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Abstract

Convolutional long short-term memory (LSTM) networks have been widely used
for action/gesture recognition, and different attention mechanisms have also been
embedded into the LSTM or the convolutional LSTM (ConvLSTM) networks.
Based on the previous gesture recognition architectures which combine the three-
dimensional convolution neural network (3DCNN) and ConvLSTM, this paper
explores the effects of attention mechanism in ConvLSTM. Several variants of Con-
vLSTM are evaluated: (a) Removing the convolutional structures of the three gates
in ConvLSTM, (b) Applying the attention mechanism on the input of ConvLSTM,
(c) Reconstructing the input and (d) output gates respectively with the modified
channel-wise attention mechanism. The evaluation results demonstrate that the
spatial convolutions in the three gates scarcely contribute to the spatiotemporal
feature fusion, and the attention mechanisms embedded into the input and output
gates cannot improve the feature fusion. In other words, ConvLSTM mainly con-
tributes to the temporal fusion along with the recurrent steps to learn the long-term
spatiotemporal features, when taking as input the spatial or spatiotemporal features.
On this basis, a new variant of LSTM is derived, in which the convolutional struc-
tures are only embedded into the input-to-state transition of LSTM. The code of
the LSTM variants is publicly available2.

1 Introduction

Long short-term memory (LSTM) [1] recurrent neural networks are widely used to process sequential
data [2]. Several variants of LSTM have been proposed since its inception in 1995 [3]. By extending
the fully connected LSTM (FC-LSTM) to have convolutional structures in both the input-to-state
and state-to-state transitions, Shi et al. [4] proposed the convolutional LSTM (ConvLSTM) network
to process sequential images for precipitation nowcasting. Thereafter, ConvLSTM has been used
for action recognition [5, 6], gesture recognition [7–9] and in other fields [10–12]. When LSTM is
used to process video or sequential images, the spatial features of two-dimensional convolutional
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neural networks (2DCNN) are generally vectorized before feeding them as input of LSTM [13, 14].
However, the two-dimensional spatial feature maps can be fed into ConvLSTM directly, without the
loss of the spatial correlation information. For example, the spatial feature maps of AlexNet/VGG-16
[5, 10] or the spatiotemporal feature maps of three-dimensional CNN (3DCNN) [7, 8] are used as
input of ConvLSTM. ConvLSTM was originally proposed to take images as input for precipitation
nowcasting, the spatial convolutions are therefore necessary to learn the spatiotemporal features.
However, how much do the convolutional structures of ConvLSTM contribute to the feature fusion
when ConvLSTM takes as input the spatial convolutional features instead of images? Is it necessary
to have different gate values for each element of the feature maps in the spatial domain?

The effect of the convolutional structures in ConvLSTM can be analyzed in three cases. (a) ConvL-
STM takes original images as input. In this case, the convolutional structures are crucial to learn the
spatiotemporal features, as verified in [4]. (b) ConvLSTM takes the feature maps of 2DCNN as input.
In this case, the effect of the convolutional structures is not always remarkable. Intuitively, the three
gates of ConvLSTM can be viewed as the weighting mechanism for the feature map fusion. However,
the different gates values for each element of the feature maps in the spatial domain seemingly do not
have the function of spatial attention. Therefore, the soft attention mechanism [15] is additionally
introduced into the input of ConvLSTM in [5], in order to make ConvLSTM focus on the noticeable
spatial features. The improvement (as illustrated in Table 1 of [5]) caused by the attention mechanism
on the input can also verify the above claim in some degree. (c) ConvLSTM takes the feature maps
of 3DCNN as input. Since the 3DCNN networks have learnt the spatiotemporal features, the gates of
ConvLSTM are more unlikely to have the function of spatial attention. The last case will be analyzed
thoroughly in this paper.

