uniformly Lipschitz continuous. In addition, the sequence of true vectors
x0 and denoiser functions are convergent under Gaussian noise following Definition 2.

The first part of Assumption 1 is relatively standard: Lipschitz and uniform Lipschitz continuity
of the denoiser is assumed several AMP-type analyses including [6, 28, 24] What is new is the
assumption in Definition 2. This assumption relates to the behavior of the denoiser g1(r1, γ1) in the
case when the input is of the form, r1 = x0 + z. That is, the input is the true signal with a Gaussian
noise perturbation. In this setting, we will be requiring that certain correlations converge. Before
continuing our analysis, we briefly show that separable denoisers as well as several interesting non-
separable denoisers satisfy these conditions.

Separable Denoisers. We first show that the class of denoisers satisfying Assumption 1 includes
the separable Lipschitz denoisers studied in most AMP analyses such as [6]. Specifically, suppose
that the true vector x0 has i.i.d. components with bounded second moments and the denoiser g1(·)
is separable in that it is of the form (5). Under a certain uniform Lipschitz condition, it is shown in
the extended version of this paper [27] that the denoiser satisfies Assumption 1.

Group-Based Denoisers. As a first non-separable example, let us suppose that the vector x0 can
be represented as an L×K matrix. Let x0

ℓ ∈ R
K denote the ℓ-th row and assume that the rows are

i.i.d. Each row can represent a group. Suppose that the denoiser g1(·) is groupwise separable. That
is, if we denote by g1ℓ(r, ℓ) the ℓ-th row of the output of the denoiser, we assume that

g1ℓ(r, γ) = φ(rℓ, γ) ∈ R
K , (8)

for a vector-valued function φ(·) that is the same for all rows. Thus, the ℓ-th row output gℓ(·) de-
pends only on the ℓ-th row input. Such groupwise denoisers have been used in AMP and EP-type
methods for group LASSO and other structured estimation problems [29, 30, 31]. Now, consider the
limit where the group size K is fixed, and the number of groups L → ∞. Then, under suitable Lips-
chitz continuity conditions, the extended version of this paper [27] shows that groupwise separable
denoiser also satisfies Assumption 1.

Convolutional Denoisers. As another non-separable denoiser, suppose that, for each N , x0 is an
N sample segment of a stationary, ergodic process with bounded second moments. Suppose that the
denoiser is given by a linear convolution,

g1(r1) := TN (h ∗ r1), (9)

where h is a finite length filter and TN (·) truncates the signal to its first N samples. For simplicity,
we assume there is no dependence on γ1. Convolutional denoising arises in many standard linear es-
timation operations on wide sense stationary processes such as Weiner filtering and smoothing [32].
If we assume that h remains constant and N → ∞, the extended version of this paper [27] shows
that the sequence of random vectors x0 and convolutional denoisers g1(·) satisfies Assumption 1.

Convolutional Neural Networks. In recent years, there has been considerable interest in using
trained deep convolutional neural networks for image denoising [33, 34]. As a simple model for
such a denoiser, suppose that the denoiser is a composition of maps,

g1(r1) = (FL ◦ FL−1 ◦ · · · ◦ F1)(r1), (10)

where Fℓ(·) is a sequence of layer maps where each layer is either a multi-channel convolutional op-
erator or Lipschitz separable activation function, such as sigmoid or ReLU. Under mild assumptions
on the maps, it is shown in the extended version of this paper [27] that the estimator sequence g1(·)
can also satisfy Assumption 1.
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Singular-Value Thresholding (SVT) Denoiser. Consider the estimation of a low-rank matrix X0

from linear measurements y = A(X0), where A is some linear operator [35]. Writing the SVD of

R as R =
∑

i σiuiv
T
i , the SVT denoiser is defined as

g1(R, γ) :=
∑

i

(σi − γ)+uiv
T
i , (11)

where (x)+ := max{0, x}. In the extended version of this paper [27], we show that g1(·) satisfies
Assumption 1.

