
Poison Frogs! Targeted Clean-Label Poisoning
Attacks on Neural Networks

Ali Shafahi∗
University of Maryland
ashafahi@cs.umd.edu

W. Ronny Huang∗
University of Maryland
wrhuang@umd.edu

Mahyar Najibi
University of Maryland
najibi@cs.umd.edu

Octavian Suciu
University of Maryland

osuciu@umiacs.umd.edu

Christoph Studer
Cornell University

studer@cornell.edu

Tudor Dumitras
University of Maryland

tudor@umiacs.umd.edu

Tom Goldstein
University of Maryland
tomg@cs.umd.edu

Abstract

Data poisoning is an attack on machine learning models wherein the attacker adds
examples to the training set to manipulate the behavior of the model at test time.
This paper explores poisoning attacks on neural nets. The proposed attacks use
“clean-labels”; they don’t require the attacker to have any control over the labeling
of training data. They are also targeted; they control the behavior of the classifier
on a specific test instance without degrading overall classifier performance. For
example, an attacker could add a seemingly innocuous image (that is properly
labeled) to a training set for a face recognition engine, and control the identity of
a chosen person at test time. Because the attacker does not need to control the
labeling function, poisons could be entered into the training set simply by leaving
them on the web and waiting for them to be scraped by a data collection bot.
We present an optimization-based method for crafting poisons, and show that just
one single poison image can control classifier behavior when transfer learning
is used. For full end-to-end training, we present a “watermarking” strategy that
makes poisoning reliable using multiple (≈ 50) poisoned training instances. We
demonstrate our method by generating poisoned frog images from the CIFAR
dataset and using them to manipulate image classifiers.

1 Introduction

Before deep learning algorithms can be deployed in high stakes, security-critical applications, their
robustness against adversarial attacks must be put to the test. The existence of adversarial examples
in deep neural networks (DNNs) has triggered debates on how secure these classifiers are [Szegedy
et al., 2013, Goodfellow et al., 2015, Biggio et al., 2013]. Adversarial examples fall within a category
of attacks called evasion attacks. Evasion attacks happen at test time – a clean target instance is
modified to avoid detection by a classifier, or spur misclassification. However, these attacks do not
map to certain realistic scenarios in which the attacker cannot control test time data. For example,
consider a retailer aiming to mark a competitor’s email as spam through an ML-based spam filter.
Evasion attacks are not applicable because the attacker cannot modify the victim emails. Similarly,

∗Authors contributed equally.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

an adversary may not be able to alter the input to a face recognition engine that operates under
supervised conditions, such as a staffed security desk or building entrance. Such systems are still
susceptible to data poisoning attacks. These attacks happen at training time; they aim to manipulate
the performance of a system by inserting carefully constructed poison instances into the training data.

This paper studies poisoning attacks on neural nets that are targeted, meaning they aim to control the
behavior of a classifier on one specific test instance. For example, they manipulate a face recognition
engine to change the identity of one specific person, or manipulate a spam filter to allow/deny a
specific email of the attacker’s choosing. We propose clean label attacks that do not require control
over the labeling function; the poisoned training data appear to be labeled correctly according to an
expert observer. This makes the attacks not only difficult to detect, but opens the door for attackers to
succeed without any inside access to the data collection/labeling process. For example, an adversary
could place poisoned images online and wait for them to be scraped by a bot that collects data from
the web. The retailer described above could contribute to a spam filter dataset simply by emailing
people inside an organization.

1.1 Related work

Classical poisoning attacks indiscriminately degrade test accuracy rather than targeting specific
examples, making them easy to detect. While there are studies related to poisoning attacks on support
vector machines [Biggio et al., 2012] or Bayesian classifiers [Nelson et al., 2008], poisoning attacks
on Deep Neural Networks (DNN) have been rarely studied. In the few existing studies, DNNs have
been shown to fail catastrophically against data poisoning attacks. Steinhardt et al. [2017] reported
that, even under strong defenses, there is an 11% reduction in test accuracy when the attacker is
allowed 3% training set modifications. Muñoz-González et al. [2017] propose a back-gradient based
approach for generating poisons. To speed up the process of generating poisoning instances, Yang
et al. [2017] develop a generator that produces poisons.