Based on our previous published "3DCNN+ConvLSTM+2DCNN" architecture [8], we construct a
preliminary "Res3D+ConvLSTM+MobileNet" architecture and derive four variants of the ConvLSTM
component. In the preliminary "Res3D+ConvLSTM+MobileNet" architecture, the blocks 1-4 of
Res3D [16] are used first to learn the local short-term spatiotemporal feature maps which have a
relatively large spatial size. Then, two ConvLSTM layers are stacked to learn the global long-term
spatiotemporal feature maps. Finally, parts of MobileNet [17] are used to learn deeper features
based on the learnt two-dimensional spatiotemporal feature maps. The Res3D and MobileNet blocks
are fixed, and the ConvLSTM component is modified to derive four variants: (a) Removing the
convolutional structures of the gates by performing the spatial global average pooling on the input and
the hidden states ahead. This means that the convolutional operations in the three gates are reduced
to the fully-connected operations. The convolutional structures for the input-to-state transition are
reserved to learn the spatiotemporal features. (b) Applying the soft attention mechanism to the input
(i.e., the feature maps of the Res3D block) of ConvLSTM. (c) Reconstructing the input gate using
the channel-wise attention mechanism. (d) Reconstructing the output gate using the channel-wise
attention mechanism.

We do not re-evaluate the cases that ConvLSTM takes as input images or features of 2DCNN in
this paper, since the experiments in [4] and [5] can demonstrate the aforementioned claims. We
focus on the evaluation of the third case on the large-scale isolated gesture datasets Jester [18] and
IsoGD [19], since the "3DCNN+ConvLSTM+2DCNN" architecture was originally proposed for
gesture recognition. Experimental results demonstrate that neither the convolutional structures in the
three gates of ConvLSTM nor the extra spatial attention mechanisms contribute in the performance
improvements, given the fact that the input spatiotemporal features of 3DCNN have paid attention to
the noticeable spatial features. The exploring on the attention in ConvLSTM leads to a new variant of
LSTM, which is different from the FC-LSTM and ConvLSTM. Specifically, the variant only brings
the spatial convolutions to the input-to-state transition, and keeps the gates the same as the gates of
FC-LSTM.

2 Attention in ConvLSTM

To ensure the completeness of the paper, the preliminary "Res3D+ConvLSTM+MobileNet" architec-
ture is first described. Then, the variants of ConvLSTM are elaborated and analyzed.
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Figure 1: An overview of the "Res3D+ConvLSTM+MobileNet" architecture. The output of each
block is in the format of "Length*Width*Height*Channel". MobileNet processes each temporal
sample independently.

2.1 The preliminary architecture

Two-streams or 3DCNN based networks are widely used for action recognition, such as the famous
TSN [20], C3D [21], Res3D [16], and I3D [22] networks. Gesture recognition is different from
action recognition. You cannot tell the categories of the dynamic gestures when you only look at
an image once. But, you may tell when you just look at an image of actions, under the hints of
the backgrounds, objects and postures. Therefore, the aforementioned famous networks cannot
produce the state-of-the-art performances on gesture recognition, without including multimodal
fusion. Gestures focus on the local information of hands and the global motions of arms. Thus, we
use a shallow 3DCNN to learn the local short-term spatiotemporal features first. The 3DCNN block
does not need to be deep, since it focuses on the local features. Therefore, the modified blocks 1-4 of
Res3D are used. The temporal duration (or spatial size) of the outputted feature maps is only shrunk
by a ratio of 2 (or 4), compared with the inputted images. Then, a two-layer ConvLSTM network is
stacked to learn the long-term spatiotemporal feature maps. The ConvLSTM network does not shrink
the spatial size of the feature maps. Thus, the spatiotemporal feature maps still have a relative large
spatial size. The top layers of MobileNet, whose inputs have the same spatial size, are further stacked
to learn deeper features. The comparison with the aforementioned famous networks will be given in
the experimental part to demonstrate the advantages of the architecture (as displayed in Fig. 1).