4 Large System Limit Analysis

4.1 System Model

Our main theoretical contribution is to show that the SE analysis of VAMP in [19] can be extended to
the non-separable case. We consider a sequence of problems indexed by the vector dimension N . For
each N , we assume that there is a “true" random vector x0 ∈ R

N observed through measurements

y ∈ R
M of the form in (1) where w ∼ N (0, γ−1

w0 I). We use γw0 to denote the “true" noise precision
to distinguish this from the postulated precision, γw, used in the LMMSE estimator (4). Without
loss of generality (see below), we assume that M = N . We assume that A has an SVD,

A = USVT, S = diag(s), s = (s1, . . . , sN ), (12)

where U and V are orthogonal and S is non-negative and diagonal. The matrix U is arbitrary, s is an
i.i.d. random vector with components si ∈ [0, smax] almost surely. Importantly, we assume that V
is Haar distributed, meaning that it is uniform on the N ×N orthogonal matrices. This implies that

A is right rotationally invariant meaning that A
d
= AV0 for any orthogonal matrix V0. We also

assume that w, x0, s and V are all independent. As in [19], we can handle the case of rectangular
V by zero padding s.

These assumptions are similar to those in [19]. The key new assumption is Assumption 1. Given
such a denoiser and postulated variance γw, we run the VAMP algorithm, Algorithm 1. We assume
that the initial condition is given by,

r = x0 +N (0, τ10I), (13)

for some initial error variance τ10. In addition, we assume

lim
N→∞

γ10 = γ10, (14)

almost surely for some γ10 ≥ 0.

Analogous to [24], we define two key functions: error functions and sensitivity functions. The error
functions characterize the MSEs of the denoiser and LMMSE estimator under AWGN measure-
ments. For the denoiser g1(·, γ1), we define the error function as

E1(γ1, τ1) := lim
N→∞

1

N
‖g1(x

0 + z, γ1)− x0‖2, z ∼ N (0, τ1I), (15)

and, for the LMMSE estimator, as

E2(γ2, τ2) := lim
N→∞

1

N
E‖g2(r2, γ2)− x0‖2,

r2 = x0 +N (0, τ2I), y = Ax0 +N (0, γ−1
w0 I). (16)

The limit (15) exists almost surely due to the assumption of g1(·) being convergent under Gaussian
noise. Although E2(γ2, τ2) implicitly depends on the precisions γw0 and γw, we omit this depen-
dence to simplify the notation. We also define the sensitivity functions as

Ai(γi, τi) := lim
N→∞

〈∇gi(x
0 + zi, γi)〉, zi ∼ N (0, τiI). (17)
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4.2 State Evolution of VAMP

We now show that the VAMP algorithm with a non-separable denoiser follows the identical state
evolution equations as the separable case given in [19]. Define the error vectors,

pk := r1k − x0, qk := VT(r2k − x0). (18)

Thus, pk represents the error between the partial estimate r1k and the true vector x0. The error
vector qk represents the transformed error r2k − x0. The SE analysis will show that these errors
are asymptotically Gaussian. In addition, the analysis will exactly predict the variance on the partial
estimate errors (18) and estimate errors, x̂i −x0. These variances are computed recursively through
what we will call the state evolution equations:

α1k = A1(γ1k, τ1k), η1k =
γ1k

α1k
, γ2k = η1k − γ1k (19a)

τ2k =
1

(1− α1k)2
[
E1(γ1k, τ1k)− α2

1kτ1k
]
, (19b)

α2k = A2(γ2k, τ2k), η2k =
γ2k

α2k
, γ1,k+1 = η2k − γ2k (19c)

τ1,k+1 =
1

(1− α2k)2
[
E2(γ2k, τ2k)− α2

2kτ2k
]
, (19d)

which are initialized with k = 0, τ10 in (13) and γ10 defined from the limit (14). The SE equations in
(19) are identical to those in [19] with the new error and sensitivity functions for the non-separable
denoisers. We can now state our main result, which is proven in the extended version of this paper
[27].