A more dangerous approach is for the attacker to target specific test instances. For example, the
retailer mentioned above, besides achieving her target goal, does not want to render the spam filter
useless or tip off the victim to the presence of her attack. Targeted backdoor attacks [Chen et al.,
2017] with few resources (∼50 training examples) have been recently shown to cause the classifier to
fail for special test examples. Gu et al. [2017] trains a network using mislabeled images tagged with
a special pattern, causing the classifier to learn the association between the pattern and the class label.
In Liu et al. [2017] a network is trained to respond to a trojan trigger.

These attacks present the same shortcomings as evasion attacks; they require test-time instances to be
modified to trigger the mispredictions. Moreover, in most prior work, the attacker is assumed to have
some degree of control over the labeling process for instances in the training set. This inadvertently
excludes real-world scenarios where the training set is audited by human reviewers who will label
each example as it appears to the eye, or where the labels are assigned by an external process (such
as malware detectors which often collect ground truth labeled by third party antiviruses). Assumed
control over the labeling function leads to a straightforward one-shot attack wherein the target instance
with a flipped label is added as poison. Overfitting on the poison would then ensure that the target
instance would get misclassified during inference time. The most closely related work to our own is
by Suciu et al. [2018], who studies targeted attacks on neural nets. This attack, however, requires that
poisons fill at least 12.5% (and up to 100%) of every minibatch, which may be unrealistic in practice.
In contrast, our attacks do not require any control of the minibatching process, and assume a much
smaller poisoning budget (<0.1% vs. >12.5%).

Finally, we note that several works have approached poisoning from a theoretical perspective.
Mahloujifar and Mahmoody [2017], Mahloujifar et al. [2017] study poisoning threat models from a
theoretical perspective, and the robustness of classifiers to training data perturbations was considered
in Diakonikolas et al. [2016].

1.2 Contributions

In this work, we study a new type of attack, henceforth called clean-label attacks, wherein the
attacker’s injected training examples are cleanly labeled by a certified authority, as opposed to
maliciously labeled by the attacker herself. Our strategy assumes that the attacker has no knowledge
of the training data but has knowledge of the model and its parameters. This is a reasonable

2

assumption given that many classic networks pre-trained on standard datasets, such as ResNet [He
et al., 2015] or Inception [Szegedy et al., 2014] trained on ImageNet, are frequently used as feature
extractors. The attacker’s goal is to cause the retrained network to misclassify a special test instance
from one class (e.g. a piece of malware) as another class of her choice (e.g. benign application) after
the network has been retrained on the augmented data set that includes poison instances. Besides
the intended misprediction on the target, the performance degradation on the victim classifier is not
noticeable. This makes state-of-the-art poisoning defenses that measure the performance impact of
training instances (such as Barreno et al. [2010]) ineffective.

A similar type of attack was demonstrated using influence functions (Koh and Liang [2017]) for the
scenario where only the final fully connected layer of the network was retrained on the poisoned
dataset, with a success rate of 57%.We demonstrate an optimization-based clean-label attack under
the transfer learning scenario studied by Koh and Liang [2017], but we achieve 100% attack success
rate on the same dog-vs-fish classification task. Further, we study – for the first time to our knowledge
– clean-label poisoning in the end-to-end training scenario where all layers of the network are
retrained. Through visualizations, we shed light on why this scenario is much more difficult due to the
expressivity of deep networks. Informed by these visualizations, we craft a 50 poison instance attack
on a deep network which achieves success rates of up to 60% in the end-to-end training scenario.

2 A simple clean-label attack

We now propose an optimization-based procedure for crafting poison instances that, when added to
the training data, manipulate the test-time behavior of a classifier. Later, we’ll discuss tricks to boost
the power of this simple attack.

