
10 Detailed Proofs and Technical Lemmas

Proof of Theorem 3.2. Define φ� by φ�(x) = 1
n!

�
π∈σ(n) φ(π(x)), where σ(n) is the symmetric

group on n letters. First note that φ(π(x)) satisfies (1) for all π ∈ σ(n), and that
�
φ(π(x)) dµθ =�

φ(x) dµθ. Then by exchangeability,
�

φ�(x) dµθ =

�
1

n!

�

π∈σ(n)

φ(π(x)) dµθ =
1

n!

�

π∈σ(n)

�
φ(π(x)) dµθ

=
1

n!

�

π∈σ(n)

�
φ(x) dµθ =

�
φ(x) dµθ.

To see that φ� satisfies (�, δ)-DP, we check condition (1):

φ�(x) =
1

n!

�

π∈σ(n)

φ(π(x)) ≤ 1

n!

�

π∈σ(n)

(e�φ(π(x�)) + δ)

=
1

n!

�

π∈σ(n)

e�φ(π(x�)) +
1

n!

�

π∈σ(n)

δ = e�φ�(x�) + δ

(1− φ�(x)) =


1− 1

n!

�

π∈σ(n)

φ(π(x))


 =

1

n!

�

π∈σ(n)

(1− φ(π(x)))

≤ 1

n!

�

π∈σ(n)

(e�(1− φ(π(x�))) + δ) = e� (1− φ�(π(x�))) + δ.

Lemma 10.1. 1) Let L ∼ DLap(b), U ∼ Unif(−1/2, 1/2), G1, G2
iid∼ Geom(1 − b), and N0 ∼

Tulap(m, b, 0), where the pmf of L is fL(x) = 1−b
1+bb

|x| for x ∈ Z, and the pmf of G1 is

fG1(x) = (1− p)xp for x ∈ {0, 1, 2, . . .}. Then L+ U +m
d
= G1 −G2 + U +m

d
= N0.

2) Let N be the output of Algorithm 2 with inputs m, b, q. Then N ∼ Tulap(m, b, q).

3) The random variable N ∼ Tulap(m, b, q) is continuous and symmetric about m.

Proof of Lemma 10.1. 1) We know that L d
= G1 − G2, as shown in IK06. Let fU (·) denote the

pdf of U , and FU denote the cdf of U . We will use the property that fU (x) = fU (−x) and
FU (−x) = 1− FU (x). Then the pdf of L+ U is

fL+U (x) = fU (x− [x])

�
1− b

1 + b

�
b|[x]| =




fU (x− [x])

�
1−b
1+b

�
b−[x] [x] ≤ 0

fU (x− [x])
�

1−b
1+b

�
b[x] [x] > 0.

If [x] ≤ 0, then we have

FL+U (x) =

� x

−∞
fU (t− [t])

�
1− b

1 + b

�
b−[t] dt

=

� [x]−1/2

−∞
fU (t− [t])

�
1− b

1 + b

�
b−[t] dt+

� x

[x]−1/2

fU (t− [x])

�
1− b

1 + b

�
b−[x] dt

=

[x]−1�

t=−∞

�
1− b

1 + b

�
b−t +

� x

[x]−1/2

fU (t− [x])

�
1− b

1 + b

�
b−[x] dt

=
b−[x]+1

1 + b
+ FU (x− [x])

�
1− b

1 + b

�
b−[x]

=
b−[x]

1 + b
(b+ FU (x− [x])(1− b)).
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Since, L + U is symmetric about zero, as both L and U are symmetric about zero, for [x] ≥ 0
we have FL+U (x) = 1− FL+U (−x). The rest follows by replacing x with x−m, and FU (x) =
x+ 1/2.

2) If q = 0, then by part 1), it is clear that the output of Algorithm 2 has the correct distribution.
If q > 0, then by rejection sampling, we have that N ∼ Tulap(m, b, q). For an introduction to
rejection sampling, see Bis06, Chapter 11.

3) This property follows immediately from 1), and that Tulap(m, b, q) is truncated equally on both
sides of m.

Lemma 10.2. Let N ∼ Tulap(m, b, q) and let t ∈ Z. Then FN (t) =

�
b−tC(m) t ≤ [m]

1− btC(−m) t > [m],

where C(m) = (1+ b)−1b[m](b+([m]−m+1/2)(1− b)). C(m) is positive, monotone decreasing,
and continuous in m. Furthermore, b−[m]C(m) = 1− b[m]C(−m).

