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Abstract

We propose a novel Wasserstein method with a distillation mechanism, yielding
joint learning of word embeddings and topics. The proposed method is based on
the fact that the Euclidean distance between word embeddings may be employed
as the underlying distance in the Wasserstein topic model. The word distributions
of topics, their optimal transports to the word distributions of documents, and
the embeddings of words are learned in a unified framework. When learning
the topic model, we leverage a distilled underlying distance matrix to update the
topic distributions and smoothly calculate the corresponding optimal transports.
Such a strategy provides the updating of word embeddings with robust guidance,
improving the algorithmic convergence. As an application, we focus on patient
admission records, in which the proposed method embeds the codes of diseases
and procedures and learns the topics of admissions, obtaining superior performance
on clinically-meaningful disease network construction, mortality prediction as a
function of admission codes, and procedure recommendation.

1 Introduction

Word embedding and topic modeling play important roles in natural language processing (NLP), as
well as other applications with textual and sequential data. Many modern embedding methods [30,
33, 28] assume that words can be represented and predicted by contextual (surrounding) words.
Accordingly, the word embeddings are learned to inherit those relationships. Topic modeling
methods [8], in contrast, typically represent documents by the distribution of words, or other “bag-
of-words” techniques [17, 24], ignoring the order and semantic relationships among words. The
distinction between how the word order is (or is not) accounted for when learning topics and word
embeddings manifests a potential methodological gap or mismatch.

This gap is important when considering clinical-admission analysis, the motivating application of
this paper. Patient admissions in hospitals are recorded by the code of international classification
of diseases (ICD). For each admission, one may observe a sequence of ICD codes corresponding
to certain kinds of diseases and procedures, and each code is treated as a “word.” To reveal the
characteristics of the admissions and relationships between different diseases/procedures, we seek to
model the “topics” of admissions and also learn an embedding for each ICD code. However, while
we want embeddings of similar diseases/procedures to be nearby in the embedding space, learning
the embedding vectors based on surrounding ICD codes for a given patient admission is less relevant,
as there is often a diversity in the observed codes for a given admission, and the code order may
hold less meaning. Take the MIMIC-III dataset [25] as an example. The ICD codes in each patient’s
admission are ranked according to a manually-defined priority, and the adjacent codes are often not
clinically-correlated with each other. Therefore, we desire a model that jointly learns topics and word
embeddings, and that for both does not consider the word (ICD code) order. Interestingly, even in the
context of traditional NLP tasks, it has been recognized recently that effective word embeddings may
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Figure 1: Consider two admissions with mild and severe diabetes, which are represented by two distributions
of diseases (associated with ICD codes) in red and orange, respectively. They are two dots in the Wasserstein
ambient space, corresponding to two weighted barycenters of Wasserstein topics (the color stars). The optimal
transport matrix between these two admissions is built on the distance between disease embeddings in the
Euclidean latent space. The large value in the matrix (the dark blue elements) indicates that it is easy to transfer
diabetes to its complication like nephropathy, whose embedding is a short distance away (short blue arrows).

be learned without considering word order [37], although that work didn’t consider topic modeling or
our motivating application.

Although some works have applied word embeddings to represent ICD codes and related clinical
data [11, 22], they ignore the fact that the clinical relationships among the diseases/procedures in an
admission may not be approximated well by their neighboring relationships in the sequential record.
Most existing works either treat word embeddings as auxiliary features for learning topic models [15]
or use topics as the labels for supervised embedding [28]. Prior attempts at learning topics and word
embeddings jointly [38] have fallen short from the perspective of these two empirical strategies.

We seek to fill the aforementioned gap, while applying the proposed methodology to clinical-
admission analysis. As shown in Fig. 1, the proposed method is based on a Wasserstein-distance
model, in which (i) the Euclidean distance between ICD code embeddings works as the underlying
distance (also referred to as the cost) of the Wasserstein distance between the distributions of the
codes corresponding to different admissions [26]; (ii) the topics are “vertices” of a geometry in
the Wasserstein space and the admissions are the “barycenters” of the geometry with different
weights [36]. When learning this model, both the embeddings and the topics are inferred jointly. A
novel learning strategy based on the idea of model distillation [20, 29] is proposed, improving the
convergence and the performance of the learning algorithm.

The proposed method unifies word embedding and topic modeling in a framework of Wasserstein
learning. Based on this model, we can calculate the optimal transport between different admissions
and explain the transport by the distance of ICD code embeddings. Accordingly, the admissions of
patients become more interpretable and predictable. Experimental results show that our approach is
superior to previous state-of-the-art methods in various tasks, including predicting admission type,
mortality of a given admission, and procedure recommendation.