An attacker first chooses a target instance from the test set; a successful poisoning attack causes this
target example to be misclassified during test time. Next, the attacker samples a base instance from
the base class, and makes imperceptible changes to it to craft a poison instance; this poison is injected
into the training data with the intent of fooling the model into labelling the target instance with the
base label at test time. Finally, the model is trained on the poisoned dataset (clean dataset + poison
instances). If, at test time, the model mistakes the target instance as being in the base class, then the
poisoning attack is considered successful.

2.1 Crafting poison data via feature collisions

Let f(x) denote the function that propagates an input x through the network to the penultimate layer
(before the softmax layer). We call the activations of this layer the feature space representation of the
input since it encodes high-level semantic features. Due to the high complexity and nonlinearity of f ,
it is possible to find an example x that “collides” with the target in feature space, while simultaneously
being close to the base instance b in input space by computing

p = argmin
x

‖f(x)− f(t)‖22 + β ‖x− b‖22 (1)

The right-most term of Eq. 1 causes the poison instance p to appear like a base class instance to
a human labeler (β parameterizes the degree to which this is so) and hence be labeled as such.
Meanwhile, the first term of Eq. 1 causes the poison instance to move toward the target instance in
feature space and get embedded in the target class distribution. On a clean model, this poison instance
would be misclassified as a target. If the model is retrained on the clean data + poison instances,
however, the linear decision boundary in feature space is expected to rotate to label the poison instance
as if it were in the base class. Since the target instance is nearby, the decision boundary rotation
may inadvertently include the target instance in the base class along with the poison instance (note
that training strives for correct classification of the poison instance but not the target since the latter
is not part of the training set). This allows the unperturbed target instance, which is subsequently
misclassified into the base class during test time, to gain a “backdoor” into the base class.

2.2 Optimization procedure

Our procedure for performing the optimization in Eq. 1 to obtain p is shown in Algorithm 1. The
algorithm uses a forward-backward-splitting iterative procedure [Goldstein et al., 2014]. The first
(forward) step is simply a gradient descent update to minimize the L2 distance to the target instance

3

in feature space. The second (backward step) is a proximal update that minimizes the Frobenius
distance from the base instance in input space. The coefficient β is tuned to make the poison instance
look realistic in input space, enough to fool an unsuspecting human observer into thinking the attack
vector image has not been tampered with.

Algorithm 1 Poisoning Example Generation

Input: target instance t, base instance b, learning rate λ
Initialize x: x0 ← b
Define: Lp(x) = ‖f(x)− f(t)‖2
for i = 1 to maxIters do

Forward step: x̂i = xi−1 − λ∇xLp(xi−1)
Backward step: xi = (x̂i + λβb)/(1 + βλ)

end for

3 Poisoning attacks on transfer learning

We begin by examining the case of transfer learning, in which a pre-trained feature extraction network
is used, and only the final network (softmax) layer is trained to adapt the network to a specific task.
This procedure is common in industry where we want to train a robust classifier on limited data.
Poisoning attacks in this case are extremely effective. In Section 4, we generalize these attacks to the
case of end-to-end training.

We perform two poisoning experiments. First, we attack a pretrained InceptionV3 [Szegedy et al.,
2016] network under the scenario where the weights of all layers excluding the last are frozen. Our
network and dataset (ImageNet [Russakovsky et al., 2015] dog-vs-fish) were identical to that of Koh
and Liang [2017]. Second, we attack an AlexNet architecture modified for the CIFAR-10 dataset by
Krizhevsky and Hinton [2009] under the scenario where all layers are trained.2

3.1 A one-shot kill attack

We now present a simple poisoning attack on transfer learned networks. In this case, a “one-shot kill”
attack is possible; by adding just one poison instance to the training set (that is labeled by a reliable
expert), we cause misclassification of the target with 100% success rate. Like in Koh and Liang
[2017], we essentially leverage InceptionV3 as a feature extractor and retrain its final fully-connected
layer weights to classify between dogs and fish. We select 900 instances from each class in ImageNet
as the training data and remove duplicates from the test data that are present in the training data as a
pre-processing step3. After this, we are left with 1099 test instances (698 test instances for the dog
class and 401 test instances for the fish class).