Theorem 1. Under the above assumptions and definitions, assume that the sequence of true random
vectors x0 and denoisers g1(r1, γ1) satisfy Assumption 1. Assume additionally that, for all iterations
k, the solution α1k from the SE equations (19) satisfies α1k ∈ (0, 1) and γik > 0. Then,

(a) For any k, the error vectors on the partial estimates, pk and qk in (18) can be written as,

pk = p̃k +O( 1√
N
), qk = q̃k +O( 1√

N
), (20)

where, p̃k and q̃k ∈ R
N are each i.i.d. Gaussian random vectors with zero mean and per

component variance τ1k and τ2k, respectively.

(b) For any fixed iteration k ≥ 0, and i = 1, 2, we have, almost surely

lim
N→∞

1

N
‖x̂i − x0‖2 =

1

ηik
, lim

N→∞
(αik, ηik, γik) = (αik, ηik, γik). (21)

In (20), we have used the notation, that when u, ũ ∈ R
N are sequences of random vectors, u =

ũ + O( 1√
N
) means limN→∞

1
N
‖u − ũ‖2 = 0 almost surely. Part (a) of Theorem 1 thus shows

that the error vectors pk and qk in (18) are approximately i.i.d. Gaussian. The result is a natural
extension to the main result on separable denoisers in [19]. Moreover, the variance on the variance
on the errors, along with the mean squared error (MSE) of the estimates x̂ik can be exactly predicted
by the same SE equations as the separable case. The result thus provides an asymptotically exact
analysis of VAMP extended to non-separable denoisers.

5 Numerical Experiments

5.1 Compressive Image Recovery

We first consider the problem of compressive image recovery, where the goal is to recover an image
x0 ∈ R

N from measurements y ∈ R
M of the form (1) with M ≪ N . This problem arises in many

imaging applications, such as magnetic resonance imaging, radar imaging, computed tomography,
etc., although the details of A and x0 change in each case.

One of the most popular approaches to image recovery is to exploit sparsity in the wavelet transform
coefficients c := Ψx0, where Ψ is a suitable orthonormal wavelet transform. Rewriting (1) as
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Figure 1: Compressive image recovery: PSNR and runtime vs. rate M/N and cond(A)

y = AΨc+w, the idea is to first estimate c from y (e.g., using LASSO) and then form the image
estimate via x̂ = ΨTĉ. Although many algorithms exist to solve the LASSO problem, the AMP
algorithms are among the fastest (see, e.g., [36, Fig.1]). As an alternative to the sparsity-based
approach, it was recently suggested in [11] to recover x0 directly using AMP (2) by choosing the
estimation function g as a sophisticated image-denoising algorithm like BM3D [9] or DnCNN [10].

Figure 1a compares the LASSO- and DnCNN-based versions of AMP and VAMP for 128×128 im-
age recovery under well-conditioned A and no noise. Here, A = JPHD, where D is a diagonal
matrix with random ±1 entries, H is a discrete Hadamard transform (DHT), P is a random permu-
tation matrix, and J contains the first M rows of IN . The results average over the well-known lena,
barbara, boat, house, and peppers images using 10 random draws of A for each. The figure shows
that AMP and VAMP have very similar runtimes and PSNRs when A is well-conditioned, and that
the DnCNN approach is about 10 dB more accurate, but 10× as slow, as the LASSO approach. Fig-
ure 2 shows the state-evolution prediction of VAMP’s PSNR on the barbara image at M/N = 0.5,
averaged over 50 draws of A. The state-evolution accurately predicts the PSNR of VAMP.

To test the robustness to the condition number of A, we repeated the experiment from Fig. 1a
using A = JDiag(s)PHD, where Diag(s) is a diagonal matrix of singular values. The singular
values were geometrically spaced, i.e., sm/sm−1 = ρ ∀m, with ρ chosen to achieve a desired
cond(A) := s1/sM . The sampling rate was fixed at M/N = 0.2, and the measurements were
noiseless, as before. The results, shown in Fig. 1b, show that AMP diverged when cond(A) ≥ 10,
while VAMP exhibited only a mild PSNR degradation due to ill-conditioned A. The original images
and example image recoveries are included in the extended version of this paper.