2 A Wasserstein Topic Model Based on Euclidean Word Embeddings

Assume that we have M documents and a corpus with N words, e.g., respectively, admission records
and the dictionary of ICD codes. These documents can be represented by Y = [ym] ∈ RN×M , where
ym ∈ ΣN , m ∈ {1, ...,M}, is the distribution of the words in the m-th document, and ΣN is an
N -dimensional simplex. These distributions can be represented by some basis (i.e., topics), denoted
asB = [bk] ∈ RN×K , where bk ∈ ΣN is the k-th base distribution. The word embeddings can be
formulated asX = [xn] ∈ RD×N , where xn is the embedding of the n-th word, n ∈ {1, ..., N}, is
obtained by a model, i.e., xn = gθ(wn) with parameters θ and predefined representation wn of the
word (e.g., wn may be a one-hot vector for each word). The distance between two word embeddings
is denoted dnn′ = d(xn,xn′), and generally it is assumed to be Euclidean. These distances can be
formulated as a parametric distance matrixDθ = [dnn′ ] ∈ RN×N .
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Denote the space of the word distributions as the ambient space and that of their embeddings as the
latent space. We aim to model and learn the topics in the ambient space and the embeddings in the
latent space in a unified framework. We show that recent developments in the methods of Wasserstein
learning provide an attractive solution to achieve this aim.

2.1 Revisiting topic models from a geometric viewpoint

Traditional topic models [8] often decompose the distribution of words conditioned on the observed
document into two factors: the distribution of words conditioned on a certain topic, and the distribution
of topics conditioned on the document. Mathematically, it corresponds to a low-rank factorization
of Y , i.e., Y = BΛ, where B = [bk] contains the word distributions of different topics and
Λ = [λm] ∈ RK×M , λm = [λkm] ∈ ΣK , contains the topic distributions of different documents.
GivenB and λm, ym can be equivalently written as

ym = Bλm = arg miny∈ΣN

∑K

k=1
λkm‖bk − y‖22, (1)

where λkm is the probability of topic k given document m. From a geometric viewpoint, {bk} in
(1) can be viewed as vertices of a geometry, whose “weights” are λm. Then, ym is the weighted
barycenter of the geometry in the Euclidean space.

Following this viewpoint, we can extend (1) to another metric space, i.e.,

ym = arg miny∈ΣN

∑K

k=1
λkmd

2(bk,y) = yd2(B,λm), (2)

where yd2(B,λm) is the barycenter of the geometry, with verticesB and weights λm in the space
with metric d.

2.2 Wasserstein topic model

When the distance d in (2) is the Wasserstein distance, we obtain a Wasserstein topic model, which has
a natural and explicit connection with word embeddings. Mathematically, let (Ω, d) be an arbitrary
space with metric D and P (Ω) be the set of Borel probability measures on Ω, respectively.
Definition 2.1. For p ∈ [1,∞) and probability measures u and v in P (Ω), their p-order Wasserstein
distance [40] is Wp(u, v) = (infπ∈Π(u,v)

∫
Ω×Ω

dp(x, y)dπ(x, y))
1
p , where Π(u, v) is the set of all

probability measures on Ω× Ω with u and v as marginals.
Definition 2.2. The p-order weighted Fréchet mean in the Wasserstein space (or called Wasser-
stein barycenter) [1] of K measures B = {b1, ..., bK} in P ⊂ P (Ω) is q(B,λ) =

arg infq∈P
∑K
k=1 λkW

p
p (bk, q), where λ = [λk] ∈ ΣK decides the weights of the measures.

When Ω is a discrete state space, i.e., {1, ..., N}, the Wasserstein distance is also called the optimal
transport (OT) distance [36]. More specifically, the Wasserstein distance with p = 2 corresponds to
the solution to the discretized Monge-Kantorovich problem:

W 2
2 (u,v;D) := minT∈Π(u,v) Tr(T>D), (3)

where u and v are two distributions of the discrete states andD ∈ RN×N is the underlying distance
matrix, whose element measures the distance between different states. Π(u,v) = {T |T1 =
u,T>1 = v}, and Tr(·) represents the matrix trace. The matrix T is called the optimal transport
matrix when the minimum in (3) is achieved.

Applying the discrete Wasserstein distance in (3) to (2), we obtain our Wasserstein topic model, i.e.,

yW 2
2
(B,λ;D) = arg miny∈ΣN

∑K

k=1
λkW

2
2 (bk,y;D). (4)

In this model, the discrete states correspond to the words in the corpus and the distance between
different words can be calculated by the Euclidean distance between their embeddings.