2.2 The variants of ConvLSTM

Formally, ConvLSTM can be formulated as:

it = σ(Wxi ∗Xt +Whi ∗Ht−1 + bi) (1)

ft = σ(Wxf ∗Xt +Whf ∗Ht−1 + bf ) (2)
ot = σ(Wxo ∗Xt +Who ∗Ht−1 + bo) (3)

Gt = tanh(Wxc ∗Xt +Whc ∗Ht−1 + bc) (4)
Ct = ft ◦ Ct−1 + it ◦Gt (5)
Ht = ot ◦ tanh(Ct) (6)

where σ is the sigmoid function, Wx∼ and Wh∼ are 2-d convolution kernels. The input Xt , the cell
state Ct , the hidden state Ht, the candidate memory Gt, and the gates it, ft, ot are all 3D tensors.
The symbol "*" denotes the convolution operator, and "o" denotes the Hadamard product.

The input Xt has a spatial size of W ×H with Cin channels, and ConvLSTM has a convolutional
kernel size of K ×K with Cout channels. Thus, the parameter size of ConvLSTM can be calculated
as3:

ParamConvLSTM = K ×K × (Cin + Cout)× Cout × 4 (7)

The parameter size of ConvLSTM is very large, partly due to the convolutional structures. It can be
concluded from Eqs. (1)-(6) that the gates it, ft, ot have a spatial size of W ×H with Cout channels4.
It means that the three gates have independent values for each element of the feature maps in the cell
state and the candidate memory. In this case, can ConvLSTM focus on the noticeable spatial regions
with the help of different gate values in the spatial domain? In order to provide an answer and remove
any doubt, four variants of ConvLSTM are constructed as follows (as illustrated in Fig. 2).

3The biases are ignored for simplicity.
4It is assumed that the convolutional structures have the same-padding style.
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Figure 2: An overview of the four variants of ConvLSTM. The "P&FC" denotes the spatial global
average pooling and fully-connected operations, as expressed in Eqs. (8)-(12). The "Conv" denotes
the convolutional structure in Eqs. (1)-(4)(13)(17)(21). The "Atten" denotes the standard attention
mechanism in Eqs. (17)-(19). The "CAtten" denotes the channel-wise attention in Eqs. (21)-(23).

(a) Removing the convolutional structures of the gates

Given the local spatiotemporal features of the 3DCNN block, it can be considered that the 3DCNN
block has paid attention to the noticeable spatial regions where there is valuable spatiotemporal
information. Therefore, the ConvLSTM block can just focus on the spatiotemporal feature fusion
along with the recurrent steps. The gate values are only needed to be calculated for each feature map
of the states, not for each element. Therefore, a global average pooling is performed on the input
features and the hidden states to reduce the spatial dimension, so that fully-connected operations can
be performed instead of convolutions in the gates. The variant of ConvLSTM can be formulated as:

Xt = GlobalAveragePooling(Xt) (8)

Ht−1 = GlobalAveragePooling(Ht−1) (9)

it = σ(WxiXt +WhiHt−1 + bi) (10)

ft = σ(WxfXt +WhfHt−1 + bf ) (11)

ot = σ(WxoXt +WhoHt−1 + bo) (12)

Gt = tanh(Wxc ∗Xt +Whc ∗Ht−1 + bc) (13)

Ct = ft ◦ Ct−1 + it ◦Gt (14)

Ht = ot ◦ tanh(Ct) (15)
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The gates it, ft and ot are all one-dimensional vectors, so that the elements in each feature map are
weighted by the same gate value in Eqs. (14)-(15). The convolutional structures in the three gates are
reduced to fully-connected operations. The convolutional structures for the input-to-state transition
(as in Eq. (13)) are reserved for the spatiotemporal feature fusion.

In order to reduce the numbers of parameters of the input-to-state transition, the depthwise separable
convolutions [23] are used. This reduces the parameter size of the variant of ConvLSTM to

ParamConvLSTMva = (K ×K + Cout × 4)× (Cin + Cout) (16)

Three more variants are constructed based on variant (a), in order to verify whether the spatial
attention can improve the performances.