We select both target and base instances from the test set and craft a poison instance using Algorithm
1 with maxIters = 1000. Since the images in ImageNet have different dimensions, we calculate β
for Eq. 1 using β = β0 · 20482/(dimb)

2 which takes the dimensionality of the base instance (dimb)
and the dimension of InceptionV3’s feature space representation layer (2048) into account. We use
β0 = 0.25 in our experiments. We then add the poison instance to the training data and perform
cold-start training (all unfrozen weights initialized to random values). We use the Adam optimizer
with learning rate of 0.01 to train the network for 100 epochs.

The experiment is performed 1099 times – each with a different test-set image as the target instance –
yielding an attack success rate of 100%. For comparison, the influence function method studied in
Koh and Liang [2017] reports a success rate of 57% . The median misclassification confidence was
99.6% (Fig. 1b). Further, the overall test accuracy is hardly affected by the poisoning, dropping by
an average of 0.2%, with a worst-case of 0.4%, from the original 99.5% over all experiments. Some
sample target instances and their corresponding poison instances are illustrated in Fig. 1a.

Note that it is not generally possible to get 100% success rate on transfer learning tasks. The reason
that we are able to get such success rate using InceptionV3 on the dog-vs-fish task is because there

2The code is available at https://github.com/ashafahi/inceptionv3-transferLearn-poison
3If an identical image appears in both the train and test set, it could be chosen as both a base and target, in

which case poisoning is trivial. We remove duplicate images to prevent this sort of “cheating.”

4

https://github.com/ashafahi/inceptionv3-transferLearn-poison
https://github.com/ashafahi/inceptionv3-transferLearn-poison

(a) Sample target and poison instances.

misclassification confidence

co
un

t (
a.

u.
)

poisoned
model

clean
model

Results of 1099 experiments

(b) Incorrect class’s probability
histogram predicted for the tar-
get image by the clean (dark red)
and poisoned (dark blue) mod-
els. When trained on a poisoned
dataset, the target instances not
only get misclassified; they get
misclassified with high confi-
dence.

Figure 1: Transfer learning poisoning attack. (a) The top row contains 5 random target instances (from the
“fish” class). The second row contains the constructed poison instance corresponding to each of these targets.
We used the same base instance (second row, leftmost image) for building each poison instance. The attack is
effective for any base, but fewer iterations are required if the base image has a higher resolution. We stopped the
poison generation algorithm when the maximum iterations was met or when the feature representation of the
target and poison instances were less than 3 units apart (in Euclidean norm). The stopping threshold of 3 was
determined by the minimum distance between all pairs of training points. As can be seen, the poison instances
are visually indistinguishable from the base instance (and one another). Rows 3 and 4 show samples from similar
experiments where the target (fish) and base (dog) classes were swapped.

are more trainable weights (2048) than training examples (1801). As long as the data matrix contains
no duplicate images, the system of equations that needs to be solved to find the weight vector is
under-determined and overfitting on all of the training data is certain to occur.

To better understand what causes the attacks to be successful, we plot the angular deviation between
the decision boundary (i.e. the angular difference between the weight vectors) of the clean and
poisoned networks in Fig. 2 (blue bars and lines). The angular deviation is the degree to which
retraining on the poison instance caused the decision boundary to rotate to encompass the poison
instance within the base region. This deviation occurs mostly in the first epoch as seen in Fig.
2b, suggesting that the attack may succeed even with suboptimal retraining hyperparameters. The
final deviation of 23 degrees on average (Fig. 2a) indicates that a substantial alteration to the final
layer decision boundary is made by the poison instance. These results verify our intuition that
misclassification of the target occurs due to changes in the decision boundary.