In this manner, we establish the connection between the word embeddings and the topic model: the
distance between different topics (and different documents) is achieved by the optimal transport
between their word distributions built on the embedding-based underlying distance. For arbitrary
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two word embeddings, the more similar they are, the smaller underlying distance we have, and
more easily we can achieve transfer between them. In the learning phase (as shown in the following
section), we can learn the embeddings and the topic model jointly. This model is especially suitable
for clinical admission analysis. As discussed above, we not only care about the clustering structure
of admissions (the relative proportion, by which each topic is manifested in an admission), but also
want to know the mechanism or the tendency of their transfers in the level of disease. As shown in
Fig. 1, using our model, we can calculate the Wasserstein distance between different admissions in
the level of disease and obtain the optimal transport from one admission to another explicitly. The
hierarchical architecture of our model helps represent each admission by its topics, which are the
typical diseases/procedures (ICD codes) appearing in a class of admissions.

3 Wasserstein Learning with Model Distillation

Given the word-document matrix Y and a predefined number of topics K, we wish to jointly learn
the basisB, the weight matrix Λ, and the model gθ of word embeddings. This learning problem can
be formulated as

minB,Λ,θ
∑M

m=1
L(ym, yW 2

2
(B,λm;Dθ)),

s.t. bk ∈ ΣN , for k = 1, ..,K, and λm ∈ ΣK , for m = 1, ..,M.
(5)

Here,Dθ = [dnn′ ] and the element dnn′ = ‖gθ(wn)−gθ(wn′)‖2. The loss functionL(·, ·) measures
the difference between ym and its estimation yW 2

2
(B,λm;Dθ). We can solve this problem based on

the idea of alternating optimization. In each iteration we first learn the basis B and the weights Λ
given the current parameters θ. Then, we learn the new parameters θ based on updatedB and Λ.

3.1 Updating word embeddings to enhance the clustering structure

Suppose that we have obtained updatedB and Λ. Given currentDθ, we denote the optimal transport
between document ym and topic bk as Tkm. Accordingly, the Wasserstein distance between ym
and bk is Tr(T>kmDθ). Recall from the topic model in (4) that each document ym is represented as
the weighted barycenter ofB in the Wasserstein space, and the weights λm = [λkm] represent the
closeness between the barycenter and different bases (topics). To enhance the clustering structure
of the documents, we update θ by minimizing the Wasserstein distance between the documents and
their closest topics. Consequently, the documents belonging to different clusters would be far away
from each other. The corresponding objective function is∑M

m=1
Tr(T>kmmDθ) = Tr(T>Dθ) =

∑
n,n′

tnn′‖xn,θ − xn′,θ‖22, (6)

where Tkmm is the optimal transport between ym and its closest base bkm . The aggregation of
these transports is given by T =

∑
m Tkmm = [tnn′ ], and Xθ = [xn,θ] are the word embeddings.

Considering the symmetry ofDθ, we can replace tnn′ in (6) with tnn′+tn′n
2 . The objective function

can be further written as Tr(XθLX
>
θ ), whereL = diag(T+T>

2 1N )− T+T>

2 is the Laplacian matrix.
To avoid trivial solutions likeXθ = 0, we add a smoothness regularizer and update θ by optimizing
the following problem:

minθ E(θ) = minθ Tr(XθLX
>
θ ) + β‖θ − θc‖22, (7)

where θc is current parameters and β controls the significance of the regularizer. Similar to Laplacian
Eigenmaps [6], the aggregated optimal transport T works as the similarity measurement between
proposed embeddings. However, instead of requiring the solution of (7) to be the eigenvectors of L,
we enhance the stability of updating by ensuring that the new θ is close to the current one.

3.2 Updating topic models based on the distilled underlying distance

Given updated word embeddings and the corresponding underlying distanceDθ, we wish to further
update the basisB and the weights Λ. The problem is formulated as a Wasserstein dictionary-learning
problem, as proposed in [36]. Following the same strategy as [36], we rewrite {λm} and {bk} as

λkm(A) =
exp(αkm)∑
k′ exp(αk′m)

, bnk(R) =
exp(γnk)∑
n′ exp(γn′k)

, (8)
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Algorithm 1 Distilled Wasserstein Learning (DWL) for Joint Word Embedding and Topic Modeling
1: Input: The distributions of words for documents Y . The distillation parameter τ . The number

of epochs I . Batch size s. The weight in Sinkhon distance ε. The weight β in (7). The learning
rate ρ.