Proof of Lemma 10.2. The form of the cdf at integer values is easily verified from Lemma 10.1. It is
clear that C(m) is positive. It is also clear that C(m) is continuous and monotone decreasing for all
m ∈ R \ {z + 1/2 | z ∈ Z}. So, we will check that C is continuous at m = z + 1/2 for z ∈ Z:

lim
�↓0

(1 + b)C(z + 1/2 + �) = lim
�↓0

bz+1(b+ (1− �)(1− b)) = bz+1

lim
�↓0

(1 + b)C(z + 1/2− �) = lim
�↓0

bz(b+ �(1− b)) = bz+1.

Since C is continuous on R and monotone decreasing almost everywhere, it follows that C is
monotone decreasing on R as well.

Call α(m) = [m]−m+1/2, which lies in [0, 1]. Note that α(−m) = −[m]+m+1/2 = 1−α(m).
Then

(1 + b)b−[m]C(m) = b+ α(m)(1− b) = b+ (1− α(−m)(1− b)) = b+ (1− b)− α(−m)(1− b)

= (1 + b)− (b+ α(−m)(1− b)) = (1 + b)(1− b[m]C(−m)).

Proof of Lemma 4.3. First we show that 1) and 2) are equivalent. Clearly the m is the same for both.
We must show that for p ∈ (0, 1), e�p ≤ 1−e−�(1−p) whenever p ≤ 1

1+e� , and e�p > 1−e−�(1−p)

when p > 1
1+e� . Setting equal e�p = 1− e−�(1− p) we find that p = 1

1+e� . As p → 1, we have that
e�p > 1− e−�(1− p) and as p → 0, we have e�p < 1− e−�(1− p). We conclude that 1) and 2) are
equivalent.

Next we show that 2) and 3) are equivalent. First we show that FN0(x−m) satisfies the recurrence
relation in 2). Set b = e−�. First we show that for t ∈ Z such that t ≤ [m]− 1, FN0(t−m) ≤ 1

1+e�

and for t ≥ [m], FN0(t−m) ≥ 1
1+e� . Since, FN0(·−m) is increasing, it suffices to check t = [m]−1

and t = [m]:

FN0([m]− 1−m) = b−[m]+1+[m] (b+ ([m]−m+ 1/2)(1− b))

1 + b
≤ b

1 + b
=

1

1 + e�

FN0
([m]−m) = b−[m]+[m] (b+ ([m]−m+ 1/2)(1− b))

1 + b
≥ b

1 + b
=

1

1 + e�
,

where we use the fact that 0 ≤ [m]−m+ 1/2 ≤ 1. Now, let t ∈ Z and check three cases:

• Let t < [m], then e�FN0
(t−m) = e�b−tC(m) = b−(t+1)C(m) = FN0

(t+ 1−m).

• Let t = [m]. Using Lemma 10.2, 1− e−�(1− FN0
(t−m)) = 1− b(1− b−[m]C(m)) =

1− b+ b(1− b[m]C(−m)) = 1− b+ b− b[m+1]C(−m) = FN0(t+ 1−m).

• Let t > m. Then 1 − e−�(1 − FN0(t − m)) = 1 − b(btC(−m)) = 1 − bt+1C(−m) =
FN0(t+ 1−m).

Finally, for any value c ∈ (0, 1), we can find m such that FN0
(0−m) = c, by the intermediate value

theorem. On the other hand, given m, set φ(0) = FN0
(0−m).
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Proof of Lemma 4.4. Note that (φ1−φ2)(g−kf) ≥ 0 for almost all x ∈ X (with respect to µ). Then�
(φ1 − φ2)(g − kf) dµ ≥ 0. Hence,

�
φ1g dµ−

�
φ2g dµ ≥ k(

�
φ1f dµ−

�
φ2f dµ) ≥ 0.

Proof of Theorem 4.5. First note that φ∗ ∈ Dn
�,0, since by Lemma 4.3, φ∗(x) = min{e�φ∗(x −

1), 1− e−�(1− φ∗(x− 1))}. So, φ∗ satisfies (2)-(5). Next, since by Lemma 10.2, FN0
(x−m) is a

continuous, decreasing function in m with limm↑∞ FN0
(x−m) = 0 and limm↓−∞ FN0

(x−m) = 1,
we can find m such that Eθ0φ

∗(x) = α by the Intermediate Value Theorem.

Now that we have argued that φ∗ is a valid test, the rest of the result is an application of Lemma 4.4.
It remains to show that the assumptions are satisfied for the lemma to apply. Let φ ∈ Dn

�,0 such that
Eθ0φ(x) ≤ α.