While our main formulation (Eq. 1) promotes similarity between the poison and base images via the
`2 metric, the same success rate of 100% is achieved when we promote similarity via an `∞ bound of
2 (out of a dynamic range of 255) as is done in Koh and Liang [2017]. Details of the experiment are
presented in the supplementary material.

The experiments here were on a binary classification task (“dog” vs. “fish”). There is, however, no
constraint on applying the same poisoning procedure to many-class problems. In the supplementary
material, we present additional experiments where a new class, “cat”, is introduced and we show
100% poisoning success on the 3-way task is still achieved while maintaining an accuracy of 96.4%
on clean test images.

5

angular deviation (deg)

pr
ob

ab
ili

ty
 (a

.u
)

decision boundary angular deviation due to poisoning

transfer
learning

end-to-
end

(a) PDF of decision boundary ang. deviation.

decision boundary angular deviation due to poisoning

transfer learning

end-to-end
(multi poison)

end-to-end
(single poison)

(b) Average angular deviation vs epoch.

Figure 2: Angular deviation of the feature space decision boundary when trained with clean dataset + poison
instance(s) versus when trained with clean dataset alone. (a) Histogram of the final (last epoch) angular deviation
over all experiments. In transfer learning (blue), there is a significant rotation (average of 23 degrees) in the
feature space decision boundary. In contrast, in end-to-end training (red) where we inject 50 poison instances,
the decision boundary’s rotation is negligible. (b) Most of the parameter adjustment is done during the first
epoch. For the end-to-end training experiments, the decision boundary barely changes.

4 Poisoning attacks on end-to-end training

We saw in Section 3 that poisoning attacks on transfer learning are extremely effective. When all
layers are trainable, these attacks become more difficult. However, using a “watermarking” trick and
multiple poison instances, we can still effectively poison end-to-end networks.

Our end-to-end experiments focus on a scaled-down AlexNet architecture for the CIFAR-10 dataset4
(architectural details in appendix), initialized with pretrained weights (warm-start), and optimized
with Adam at learning rate 1.85× 10−5 over 10 epochs with batch size 128. Because of the warm-
start, the loss was constant over the last few epochs after the network had readjusted to correctly
classify the poison instances.

4.1 Single poison instance attack

We begin with an illustrative example of attacking a network with a single poison instance. Our goal
is to visualize the effect of a poison on the network’s behavior, and explain why poisoning attacks
under end-to-end training are more difficult than under transfer learning. For the experiments, we
randomly selected “airplane” as the target class and “frog” as the base class. For crafting poison
instances, we used a β value of 0.1 and iteration count of 12000. Figure 3a shows the target, base,
and poison feature space representations visualized by projecting the 193-dimensional deep feature
vectors onto a 2-dimensional plane. The first dimension is along the vector joining the centroids of
the base and target classes (u = µbase − µtarget), while the second dimension is along the vector
orthogonal to u and in the plane spanned by u and θ (the weight vector of the penultimate layer, i.e.
the normal to the decision boundary). This projection allows us to visualize the data distribution from
a viewpoint best representing the separation of the two classes (target and base).

We then evaluate our poisoning attack by training the model with the clean data + single poison
instance. Fig. 3a shows the feature space representations of the target, base, and poison instances
along with the training data under a clean (unfilled markers) and poisoned (filled markers) model.
In their clean model feature space representations, the target and poison instances are overlapped,
indicating that our poison-crafting optimization procedure (Algorithm 1) works. Oddly, unlike
the transfer learning scenario where the final layer decision boundary rotates to accommodate the
poison instance within the base region, the decision boundary in the end-to-end training scenario is
unchanged after retraining on the poisoned dataset, as seen through the red bars and lines in Fig. 2.

From this, we make the following important observation: During retraining with the poison data,
the network modifies its lower-level feature extraction kernels in the shallow layers so the poison
instance is returned to the base class distribution in the deep layers.