2: Output: The parameters θ, basisB, and weights Λ.
3: Initialize θ,A,R ∼ N (0, 1), and calculateB(R) and Λ(A) by (8).
4: For i = 1, ..., I
5: For Each batch of documents
6: Calculate the Sinkhorn gradient with distillation: ∇BLτ |B and ∇ΛLτ |Λ.
7: R← R− ρ∇BLτ |B∇RB|R, A← A− ρ∇ΛLτ |Λ∇AΛ|A.
8: CalculateB(R), Λ(A) and the gradient of (7)∇θE(θ)|θ, then update θ ← θ− ρ∇θE(θ)|θ.

whereA = [αkm] andR = [γnk] are new parameters. Based on (8), the normalization of {λm} and
{bk} is met naturally, and we can reformulate (5) to an unconstrained optimization problem, i.e.,

minA,R
∑M

m=1
L(ym, yW 2

2
(B(R),λm(A);Dθ)). (9)

Different from [36], we introduce a model distillation method to improve the convergence of our
model. The key idea is that the model with the current underlying distanceDθ works as a “teacher,”
while the proposed model with new basis and weights is regarded as a “student.” Through Dθ,
the teacher provides the student with guidance for its updating. We find that if we use the current
underlying distanceDθ to calculate basisB and weights Λ, we will encounter a serious “vanishing
gradient” problem when solving (7) in the next iteration. Because Tr(T>kmmDθ) in (6) has been
optimal under the current underlying distance and newB and Λ, it is difficult to further updateDθ.

Inspired by recent model distillation methods in [20, 29, 34], we use a smoothed underlying distance
matrix to solve the “vanishing gradient” problem when updating B and Λ. In particular, the
yW 2

2
(B(R),λm(A);Dθ) in (9) is replaced by a Sinkhorn distance with the smoothed underlying

distance, i.e., ySε(B(R),λm(A);Dτ
θ ), where (·)τ , 0 < τ < 1, is an element-wise power function

of a matrix. The Sinkhorn distance Sε is defined as

Sε(u,v;D) = minT∈Π(u,v) Tr(T>D) + εTr(T> ln(T )), (10)

where ln(·) calculates element-wise logarithm of a matrix. The parameter τ works as the reciprocal
of the “temperature” in the smoothed softmax layer in the original distillation method [20, 29].

The principle of our distilled learning method is that when updating B and Λ, the smoothed
underlying distance is used to provide “weak” guidance. Consequently, the student (i.e., the proposed
new model with updated B and Λ) will not completely rely on the information from the teacher
(i.e., the underlying distance obtained in a previous iteration), and will tend to explore new basis and
weights. In summary, the optimization problem for learning the Wasserstein topic model is

minA,R Lτ (A,R) = minA,R
∑M

m=1
L(ym, ySε(B(R),λm(A);Dτ

θ )), (11)

which can be solved under the same algorithmic framework as that in [36].

Our algorithm is shown in Algorithm 1. The details of the algorithm and the influence of our distilled
learning strategy on the convergence of the algorithm are given in the Supplementary Material. Note
that our method is compatible with existing techniques, which can work as a fine-tuning method when
the underlying distance is initialized by predefined embeddings. When the topic of each document is
given, km in (6) is predefined and the proposed method can work in a supervised way.

4 Related Work

Word embedding, topic modeling, and their application to clinical data Traditional topic models,
like latent Dirichlet allocation (LDA) [8] and its variants, rely on the “bag-of-words” representation
of documents. Word embedding [30] provides another choice, which represents documents as the
fusion of the embeddings [27]. Recently, many new word embedding techniques have been proposed,
e.g., the Glove in [33] and the linear ensemble embedding in [32], which achieve encouraging
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performance on word and document representation. Some works try to combine word embedding
and topic modeling. As discussed above, they either use word embeddings as features for topic
models [38, 15] or regard topics as labels when learning embeddings [41, 28]. A unified framework
for learning topics and word embeddings was still absent prior to this paper.

Focusing on clinical data analysis, word embedding and topic modeling have been applied to many
tasks. Considering ICD code assignment as an example, many methods have been proposed to
estimate the ICD codes based on clinical records [39, 5, 31, 22], aiming to accelerate diagnoses.
Other tasks, like clustering clinical data and the prediction of treatments, can also be achieved by
NLP techniques [4, 19, 11].

Wasserstein learning and its application in NLP The Wasserstein distance has been proven useful
in distribution estimation [9], alignment [44] and clustering [1, 43, 14], avoiding over-smoothed
intermediate interpolation results. It can also be used as loss function when learning generative mod-
els [12, 3]. The main bottleneck of the application of Wasserstein learning is its high computational
complexity. This problem has been greatly eased since Sinkhorn distance was proposed in [13]. Based
on Sinkhorn distance, we can apply iterative Bregman projection [7] to approximate Wasserstein
distance, and achieve a near-linear time complexity [2]. Many more complicated models have been
proposed based on Sinkhorn distance [16, 36]. Focusing on NLP tasks, the methods in [26, 21]
use the same framework as ours, computing underlying distances based on word embeddings and
measuring the distance between documents in the Wasserstein space. However, the work in [26]
does not update the pretrained embeddings, while the model in [21] does not have a hierarchical
architecture for topic modeling.