We claim that either φ(x) = φ∗(x) for all x ∈ {0, 1, 2, . . . , n} or there exists y such that φ(y) <
φ∗(y). To the contrary, suppose that φ∗(x) ≤ φ(x) for all x and there exists z such that φ∗(z) < φ(z).
But this implies that φ∗(0) < φ(0) (as we implied by the following paragraphs, by setting y = 0).
Then Eθ0φ

∗(x) < Eθ0φ(x) ≤ α since the pmf of Binom(n, θ) is nonzero at x = 0, contradicting
the fact that Eθ0φ

∗(x) = α. We conclude that there exists y such that φ∗(y) > φ(y).

Let y be the smallest point in {0, 1, 2, . . . , n} such that φ∗(y) ≥ φ(y). We claim that for all x ≥ y,
we have φ∗(x) ≥ φ(x). We already know that for y = x, the claim holds. For induction, suppose the
claim holds for some x ≥ y. By Lemma 4.3, we know that φ∗(x+ 1) = min{e�φ∗(x), 1− e−�(1−
φ∗(x))}, and by constraints (2)-(5), we know that φ(x+ 1) ≤ min{e�φ(x), 1− e−�(1− φ(x))}.

• Case 1: If φ∗(x) ≤ 1
1+e� , then by Lemma 4.3, φ∗(x+1) = e�φ∗(x) ≥ e�φ(x) ≥ φ(x+1).

• Case 2: If φ∗(x) > 1
1+e� , then by Lemma 4.3, φ∗(x + 1) = 1 − e−�(1 − φ∗(x)) ≥

1− e−�(1− φ(x)) ≥ φ(x+ 1).

We conclude that φ∗(x + 1) ≥ φ(x + 1). By induction, the claim holds for all x ∈ {y, y + 1, y +
2, . . . , n}. So, we have that φ∗(x) ≥ φ(x) for x ∈ {y, y + 1, y + 2, . . . , n} and φ∗(x) ≤ φ(x)
for x ∈ {0, 1, 2, . . . , y − 1}. Since Binom(n, θ) has a monotone likelihood ratio in θ, by Lemma
4.4 we have that Eθ1φ

∗(x) ≥ Eθ1φ(x). We conclude that φ∗ is UMP-α among Dn
�,0 for the stated

hypothesis test.

Proof of Lemma 5.1. We will abbreviate F (x) := FN0(x−m), where N0 ∼ Tulap(0, b = e−�, 0)
to simplify notation. First we will show that 1) and 2) are equivalent. It is clear that y and m are
the same in both. Next consider 1 − e−�(1 − p) + e−�δ = e�p + δ, solving for p gives p = 1−δ

1+e� .
Considering as p → 0 and p → 1, we see that 1− e−�(1− p) + e−�δ ≥ e�p+ δ when p ≤ 1−δ

1+e� and
1− e−�(1− p) + e−�δ ≤ e�p+ δ when p ≥ 1−δ

1+e� .

Next solving 1 − e−�(1 − p) + e−�δ = 1 for p gives p = 1 − δ. So, 1 − e−�(1 − p) + e−�δ ≤ 1
when p ≤ 1− δ and 1− e−�(1− p) + e−�δ ≥ 1 when p ≥ 1− δ. Lastly, solving e�p+ δ = 1 for p
gives p = 1−δ

e� ≥ 1−δ
1+e� . Combining all of these comparisons, we see that 1) is equivalent to 2).

Before we justify the equivalence of 2) and 3), we argue the following claim. Let φ(x) be defined
as in 3). Then φ(x) ≤ 1−δ

1+e� if and only if F (x) ≤ 1
1+e� . Suppose that φ(x) ≤ 1−δ

1+e� . Then
F (x)−q/2

1−q ≤ 1−δ
1+e� . Thus,

F (x) ≤ (1− q)(1− δ)

1 + e�
+

q

2

=
1

1 + e�

�
(1− q)(1− δ) +

�
b+ 1

b

�
q

2

�

=
1

1 + e�

�
(1− b)(1− δ)

1− b+ 2δb
+

�
b+ 1

b

�
δb

1− b+ 2δb

�

=
1

1 + e�
(1− b+ 2δb)−1((1− b)(1− δ) + (b+ 1)δ)

=
1

1 + e�
.
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We are now ready to show that φ(x) as described in 3) fits the form of 2).

• Suppose that 0 < φ(x) < 1−δ
1+e� . By the above, we know that F (x) ≤ 1

1+e� . By Lemma 4.3,

e�φ(x) + δ =
e�F (x)− q

2b

1− q
+ δ =

F (x+ 1)− q
2

1− q
+

q
2 − q

2b

1− q
+ δ

= φ(x+ 1) +
δb

1− b

�
1− 1

b

�
+ δ = φ(x+ 1).