4We do this to keep runtimes short since quantifying performance of these attacks requires running each
experiment (and retraining the whole network) hundreds of times.

6

Target train instances Base train instances

Clean model: Poisoned model:

Feature space visualization of unsuccessful single-shot poisoning attack

(a)
Feature space visualization of successful multi-shot poisoning attack

(b)

Figure 3: Feature space visualization of end-to-end training poisoning attacks. (a) A single poison instance is
unable to successfully attack the classifier. The poison instance’s feature space position under the clean model
is overlapped with that of the target instance. However, when the model is trained on the clean + poisoned
data (i.e. the poisoned model), the feature space position of the poison instance is returned to the base class
distribution, while target remains in the target class distribution. (b) To make the attack successful, we construct
50 poison instances from 50 random base instances that are “watermarked” with a 30% opacity target instance.
This causes the target instance to be pulled out of the target class distribution (in feature space) into the base
class distribution and get incorrectly classified as the base class.

In other words, the poison instance generation exploits imperfections in the feature extraction kernels
in earlier layers such that the poison instance is placed alongside the target in feature space. When the
network is retrained on this poison instance, because it is labeled as a base, those early-layer feature
kernel imperfections are corrected and the poison instance is returned to the base class distribution.
This result shows that the objectives of poison instance generation and of network training are
mutually opposed and thus a single poison may not be enough for compromising even extreme outlier
target examples. To make the attack successful, we must find a way to ensure that the target and
poison instances do not get separated in feature space upon retraining.

4.2 Watermarking: a method to boost the power of poison attacks

To prevent the separation of poison and target during training, we use a simple but effective trick: add
a low-opacity watermark of the target instance to the poisoning instance to allow for some inseparable
feature overlap while remaining visually distinct. This blends some features of the target instance into
the poison instance and should cause the poison instance to remain within feature space proximity of
the target instance even after retraining. Watermarking has been previously used in Chen et al. [2017],
but their work required the watermark to be applied during inference time, which is unrealistic in
situations where the attacker cannot control the target instance.

7

Figure 4: 12 out of 60 random poison instances that successfully cause a bird target instance to get misclassified
as a dog in the end-to-end training scenario. An adversarial watermark (opacity 30%) of the target bird instance
is applied to the base instances when making the poisons. More examples are in the supplementary material.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 5 9 13 17 21 25 29 33 37 41 45 49

PR
O
BA

BI
LI
TY

OUTLIER	ID

Successful
Unsuccessful

(a) Attacks on the most outlier target airplanes. The
bars indicate the probability of the target instance
before the attack (calculated using the pre-trained
network). The coloring, denotes whether the attack
was successful or unsuccessful. Each experiment
utilizes a watermark opacity of 30% and 50 poisons.
Out of these 50 outliers, the attack succeeds 70% of
the time (compare to 53% for a random target).

0 20 40 60
poisons

0.00

0.25

0.50

0.75

1.00

su
cc

es
s r

at
e

success rates of various experiments
bird-vs-dog | opacity 30%
airplane-vs-frog | opacity 30%
airplane-vs-frog | opacity 20%

(b) Success rate of attacks on different targets from differ-
ent bases as a function of number of poison instances used
and different target opacity added to the base instances.

Figure 5: Success rates for attacks on outliers and random targets. While attacking non-outlier is still possible,
attacking an outlier can increase the chances of success.

A base watermarked image with target opacity γ is formed by taking a weighted combination of the
base b and the target images t: b← γ · t + (1− γ) · b. Some randomly selected poison instances are
shown in the supplementary material. Watermarks are not visually noticeable even up to 30% opacity
for some target instances. Fig. 4 illustrates 60 poison instances used for successfully attacking a “bird”
target instance.

4.2.1 Multiple poison instance attacks

Poisoning in the end-to-end training scenario is difficult because the network learns feature embed-
dings that optimally distinguish the target from the poison. But what if we introduce multiple poison
instances derived from different base instances into the training set?