Model distillation As a kind of transfer learning techniques, model distillation was originally pro-
posed to learn a simple model (student) under the guidance of a complicated model (teacher) [20].
When learning the target-distilled model, a regularizer based on the smoothed outputs of the compli-
cated model is imposed. Essentially, the distilled complicated model provides the target model with
some privileged information [29]. This idea has been widely used in many applications, e.g., textual
data modeling [23], healthcare data analysis [10], and image classification [18]. Besides transfer
learning, the idea of model distillation has been extended to control the learning process of neural
networks [34, 35, 42]. To the best of our knowledge, our work is the first attempt to combine model
distillation with Wasserstein learning.

5 Experiments

To demonstrate the feasibility and the superiority of our distilled Wasserstein learning (DWL)
method, we apply it to analysis of admission records of patients, and compare it with state-of-the-art
methods. We consider a subset of the MIMIC-III dataset [25], containing 11, 086 patient admissions,
corresponding to 56 diseases and 25 procedures, and each admission is represented as a sequence of
ICD codes of the diseases and the procedures. Using different methods, we learn the embeddings of
the ICD codes and the topics of the admissions and test them on three tasks: mortality prediction,
admission-type prediction, and procedure recommendation. For all the methods, we use 50% of the
admissions for training, 25% for validation, and the remaining 25% for testing in each task. For
our method, the embeddings are obtained by the linear projection of one-hot representations of the
ICD codes, which is similar to the Word2Vec [30] and the Doc2Vec [27]. For our method, the loss
function L is squared loss. The hyperparameters of our method are set via cross validation: the batch
size s = 256, β = 0.01, ε = 0.01, the number of topics K = 8, the embedding dimension D = 50,
and the learning rate ρ = 0.05. The number of epochs I is set to be 5 when the embeddings are
initialized by Word2Vec, and 50 when training from scratch. The distillation parameter is τ = 0.5
empirically, whose influence on learning result is shown in the Supplementary Material.

5.1 Admission classification and procedure recommendation

The admissions of patients often have a clustering structure. According to the seriousness of the
admissions, they are categorized into four classes in the MIMIC-III dataset: elective, emergency,
urgent and newborn. Additionally, diseases and procedures may lead to mortality, and the admissions
can be clustered based on whether the patients die or not during their admissions. Even if learned
in a unsupervised way, the proposed embeddings should reflect the clustering structure of the
admissions to some degree. We test our DWL method on the prediction of admission type and
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Table 1: Admission classification accuracy (%) for various methods.

Word Feature Doc. Feature Metric Dim. Mortality Adm. Type
1-NN 5-NN 1-NN 5-NN

— TF-IDF [17]

Euclidean

81 69.98±0.05 75.32±0.04 82.27±0.03 88.28±0.02
— LDA [8] 8 66.03±0.06 69.05±0.06 81.41±0.04 86.57±0.04

Word2Vec [30] Doc2Vec [27] 50 57.98±0.08 59.80±0.08 70.57±0.08 79.94±0.07
Word2Vec [30] AvePooling 50 70.42±0.05 75.21±0.04 84.88±0.07 89.16±0.06

Glove [33] AvePooling 50 66.94±0.06 73.21±0.04 81.91±0.05 88.21±0.05
DWL (Scratch) AvePooling 50 71.01±0.12 74.74±0.11 84.54±0.13 89.49±0.12

DWL (Finetune) AvePooling 50 71.52±0.07 75.44±0.07 85.54±0.09 89.28±0.09
Word2Vec [30]

Topic weight [36] Euclidean 8
70.31±0.04 74.89±0.04 83.63±0.05 89.25±0.04

DWL (Scratch) 70.45±0.08 74.88±0.07 83.82±0.12 88.80±0.12
DWL (Finetune) 70.88±0.07 75.67±0.07 84.26±0.09 89.13±0.08
Word2Vec [30]

Word distribution 81

70.61±0.04 75.92±0.04 84.08±0.05 89.06±0.05
Glove [33] Wasserstein 70.64±0.06 75.97±0.05 83.92±0.08 89.17±0.07

DWL (Scratch) [26] 71.01±0.10 75.88±0.09 84.23±0.12 89.33±0.11
DWL (Finetune) 70.65±0.07 76.00±0.06 84.35±0.08 89.61±0.07

Table 2: Top-N procedure recommendation results for various methods.