(b) Applying the attention mechanism to the inputs

By referring to [5], we apply the spatial attention mechanism to the inputs before the operations of
Eqs.(8)-(15). Formally, the attention mechanism can be formulated as:

Zt =Wz ∗ tanh(Wxa ∗Xt +Wha ∗Ht−1 + ba) (17)

Aij
t = p(attij |Xt, Ht−1) =

exp(Zij
t )∑

i

∑
j exp(Z

ij
t )

(18)

X̃t = At ◦Xt (19)

where At is a 2-d score map, and Wz is the 2-d convolution kernel with a kernel size of K ×K ×
Cin × 1. The variant (b) can be constructed by replacing Xt in Eqs.(8)-(15) with X̃t. The parameter
size of this variant can be calculated as

ParamConvLSTMvb = ParamConvLSTMva+K×K× (Cin+Cout× 2)+ (Cin+Cout)×Cout

(20)

(c) Reconstructing the input gate using the channel-wise attention

Both the gate and the attention mechanisms need to perform convolutions on the input and the hidden
states, as expressed in Eqs. (1)-(3) and Eq. (17). Does this mean that the gate mechanism has
the function of attention implicitly? The answer is no. The independent gate values in the spatial
domain of the feature maps cannot ensure the attention effect as expressed in Eq. (18). Therefore, we
reconstruct the input gate according to the attention mechanism. The sigmoid activation function
makes the gate values fall in the range 0-1. The division by the sum in Eq. (18) results in attention
scores whose sum is 1 in each feature channel. This means that the attention scores in each feature
channel may be far less than 1, and far less than most of the normal gate values in other gates, given
the large spatial size of the input feature maps. Therefore, the attention mechanism needs to be
modified to match the range of the sigmoid function in the gates. Formally, the input gate can be
reformulated as:

Zt =Wi ∗ tanh(Wxi ∗Xt +Whi ∗Ht−1 + bi) (21)

Aij
t (c) =

exp(Zij
t (c))

max
i,j

exp(Zij
t (c))

(22)

it = {Aij
t (c) : (i, j, c) ∈ RW×H×Cout} (23)

where Wi is a 2-d convolution kernel with a kernel size of W ×H and a channel num of Cout. The
"max

i,j
exp(Zij

t (c))” in Eq. (22) corresponds to the maximum element chosen within the channel c of

Zt. In other words, the normalization in Eq. (22) is performed channel-wise. The division by the
maximum value instead of the sum ensures that the attention scores are distributed in the range of 0-1.

Variant (c) of ConvLSTM can be constructed by replacing the input gate of variant (a) with the new
gate expressed by Eqs. (21)-(23). The parameter size of this variant can be calculated as

ParamConvLSTMvc = ParamConvLSTMva +K ×K × (Cin +Cout × 2) +Cout ×Cout (24)
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(d) Reconstructing the output gate using the channel-wise attention

Variant (b) of ConvLSTM applies the attention mechanism on the input feature maps, while variant
(c) applies the attention mechanism on the candidate memory. Finally, variant (d) of ConvLSTM is
constructed by applying the attention mechanism on the cell state. In other words, the output gate is
reconstructed in the same way as the input gate in variant (c). The expressions are similar as in Eqs.
(21)-(23), and they are thus omitted for simplicity.

3 Experiments

The case in which ConvLSTM takes features from 2DCNN as input has been evaluated in [5], and
the improvement (as illustrated in Table 1 of [5]) caused by the attention mechanism on the input
features can indicate, in some degree, that the convolutional structures in the gates cannot play
the role of spatial attention. Due to page restrictions, this paper only focuses on the evaluation
of the case in which ConvLSTM takes features from 3DCNN as input. As aforementioned, the
"3DCNN+ConvLSTM+2DCNN" architecture was originally proposed for gesture recognition [8].
Therefore, the proposed variants of ConvLSTM are evaluated on the large-scale isolated gesture
datasets Jester [18] and IsoGD [19] in this paper.