For the classifier to resist multiple poisons, it must learn a feature embedding that separates all poison
instances from the target while also ensuring that the target instance remains in the target distribution.
We show in our experiments that using a high diversity of bases prevents the moderately-sized
network from learning features of the target that are distinct from those of the bases. Consequently,
when the network is retrained, the target instance is pulled along with the poison instances toward the
base distribution, and attacks are frequently successful. These dynamics are shown in Fig. 3b.

In Fig. 2, we observe that even in the multiple poison experiments, the decision boundary of the final
layer remains unchanged, suggesting that there’s a fundamentally different mechanism by which
poisoning succeeds in the transfer learning vs. end-to-end training scenarios. Transfer learning reacts
to poisons by rotating the decision boundary to encompass the target, while end-to-end training
reacts by pulling the target into the base distribution (in feature space). The decision boundary in
the end-to-end scenario remains stationary (varying by fractions of a degree) under retraining on the
poisoned dataset, as shown in Fig. 2.

To quantify how the number of poison instances impacts success rate, we ran experiments for each
number of poison instances between 1 and 70 (increments of 5). Experiments used randomly chosen
target instances from the test set. Each poison was generated from a random base in the test set
(resulting in large feature diversity among poisons). A watermarking opacity of 30% or 20% was
used to enhance feature overlap between the poisons and targets. The attack success rate (over 30
random trials) is shown in Fig. 5b. The set of 30 experiments was repeated for a different target-base
class pair within CIFAR-10 to verify that the success rates are not class dependent. We also try a

8

lower opacity and observe that the success rate drops. The success rate increases monotonically with
the number of poison instances. With 50 poisons the success rate is about 60% for the bird-vs-dog
task. Note we declare success only when the target is classified as a base; the attack is considered
unsuccessful even when the target instance is misclassified to a class other than the base.

We can increase the success rate of this attack by targeting data outliers. These targets lie far from
other training samples in their class, and so it should be easier to flip their class label. We target
the 50 “airplanes” with the lowest classification confidence (but still correctly classified), and attack
them using 50 poison frogs per attack. The success rate for this attack is 70% (Fig. 5a), which is 17%
higher than for randomly chosen targets.

To summarize, clean-label attacks under the end-to-end scenario require multiple techniques to work:
(1) optimization via Algorithm 1, (2) diversity of poison instances, and (3) watermarking. In the
supplementary material, we provide a leave-one-out ablation study with 50 poisons which verifies
that all three techniques are required for successful poisoning.

5 Conclusion

We studied targeted clean-label poisoning methods that attack a net at training time with the goal
of manipulating test-time behavior. These attacks are difficult to detect because they involve non-
suspicious (correctly labeled) training data, and do not degrade the performance on non-targeted
examples. The proposed attack crafts poison images that collide with a target image in feature
space, thus making it difficult for a network to discern between the two. These attacks are extremely
powerful in the transfer learning scenario, and can be made powerful in more general contexts by
using multiple poison images and a watermarking trick.

Training with poison instances is akin to the adversarial training technique for defending against
evasion attacks (Goodfellow et al. [2015]). The poison instance can here be seen as an adversarial
example to the base class. While our poisoned dataset training does indeed make the network more
robust to base-class adversarial examples designed to be misclassified as the target, it also has the
effect of causing the unaltered target instance to be misclassified as a base. This side effect of
adversarial training was exploited in this paper, and is worth further investigation.

Many neural networks are trained using data sources that are easily manipulated by adversaries.We
hope that this work will raise attention for the important issue of data reliability and provenance.

6 Acknowledgements

Goldstein and Shafahi were supported by the Office of Naval Research (N00014-17-1-2078), DARPA
Lifelong Learning Machines (FA8650-18-2-7833), the DARPA YFA program (D18AP00055), and
the Sloan Foundation. Studer was supported in part by Xilinx, Inc. and by the US National Science
Foundation (NSF) under grants ECCS-1408006, CCF-1535897, CCF-1652065, CNS-1717559, and
ECCS-1824379. Dumitras and Suciu were supported by the Department of Defense.