5.2 Bilinear Estimation via Lifting

We now use the structured linear estimation model (1) to tackle problems in bilinear estimation
through a technique known as “lifting” [37, 38, 39, 40]. In doing so, we are motivated by applications
like blind deconvolution [41], self-calibration [39], compressed sensing (CS) with matrix uncertainty
[42], and joint channel-symbol estimation [43]. All cases yield measurements y of the form

y =
(∑L

l=1 blΦl

)
c+w ∈ R

M , (22)

where {Φl}Ll=1 are known, w ∼ N (0, I/γw), and the objective is to recover both b := [b1, . . . , bL]
T

and c ∈ R
P . This bilinear problem can be “lifted” into a linear problem of the form (1) by setting

A = [Φ1 Φ2 · · · ΦL] ∈ R
M×LP and x = vec(cbT) ∈ R

LP , (23)

where vec(X) vectorizes X by concatenating its columns. When b and c are i.i.d. with known priors,
the MMSE denoiser g(r, γ) = E(x|r = x+N (0, I/γ)) can be implemented near-optimally by the
rank-one AMP algorithm from [44] (see also [45, 46, 47]), with divergence estimated as in [11].

We first consider CS with matrix uncertainty [42], where b1 is known. For these experiments, we
generated the unknown {bl}Ll=2 as i.i.d. N (0, 1) and the unknown c ∈ R

P as K-sparse with N (0, 1)
nonzero entries. Fig. 2 shows that the MSE on x of lifted VAMP is very close to its SE prediction
when K = 12. We then compared lifted VAMP to PBiGAMP from [48], which applies AMP
directly to the (non-lifted) bilinear problem, and to WSS-TLS from [42], which uses non-convex
optimization. We also compared to MMSE estimation of b under oracle knowledge of c, and MMSE
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estimation of c under oracle knowledge of support(c) and b. For b1 =
√
20, L = 11, P = 256,

K = 10, i.i.d. N (0, 1) matrix A, and SNR = 40 dB, Fig. 4a shows the normalized MSE on b (i.e.,

NMSE(b) := E‖b̂ − b0‖2/E‖b0‖2) and c versus sampling ratio M/P . This figure demonstrates
that lifted VAMP and PBiGAMP perform close to the oracles and much better than WSS-TLS.

Although lifted VAMP performs similarly to PBiGAMP in Fig. 4a, its advantage over PBiGAMP
becomes apparent with non-i.i.d. A. For illustration, we repeated the previous experiment, but with
A constructed using the SVD A = UDiag(s)VT with Haar distributed U and V and geometrically
spaced s. Also, to make the problem more difficult, we set b1 = 1. Figure 4b shows the normalized
MSE on b and c versus cond(A) at M/P = 0.6. There it can be seen that lifted VAMP is much
more robust than PBiGAMP to the conditioning of A.

We next consider the self-calibration problem [39], where the measurements take the form

y = Diag(Hb)Ψc+w ∈ R
M . (24)

Here the matrices H ∈ R
M×L and Ψ ∈ R

M×P are known and the objective is to recover the un-
known vectors b and c. Physically, the vector Hb represents unknown calibration gains that lie in
a known subspace, specified by H. Note that (24) is an instance of (22) with Φl = Diag(hl)Ψ,
where hl denotes the lth column of H. Different from “CS with matrix uncertainty,” all ele-
ments in b are now unknown, and so WSS-TLS [42] cannot be applied. Instead, we compare
lifted VAMP to the SparseLift approach from [39], which is based on convex relaxation and has
provable guarantees. For our experiment, we generated Ψ and b ∈ R

L as i.i.d. N (0, 1); c as
K-sparse with N (0, 1) nonzero entries; H as randomly chosen columns of a Hadamard matrix;
and w = 0. Figure 3 plots the success rate versus L and K, where “success” is defined as

E‖ĉb̂T − c0(b0)T‖2F /E‖c0(b0)T‖2F < −60 dB. The figure shows that, relative to SparseLift, lifted
VAMP gives successful recoveries for a wider range of L and K.

6 Conclusions

We have extended the analysis of the method in [24] to a class of non-separable denoisers. The
method provides a computational efficient method for reconstruction where structural information
and constraints on the unknown vector can be incorporated in a modular manner. Importantly, the
method admits a rigorous analysis that can provide precise predictions on the performance in high-
dimensional random settings.
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