• Suppose that 1−δ
1+e� < φ(x) ≤ 1− δ. Then we have F (x) > 1

1+e� . Then

1− e−�(1− φ(x)) + e−�δ = 1− e−�

�
1− F (x)− q/2

1− q

�
+ e−�δ

= (1− q)−1
�
1− q − e−� (1− F (x)− q/2)

�
+ e−�δ

= (1− q)−1(1− e−�(1− F (x)) + bq/2− q) + bδ

= (1− q)−1(F (x+ 1)− q/2) +
(b− 1)q/2

1− q
+ bδ

= φ(x+ 1) +
δb(b− 1)

1− b
+ bδ

= φ(x+ 1).

• Finally, we must show that if φ(x) = 1 then φ(x − 1) ≥ 1 − δ. It suffices to show that
F (x) ≥ 1 − q/2 implies that F (x − 1) ≥ (1 − δ)(1 − q) + q/2 = 1 − (1/b)(q/2). We
prove the contrapositive. Suppose that F (x− 1) < 1− (1/b)(q/2). Then since F satisfies
property (4), we know that

F (x) ≤ 1− e−�(1− F (x− 1)) < 1− b(1− (1− (1/b)(q/2)))

= 1− b(1− 1 + (1/b)(q/2)) = 1− q/2.

We have justified that φ(x) in 3) satisfies the recurrence relation in 2). Given φ� of the form in 2),
with first non-zero entry at y, by Lemma 10.2 and Intermediate Value Theorem, we can find m ∈ R
such that φ(y) = φ�(y). We conclude that 1), 2), and 3) are all equivalent.

Proof of Corollary 5.3. First we show that φ∗ is UMP-α for H0 : θ ≤ θ0 versus H1 : θ > θ0. Since
φ∗(x) is increasing and Binom(n, θ) has a monotone likelihood ratio in θ, Eθφ

∗ ≤ Eθ0φ
∗ = α

for all θ ≤ θ0 (property of MLR). By Theorem 4.5, we know that φ∗(x) is most powerful for any
alternative θ1 > θ0 versus the null θ0. So, φ∗ is UMP-α.

Next we show that ψ∗ is UMP-α for H1 : θ ≥ θ0 versus H1 : θ < θ0. First note that supθ≥θ0 Eθψ
∗ =

α. Let ψ be another test with supθ≥θ0 Eθψ ≤ α. Let θ1 < θ0, we will show that Eθ1ψ
∗ ≥ Eθ1ψ.

Define �ψ∗(x) = ψ∗(n−x) = 1−FN0(n−x−m2) = FN0(x+m2−n) and �ψ(x) = ψ(n−x). Then
using the map (x, θ) �→ (n− x, 1− θ), we have that EX∼(1−θ0)

�ψ∗(X) = EX∼(1−θ0)ψ
∗(n−X) =

EY∼θ0ψ
∗(Y ) = α. By a similar argument for ψ, we have that both �ψ∗ and �ψ are level α for

H0 : θ ≤ 1 − θ0 versus H1 : θ > 1 − θ0. Since E(1−θ0)
�ψ∗ = α, and �ψ∗(x) = FN0(x −m�), we

have that �ψ∗ is UMP-α for H0 : θ ≤ (1− θ0) versus H1 : θ > (1− θ0). Then for θ1 < θ0,

EX∼θ1ψ
∗(X) = EY∼(1−θ1)

�ψ∗(Y ) ≥ EY∼(1−θ1)
�ψ(Y ) = EX∼θ1ψ(X).

We conclude that ψ∗ is UMP-α for H1 : θ ≥ θ0 versus H1 : θ < θ0.

Lemma 10.3. Observe x ∈ X n. Let T : X n → R, and let {µx | x ∈ X n} be a set of probability
measures on R, dominated by Lebesgue measure. Suppose that µx is parameterized by T (x) and µx

has MLR in T (x). Then {µx} satisfies (�, δ)-DP if and only if for all H(x1, x2) = 1 and all t ∈ R,

µx1
((−∞, t)) ≤ e�µx2

((−∞, t)) + δ, (6)

µx1
((t,∞)) ≤ e�µx2

((t,∞)) + δ. (7)
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Proof of Lemma 10.3. Let α ∈ [0, 1] be given. We will only consider B ⊂ R (Lebesgue measurable)
such that µx2

(B) = α. Then demonstrating (�, δ)-DP requires sup
{B|µx2

(B)=α}
µx1

(B) ≤ e�α + δ.