9

References
Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,

and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. International Conference on Learning Representation, 2015.

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel Laskov, Giorgio
Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In Joint European
conference on machine learning and knowledge discovery in databases, pages 387–402. Springer,
2013.

Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector machines.
arXiv preprint arXiv:1206.6389, 2012.

Blaine Nelson, Marco Barreno, Fuching Jack Chi, Anthony D. Joseph, Benjamin I. P. Rubinstein,
Udam Saini, Charles Sutton, J. D. Tygar, and Kai Xia. Exploiting machine learning to subvert your
spam filter. In Proceedings of the 1st Usenix Workshop on Large-Scale Exploits and Emergent
Threats, pages 7:1–7:9, Berkeley, CA, USA, 2008.

Jacob Steinhardt, Pang Wei Koh, and Percy Liang. Certified Defenses for Data Poisoning Attacks.
arXiv preprint arXiv:1706.03691, (i), 2017. URL http://arxiv.org/abs/1706.03691.

Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin Wongrassamee,
Emil C Lupu, and Fabio Roli. Towards poisoning of deep learning algorithms with back-gradient
optimization. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security,
pages 27–38. ACM, 2017.

Chaofei Yang, Qing Wu, Hai Li, and Yiran Chen. Generative poisoning attack method against neural
networks. arXiv preprint arXiv:1703.01340, 2017.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted Backdoor Attacks on
Deep Learning Systems Using Data Poisoning. arXiv preprint arXiv:1712.05526, 2017. URL
http://arxiv.org/abs/1712.05526.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the
machine learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.

Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and Xiangyu
Zhang. Trojaning attack on neural networks. 2017.

Octavian Suciu, Radu Mărginean, Yiğitcan Kaya, Hal Daumé III, and Tudor Dumitraş. When does
machine learning fail? generalized transferability for evasion and poisoning attacks. arXiv preprint
arXiv:1803.06975, 2018.

Saeed Mahloujifar and Mohammad Mahmoody. Blockwise p-tampering attacks on cryptographic
primitives, extractors, and learners. Cryptology ePrint Archive, Report 2017/950, 2017. https:
//eprint.iacr.org/2017/950.

Saeed Mahloujifar, Dimitrios I. Diochnos, and Mohammad Mahmoody. Learning under p-tampering
attacks. CoRR, abs/1711.03707, 2017. URL http://arxiv.org/abs/1711.03707.

Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. Efficient robust proper learning of log-
concave distributions. arXiv preprint arXiv:1606.03077, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. arXiv preprint arXiv:1512.03385, 7(3):171–180, 2015. ISSN 1664-1078. doi:
10.3389/fpsyg.2013.00124. URL http://arxiv.org/pdf/1512.03385v1.pdf.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going Deeper with Convolu-
tions. arXiv:1409.4842, 2014. ISSN 10636919. doi: 10.1109/CVPR.2015.7298594. URL
https://arxiv.org/abs/1409.4842.

10

http://arxiv.org/abs/1706.03691
http://arxiv.org/abs/1712.05526
https://eprint.iacr.org/2017/950
https://eprint.iacr.org/2017/950
http://arxiv.org/abs/1711.03707
http://arxiv.org/pdf/1512.03385v1.pdf
https://arxiv.org/abs/1409.4842

Marco Barreno, Blaine Nelson, Anthony D Joseph, and JD Tygar. The security of machine learning.
Machine Learning, 81(2):121–148, 2010.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. arXiv
preprint arXiv:1703.04730, 2017.

Tom Goldstein, Christoph Studer, and Richard Baraniuk. A field guide to forward-backward splitting
with a fasta implementation. arXiv preprint arXiv:1411.3406, 2014.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the
inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2818–2826, 2016.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International Journal of Computer Vision, 115(3):211–252, 2015.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

11