3.1 Datasets

Jester[18] is a large collection of densely-labeled video clips. Each clip contains a pre-defined hand
gesture performed by a worker in front of a laptop camera or webcam. The dataset includes 148,094
RGB video files of 27 kinds of gestures. It is the largest isolated gesture dataset in which each
category has more than 5,000 instances on average. Therefore, this dataset was used to train our
networks from scratch.

IsoGD[19] is a large-scale isolated gesture dataset which contains 47,933 RGB+D gesture videos
of 249 kinds of gestures performed by 21 subjects. The dataset has been used in the 2016 [24]
and 2017 [25] ChaLearn LAP Large-scale Isolated Gesture Recognition Challenges. This paper
has the benefit that results are compared with the state-of-the-art networks used in the challenges.
Different multi-modal fusion methods were used by the teams in the challenges. In this paper, only
the evaluation on each modality is performed (without multi-modal fusion) to verify the advantages
of the different deep architectures.

3.2 Implementation details

The base architecture has been displayed in Fig. 1. The Res3D and MobileNet components are
deployed from their original versions, except for the aforementioned modifications in Section 2.1.
These two components are fixed among the variants. The filter numbers of ConvLSTM and the
variants are all set to 256.

The networks using the original ConvLSTM or the variants are first trained on the Jester dataset
from scratch, and then fine-tuned using the IsoGD dataset to report the final results. For the training
on Jester, the learning rate follows a polynomial decay from 0.001 to 0.000001 within a total of 30
epochs. The input is 16 video clips, and each clip contains 16 frames with a spatial size of 112× 112.
The uniform sampling with the temporal jitter strategy [26] is utilized to preprocess the inputs. During
the fine-tuning with IsoGD, the batch size is set to 8, the temporal length is set to 32, and a total of
15 epochs are performed for each variant. The top-1 accuracy is used as the metric of evaluation.
Stochastic gradient descent (SGD) is used for training.

3.3 Explorative study

The networks which use the original ConvLSTM or the four variants as the ConvLSTM component in
Fig. 1 are evaluated on the Jester and IsoGD datasets respectively. The evaluation results are illustrated
in Table 1. The evaluation on Jester has almost the same accuracy except for variant (b). The similar
recognition results on Jester may be caused by the network capacity or the distinguishability of the
data, because the validation has a comparable accuracy with the training. The lower accuracy of
variant (b) may indicate the uselessness of the extra attention mechanism on the inputs, since the
learnt spatiotemporal features of 3DCNN have already paid attention to the noticeable spatial regions.
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Table 1: Comparison among the original ConvLSTM and the four variants. For simplicity, each row
in the column of "Networks" denotes the deep architecture (as displayed in Fig. 1) which takes the
original ConvLSTM or its variant as the ConvLSTM component.

Validating Accuracy(%)

Networks Jester IsoGD Channel Num Parameter Size Mult-Adds

ConvLSTM 95.11 52.01 256 4.719M 3700M
Variant (a) 95.12 55.98 256 0.529M 415M
Variant (b) 94.18 43.93 256 0.667M 522M
Variant (c) 95.13 53.27 256 0.601M 472M
Variant (d) 95.10 54.11 256 0.601M 472M

The lower accuracy of the variant (b) on IsoGD can also testify this conclusion. The lower accuracy
may be due to the additional optimization difficulty caused by the extra multiplication operations in
the attention mechanism.

The comparison on IsoGD shows that variant (a) is superior to the original ConvLSTM, regardless of
the recognition accuracy or the parameter size and the computational consumption. The reduction
of the convolutional structures in the three gates will not reduce the network capacity, but can save
memory and computational consumption significantly. The specific attention mechanism embedded in
the input and output gates cannot contribute to the feature fusion, but it just brings extra memory and
computational consumption. These observations demonstrate that the ConvLSTM component only
needs to take full use of its advantages on the long-term temporal fusion, when the input features have
learnt the local spatiotemporal information. LSTM/RNN has its superiority on the long sequential
data processing. The extension from LSTM to ConvLSTM can only increase the dimensionality of
the states and memory, and keep the original gate mechanism unchanged.