Method Top-1 (%) Top-3 (%) Top-5 (%)
P R F1 P R F1 P R F1

Word2Vec [30] 39.95 13.27 18.25 31.70 33.46 29.30 28.89 46.98 32.59
Glove [33] 32.66 13.01 17.22 29.45 30.99 27.41 27.93 44.79 31.47

DWL (Scratch) 37.89 12.42 17.16 30.14 29.78 27.14 27.39 43.81 30.81
DWL (Finetune) 40.00 13.76 18.71 31.88 33.71 29.58 30.59 48.56 34.28

mortality. For the admissions, we can either represent them by the distributions of the codes and
calculate the Wasserstein distance between them, or represent them by the average pooling of the
code embeddings and calculate the Euclidean distance between them. A simple KNN classifier can
be applied under these two metrics, and we consider K = 1 and K = 5. We compare the proposed
method with the following baselines: (i) bag-of-words-based methods like TF-IDF [17] and LDA [8];
(ii) word/document embedding methods like Word2Vec [30], Glove [33], and Doc2Vec [27]; and
(iii) the Wasserstein-distance-based method in [26]. We tested various methods in 20 trials. In each
trial, we trained different models on a subset of training admissions and tested them on the same
testing set, and calculated the averaged results and their 90% confidential intervals.

The classification accuracy for various methods are shown in Table 1. Our DWL method is superior
to its competitors on classification accuracy. Besides this encouraging result, we also observe two
interesting and important phenomena. First, for our DWL method the model trained from scratch
has comparable performance to that fine-tuned from Word2Vec’s embeddings, which means that
our method is robust to initialization when exploring clustering structure of admissions. Second,
compared with measuring Wasserstein distance between documents, representing the documents by
the average pooling of embeddings and measuring their Euclidean distance obtains comparable results.
Considering the fact that measuring Euclidean distance has much lower complexity than measuring
Wasserstein distance, this phenomenon implies that although our DWL method is time-consuming in
the training phase, the trained models can be easily deployed for large-scale data in the testing phase.

The third task is recommending procedures according to the diseases in the admissions. In our
framework, this task can be solved by establishing a bipartite graph between diseases and procedures
based on the Euclidean distance between their embeddings. The proposed embeddings should
reflect the clinical relationships between procedures and diseases, such that the procedures are
assigned to the diseases with short distance. For the m-th admission, we may recommend a list of
procedures with length L, denoted as Em, based on its diseases and evaluate recommendation results
based on the ground truth list of procedures, denoted as Tm. In particular, given {Em, Tm}, we
calculate the top-L precision, recall and F1-score as follows: P =

∑M
m=1 Pm =

∑M
m=1

|Em∩Tm|
|Em| ,

R =
∑M
m=1Rm =

∑M
m=1

|Em∩Tm|
|Tm| , F1 =

∑M
m=1

2PmRm
Pm+Rm

. Table 2 shows the performance of
various methods with L = 1, 3, 5. We find that although our DWL method is not as good as the
Word2Vec when the model is trained from scratch, which may be caused by the much fewer epochs
we executed, it indeed outperforms other methods when the model is fine-tuned from Word2Vec.
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(a) Full graph
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(b) Enlarged part 1
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(c) Enlarged part 2
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(d) Enlarged part 3

Figure 2: (a) The KNN graph of diseases and procedures with K = 4. Its enlarged version is in the
Supplementary Material. The ICD codes related to diseases are with a prefix “d”, whose nodes are blue, while
those related to procedures are with a prefix “p”, whose nodes are orange. (b-d) Three enlarged subgraphs
corresponding to the red frames in (a). In each subfigure, the nodes/dots in blue are diseases while the nodes/dots
in orange are procedures.

Table 3: Top-3 ICD codes in each topic associated with the corresponding diseases/procedures.
Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8
d_5859 d_4241 d_311 p_8856 d_2449 d_7742 p_9904 d_311

Chronic kidney disease Aortic valve disorders Mycobacteria Coronary arteriography Hypothyroidism Neonatal jaundice Cell transfusion Mycobacteria

d_2859 p_3891 d_V3001 d_41071 d_2749 p_9672 d_5119 d_5119
Anemia Arterial catheterization Single liveborn Subendocardial infarction Gout Ventilation Pleural effusion Pleural effusion

p_8872 d_9971 d_5849 d_2851 d_41401 p_9907 p_331 d_42731
Heart ultrasound Cardiac complications Kidney failure Posthemorrhagic anemia Atherosclerosis Serum transfusion Incision of lung Atrial fibrillation

5.2 Rationality Analysis

To verify the rationality of our learning result, in Fig. 2 we visualize the KNN graph of diseases
and procedures. We can find that the diseases in Fig. 2(a) have obvious clustering structure while
the procedures are dispersed according to their connections with matched diseases. Furthermore,
the three typical subgraphs in Fig. 2 can be interpreted from a clinical viewpoint. Figure 2(b)
clusters cardiovascular diseases like hypotension (d_4589, d_45829) and hyperosmolality (d_2762)
with their common procedure, i.e., diagnostic ultrasound of heart (p_8872). Figure 2(c) clusters
coronary artery bypass (p_3615) with typical postoperative responses like hyperpotassemia (d_2767),
cardiac complications (d_9971) and congestive heart failure (d_4280). Figure 2(d) clusters chronic
pulmonary heart diseases (d_4168) with its common procedures like cardiac catheterization (p_3772)
and abdominal drainage (p_5491) and the procedures are connected with potential complications
like septic shock (d_78552). The rationality of our learning result can also be demonstrated by
the topics shown in Table 3. According to the top-3 ICD codes, some topics have obvious clinical
interpretations. Specifically, topic 1 is about kidney disease and its complications and procedures;
topic 2 and 5 are about serious cardiovascular diseases; topic 4 is about diabetes and its cardiovascular
complications and procedures; topic 6 is about the diseases and the procedures of neonatal. We show
the map between ICD codes and corresponding diseases/procedures in the Supplementary Material.