We interpret this problem as testing the hypothesis H0 : x = x2 versus H1 : x = x1, using
the rejection region B, where α is the type I error, and µx1

(B) is the power. We know that
sup

{B|µx2
(B)=α}

µx1
(B) is achieved by the Neyman-Pearson Lemma. Since µx has an MLR in T (x),

arg sup{B|µx2
(B)=α} µx1

(B) is either of the form (−∞, t) or (t,∞), depending on whether T (x1)

is greater or lesser than T (x2). Since µx1
is dominated by Lebesgue measure for all x1, µx2

((−∞, t))
is continuous in t, which allows us to achieve exactly α type I error.

Proof of Theorem 6.1. Let Z ∼ Tulap
�
T (x), b = e−�, 2δb

1−b+2δb

�
. We know that the distribution of

Z is symmetric with location T (x), and the pdf fZ(t) is increasing as a function of |t − T (x)|. It
follows that fZ(t) has a MLR in T (x). By Lemma 5.1, we know that φ(x) = FZ(m) satisfies (2)-(5),
so by Lemma 10.3, we have the desired result.

Definition 10.4 (p-Value: CB02). For a random vector Xi
iid∼ fθ, a p-value for H0 : θ ∈ Θ0 versus

H1 : θ ∈ Θ1 is a statistic p(X) taking values in [0, 1], such that for every α ∈ [0, 1],

sup
θ∈Θ0

Pθ(p(X) ≤ α) ≤ α.

The smaller the value of p(X), the greater evidence we have for H1 over H0.

Proof of Theorem 6.2. We denote by FZ∼θ0(·) the cdf of the random variable Z, distributed as
Z | X ∼ Tulap(X, b, q) and X ∼ Binom(n, θ0).

1. First we show that p(θ0, Z) is a p-value, according to Definition 10.4. To this end, consider

sup
θ≤θ0

PZ|X∼Tulap(X,b,q)
X∼Binom(n,θ)

(p(θ, Z) ≤ α) = PZ|X∼Tulap(X,b,q)
X∼Binom(n,θ0)

(p(θ0, Z) ≤ α)

using the fact that X has a monotone likelihood ratio in θ. Note that p(θ0, Z) =
1 − FZ∼θ0(Z). When X ∼ Binom(n, θ0), we have that p(θ0, Z) = 1 − FZ∼θ0(Z) ∼
Unif(0, 1). So,

PZ|X∼Tulap(X,b,q)
X∼Binom(n,θ0)

(p(θ0, Z) ≤ α) = PU∼Unif(0,1)(U ≤ α) = α.

2. Let N ∼ Tulap(0, b, q), and recall from Theorem 5.2 that the UMP-α test for H0 : θ ≤ θ0
versus H1 : θ > θ0 is φ∗(x) = FN (x − m), where m satisfies Eθ0φ

∗(x) = α. We can
write φ∗ as

φ∗(x) = FN (x−m) = PN∼Tulap(0,b,q)(N ≤ X −m | X)

= PN (X +N ≥ m | X) = PZ|X∼Tulap(X,b,q)(Z ≥ m | X)

where m is chosen such that

α = EX∼θ0φ
∗(X) = EX∼θ0PZ|X∼Tulap(X,b,q)(Z ≥ m | X)

= PZ|X∼Tulap(X,b,q)
X∼Binom(n,θ0)

(Z ≥ m) = 1− FZ∼θ0(m),

where F is the cdf of the marginal distribution of Z, where Z|X ∼ Tulap(X, b, q) and
X ∼ Binom(n, θ0). From this equation, we have that m is the (1 − α)-quantile of the
marginal distribution of Z.
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Let R|X ∼ Bern(φ∗(X)) and Z|X ∼ Tulap(X, b, q). Then

R|X d
= I(Z ≥ m) | X d

= I(FZ∼θ0(Z) ≥ FZ∼θ0(m)) | X
d
= I (1− α ≤ FZ∼θ0(Z)) |X
d
= I (p(θ0, Z) ≤ α) |X.

Taking the conditional expected value E(· | X) of both sides gives

φ∗(x) = E(R | X) = PZ|X∼Tulap(X,b,q)(p(θ0, Z) ≤ α | X).

3. We can express p(θ0, Z) in the following way:

p(θ0, Z) = PX∼Binom(n,θ0)
N∼Tulap(0,b,q)

(X +N ≥ Z) = PX,N (−N ≤ X − Z)

= EX∼Binom(n,θ0)PN (N ≤ X − Z | X) = EX∼Binom(n,θ0)FN (X − Z)

=

n�

x=0

FN (x− Z)

�
n

x

�
θx0 (1− θ0)

n−x,

which is just the inner product of the vectors F and B in algorithm 1.
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