This evaluation leads to a new variant of LSTM (i.e., variant (a) of ConvLSTM), in which the
convolutional structures are only introduced into the input-to-state transition, and the gates still have
the original fully-connected mechanism . The added convolutional structures make the variant of
LSTM capable of performing the spatiotemporal feature fusion. The gate mechanism still sticks to its
own responsibility and superiority for the long-term temporal fusion.

3.4 Comparison with the state-of-the-art

Table 2 shows the comparison results with the state-of-the-art networks on IsoGD. The 2DCNN
networks demonstrate their unbeatable superiority on the image-based applications, and also show
their ability for action recognition with the help of the specific backgrounds and objects. But, they do
not keep their unbeatable performances in the case of gesture recognition, where the fine-grained
spatiotemporal features of hands and the global motions of arms do matter. The 3DCNN networks are
good at the spatiotemporal feature learning. But, the weakness on long-term temporal fusion restricts
their capabilities. The "3DCNN+ConvLSTM+2DCNN" architecture takes full use of the advantages
of 3DCNN, ConvLSTM and 2DCNN. The proposed variant (a) of ConvLSTM further enhances
ConvLSTM’s ability for spatiotemporal feature fusion, without any additional burden. Therefore, the
best recognition results can be obtained by taking full use of the intrinsic advantages of the different
networks. Although the reference [27] reports the state-of-the-art performance on IsoGD, the high
accuracy is achieved by fusing 12 channels (i.e., global/left/right channels for four modalities). The
proposed network obtains the best accuracy on each single modality. This exactly demonstrates the
superiority of the proposed architecture.

3.5 Visualization of the feature map fusion

The reduction of the convolutional structures of the three gates in ConvLSTM brings no side effects
to spatiotemporal feature map fusion. Fig. 3 displays an example of visualization of the feature map
fusion along with the recurrent steps. It can be seen from the heat maps that the most active regions
just reflect the hands’ motion trajectories. These are similar to the attention score maps. This also
indicates that the learnt spatiotemporal features from 3DCNN have paid attention to the noticeable
spatial regions, and no extra attention mechanism is needed when fusing the long-term spatiotemporal
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Table 2: Comparison with the state-of-the-art networks on the valid set of IsoGD.

Accuracy(%)

Deep Architecture RGB Depth Flow

ResNet50 [27] 33.22 27.98 46.22
Pyramidal C3D [26] 36.58 38.00 -
C3D [28] 37.30 40.50 -
Res3D [29] 45.07 48.44 44.45
3DCNN+BiConvLSTM+2DCNN[8] 51.31 49.81 45.30

Res3D+ConvLSTM+MobileNet 52.01 51.30 45.59
Res3D+ConvLSTM Variant(a)+MobileNet 55.98 53.28 46.51

Figure 3: An example of visualization of the feature map fusion in the case of variant (a) of
ConvLSTM along with the recurrent steps. The feature map which has the largest activation sum
among the 256 channels is visualized.

feature maps using ConvLSTM. The reduction of the convolutional structures of the three gates in
ConvLSTM makes the variant more applicable for constructing more complex deep architectures,
since this variant has fewer parameters and computational consumption.

4 Conclusion

The effects of attention in Convolutional LSTM are explored in this paper. Our evaluation results and
previous published results show that the convolutional structures in the gates of ConvLSTM do not
play the role of spatial attention, even if the gates have independent weight values for each element of
the feature maps in the spatial domain. The reduction of the convolutional structures in the three gates
results in a better accuracy, a lower parameter size and a lower computational consumption. This leads
to a new variant of LSTM, in which the convolutional structures are only added to the input-to-state
transition, and the gates still stick to their own responsibility and superiority for long-term temporal
fusion. This makes the proposed variant capable of effectively performing spatiotemporal feature
fusion, with fewer parameters and computational consumption.
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