6 Conclusion and Future Work

We have proposed a novel method to jointly learn the Euclidean word embeddings and a Wasserstein
topic model in a unified framework. An alternating optimization method was applied to iteratively
update topics, their weights, and the embeddings of words. We introduced a simple but effective
model distillation method to improve the performance of the learning algorithm. Testing on clinical
admission records, our method shows the superiority over other competitive models for various tasks.
Currently, the proposed learning method shows a potential for more-traditional textual data analysis
(documents), but its computational complexity is still too high for large-scale document applications
(because the vocabulary for real documents is typically much larger than the number of ICD codes
considered here in the motivating hospital-admissions application). In the future, we plan to further
accelerate the learning method, e.g., by replacing the Sinkhorn-based updating precedure with its
variants like the Greenkhorn-based updating method [2].
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Appendix

The derivation of Sinkhorn gradient

The key part of our learning algorithm is calculating Sinkhorn gradient given the distilled underlying
distance matrixDτ

θ . Same to the method in [36], we use the following algorithm to calculate ∇BLτ
and ∇λmLτ for each document ym. Here, � is element-wise multiplication, ·· is element-wise

Algorithm 2 Computation of Sinkhorn gradient
1: Input: Arbitrary document y. Underlying distanceDτ

θ . Distillation parameter τ . The number
of inner iteration L. The weight in Sinkhon distance ε. Current basis B = [bk] and weights
λ = [λk].

2: Output: ∇BLτ and ∇λLτ .
3: Calculate C = exp(

Dτ
θ

ε ).
4: Forward loop:
5: Initialize β0

k = 1N for k = 1, ...,K.
6: for l = 1, ..., L do
7: φlk = C> bk

Cβl−1
k

for k = 1, ...,K.

8: ŷ = Πk(φlk)λk .
9: βlk = ŷ

φlk
.

10: end for
11: Backward loop for weights:
12: Initialize w = [wk] = 0K , r = [rk] = 0N×K , g = ∇L(ŷ,y)� ŷ.
13: for l = 1, ..., L do
14: wk = wk + (lnφlk)>g for k = 1, ...,K.

15: rk = −C>
(
C
(
λkg−rk
φlk

)
� bk

(Cβl−1
k )2

)
� βl−1

k for k = 1, ...,K.

16: g =
∑
k rk

17: end for
18: Backward loop for basis:
19: InitializeM = [mk] = 0N×K , Z = [zk] = 0N×K .
20: for l = 1, ..., L do
21: ψk = C((λk∇L(ŷ,y)− zk)� βlk).
22: mk = mk + ψk

Cβl−1
k

.

23: zk = − 1N
φl−1
k

�C> bk�ψk
(Cβl−1

k )2
.

24: ∇L(ŷ,y) =
∑
k zk.

25: end for
26: ∇BLτ = M and∇λLτ = w.

division, (·)2 is element-wise square, and ln(·) is element-wise logarithm. More details of the
algorithm can be found in [36].

Influence of distillation parameters

The distillation parameter τ has significant influence on the convergence and the performance of our
learning algorithm. We visualize the convergence rate of our DWL method with respect to different
τ ’s in the task of admission type prediction. In Fig. 3, we can find that when τ = 1, which means that
the model is learned without distillation, the increase of training accuracy is very slow because of
the gradient vanishment problem. On the contrary, when τ = 0.25, which means that we use model
distillation heavily in the training phase and the “student” leverages little information from “teacher”,
the training accuracy increases rapidly but converges to an unsatisfying level. This is because the
distilled underlying distance is over-smoothed, which cannot provide sufficient guidance to further
update basis and weights. To achieve a trade-off between the convergence and the performance of
our algorithm, finally we choose τ = 0.5 empirically according to the experimental results.
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It should be noted that although we set the distillation parameter empirically, as [20, 29] did, we give
a reasonable range: τ should be smaller than 1 (to achieve distillation) and larger than 0.25 (to avoid
oversmoothness). We will study the setting of the parameter in our future work.
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Figure 3: The convergence of our DWL method with respect to τ ’s in the task of admission type prediction.

Sentiment analysis on Twitter dataset

Besides the MIMIC-III dataset, we compared our method against the Wasserstein-distance based
method [26] on sentiment analysis based on the Twitter dataset in that paper. Our method obtains
comparable results, i.e., 28.92± 0.14% testing error, which is slightly lower than that in [26].

The enlarged graph of ICD codes

The Fig. 2(a) in the paper is enlarged and shown below for better visual effect. The map between
ICD codes and diseases/procedures is attached as well.
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Figure 4: The enlarged KNN graph of diseases and procedures with K = 4.
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Table 4: The map between ICD codes and diseases/procedures
ICD code Disease/Procedure
d_4019 Unspecified essential hypertension
d_41401 Coronary atherosclerosis of native coronary artery
d_4241 Aortic valve disorders
d_V4582 Percutaneous transluminal coronary angioplasty status
d_2724 Other and unspecified hyperlipidemia
d_486 Pneumonia, organism unspecified
d_99592 Severe sepsis
d_51881 Acute respiratory failure
d_5990 Urinary tract infection, site not specified
d_5849 Acute kidney failure, unspecified
d_78552 Septic shock
d_25000 Diabetes mellitus without mention of complication, type II or unspecified type
d_2449 Unspecified acquired hypothyroidism
d_41071 Subendocardial infarction, initial episode of care
d_4280 Congestive heart failure, unspecified
d_4168 Other chronic pulmonary heart diseases
d_412 Pneumococcus infection in conditions classified elsewhere and of unspecified site
d_2761 Hyposmolality and/or hyponatremia
d_2720 Pure hypercholesterolemia
d_2762 Acidosis
d_389 Unspecified septicemia
d_4589 Hypotension, unspecified
d_42731 Atrial fibrillation
d_2859 Anemia, unspecified
d_311 Cutaneous diseases due to other mycobacteria
d_V3001 Single liveborn, born in hospital, delivered by cesarean section
d_V053 Need for prophylactic vaccination and inoculation against viral hepatitis
d_4240 Mitral valve disorders
d_V3000 Single liveborn, born in hospital, delivered without mention of cesarean section
d_7742 Neonatal jaundice associated with preterm delivery
d_42789 Other specified cardiac dysrhythmias
d_5070 Pneumonitis due to inhalation of food or vomitus
d_V502 Routine or ritual circumcision
d_2760 Hyperosmolality and/or hypernatremia
d_V1582 Personal history of tobacco use
d_40390 Hypertensive chronic kidney disease, unspecified, with chronic kidney disease stage I through stage IV, or unspecified
d_V4581 Aortocoronary bypass status
d_V290 Observation for suspected infectious condition
d_5845 Acute kidney failure with lesion of tubular necrosis
d_2875 Thrombocytopenia, unspecified
d_2767 Hyperpotassemia
d_32723 Obstructive sleep apnea (adult)(pediatric)
d_V5861 Long-term (current) use of anticoagulants
d_2851 Acute posthemorrhagic anemia
d_53081 Esophageal reflux
d_496 Chronic airway obstruction, not elsewhere classified
d_40391 Hypertensive chronic kidney disease, unspecified, with chronic kidney disease stage V or end stage renal disease
d_9971 Gross hematuria
d_5119 Unspecified pleural effusion
d_2749 Gout, unspecified
d_5859 Chronic kidney disease, unspecified
d_49390 Asthma, unspecified type, unspecified
d_45829 Other iatrogenic hypotension
d_3051 Tobacco use disorder
d_V5867 Long-term (current) use of insulin
d_5180 Pulmonary collapse
p_9604 Insertion of endotracheal tube
p_9671 Continuous invasive mechanical ventilation for less than 96 consecutive hours
p_3615 Single internal mammary-coronary artery bypass
p_3961 Extracorporeal circulation auxiliary to open heart surgery
p_8872 Diagnostic ultrasound of heart
p_9904 Transfusion of packed cells
p_9907 Transfusion of other serum
p_9672 Continuous invasive mechanical ventilation for 96 consecutive hours or more
p_331 Spinal tap
p_3893 Venous catheterization, not elsewhere classified
p_966 Enteral infusion of concentrated nutritional substances
p_3995 Hemodialysis
p_9915 Parenteral infusion of concentrated nutritional substances
p_8856 Coronary arteriography using two catheters
p_9955 Prophylactic administration of vaccine against other diseases
p_3891 Arterial catheterization
p_9390 Non-invasive mechanical ventilation
p_9983 Other phototherapy
p_640 Circumcision
p_3722 Left heart cardiac catheterization
p_8853 Angiocardiography of left heart structures
p_3723 Combined right and left heart cardiac catheterization
p_5491 Percutaneous abdominal drainage
p_3324 Closed (endoscopic) biopsy of bronchus
p_4513 Other endoscopy of small intestine
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