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Abstract

We propose a method for learning landmark detectors for visual objects (such as
the eyes and the nose in a face) without any manual supervision. We cast this as the
problem of generating images that combine the appearance of the object as seen in
a first example image with the geometry of the object as seen in a second example
image, where the two examples differ by a viewpoint change and/or an object
deformation. In order to factorize appearance and geometry, we introduce a tight
bottleneck in the geometry-extraction process that selects and distils geometry-
related features. Compared to standard image generation problems, which often
use generative adversarial networks, our generation task is conditioned on both
appearance and geometry and thus is significantly less ambiguous, to the point
that adopting a simple perceptual loss formulation is sufficient. We demonstrate
that our approach can learn object landmarks from synthetic image deformations
or videos, all without manual supervision, while outperforming state-of-the-art
unsupervised landmark detectors. We further show that our method is applicable to
a large variety of datasets — faces, people, 3D objects, and digits — without any
modifications.

1 Introduction

There is a growing interest in developing machine learning methods that have little or no dependence
on manual supervision. In this paper, we consider in particular the problem of learning, without
external annotations, detectors for the landmarks of object categories, such as the nose, the eyes, and
the mouth of a face, or the hands, shoulders, and head of a human body.

Our approach learns landmarks by looking at images of deformable objects that differ by acquisition
time and/or viewpoint. Such pairs may be extracted from video sequences or can be generated by
randomly perturbing still images. Videos have been used before for self-supervision, often in the
context of future frame prediction, where the goal is to generate future video frames by observing
one or more past frames. A key difficulty in such approaches is the high degree of ambiguity that
exists in predicting the motion of objects from past observations. In order to eliminate this ambiguity,
we propose instead to condition generation on two images, a source (past) image and a target (future)
image. The goal of the learned model is to reproduce the target image, given the source and target
images as input. Clearly, without further constraints, this task is trivial. Thus, we pass the target
through a tight bottleneck meant to distil the geometry of the object (fig.[I). We do so by constraining
the resulting representation to encode spatial locations, as may be obtained by an object landmark
detector. The source image and the encoded target image are then passed to a generator network
which reconstructs the target. Minimising the reconstruction error encourages the model to learn
landmark-like representations because landmarks can be used to encode the geometry of the object,
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Figure 1: Model Architecture. Given a pair of source and target images (x, x’), the pose-regressor ®
extracts K heatmaps from x’, which are then marginalized to estimate coordinates of keypoints, to
limit the information flow. 2D Gaussians (y’) are rendered from these keypoints and stacked along
with the image features extracted from x, to reconstruct the target as ¥(x,y’) = X'. By restricting
the information-flow our model learns semantically meaningful keypoints, without any annotations.

which changes between source and target, while the appearance of the object, which is constant, can
be obtained from the source image alone.

The key advantage of our method, compared to other works for unsupervised learning of landmarks,
is the simplicity and generality of the formulation, which allows it to work well on data far more
complex than previously used in unsupervised learning of object landmarks, e.g. landmarks for the
highly-articulated human body. In particular, unlike methods such as [45] 44} 55]], we show that our
method can learn from synthetically-generated image deformations as well as raw videos as it does
not require access to information about correspondences, optical-flow, or transformation between
images.

Furthermore, while image generation has been used extensively in unsupervised learning, especially
in the context of (variational) auto-encoders [22]] and Generative Adversarial Networks (GANs [13]];
see section [2), our approach has a key advantage over such methods. Namely, conditioning on
both source and target images simplifies the generation task considerably, making it much easier
to learn the generator network [18]]. The ensuing simplification means that we can adopt the direct
approach of minimizing a perceptual loss as in [10]], without resorting to more complex techniques
like GANs. Empirically, we show that this still results in excellent image generation results and
that, more importantly, semantically consistent landmark detectors are learned without manual
supervision (section ). Project code and details are available at: http://www.robots.ox.ac.uk/
“vgg/research/unsupervised_landmarks/

2 Related work

The recent approaches of [45] 144]] learn to extract landmarks based on the principles of equivariance
and distinctiveness. In contrast to our work, these methods are not generative. Further, they
rely on known correspondences between images obtained either through optical flow or synthetic
transformations, and hence, cannot leverage video data directly. Since the principle of equivariance is
orthogonal to our approach, it can be incorporated as an additional cue in our method.

Unsupervised learning of representations has traditionally been achieved using auto-encoders and
restricted Boltzmann machines [14} 47, [15]. InfoGAN [6] uses GANSs to disentangle factors in the
data by imposing a certain structure in the latent space. Our approach also works by imposing a latent
structure, but using a conditional-encoder instead of an auto-encoder.

Learning representations using conditional image generation via a bottleneck was demonstrated
by Xue et al. [52] in variational auto-encoders, and by Whitney et al. [50] using a discrete gating
mechanism to combine representations of successive video frames. Denton et al. [8] factor the pose
and identity in videos through an adversarial loss on the pose embeddings. We instead design our
bottleneck to explicitly shape the features to resemble the output of a landmark detector, without any
adversarial training. Villegas et al. [46] also generate future frames by extracting a representation of
appearance and human pose, but, differently from us, require ground-truth pose annotations. Our
method essentially inverts their analogy network [36] to output landmarks given the source and target
image pairs.
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Several other generative methods [42} |40l [37, 48], 32] focus on video extrapolation. Srivastava et
al. [40] employ Long Short Term Memory (LSTM) [16] networks to encode video sequences into
fixed-length representation and decode it to reconstruct the input sequence. Vondrick et al. [48]
propose a GAN for videos, also with a spatio-temporal convolutional architecture that disentangles
foreground and background to generate realistic frames. Video Pixel Networks [20] estimate the
discrete joint distribution of the pixel values in a video by encoding different modalities such as time,
space and colour information. In contrast, we learn a structured embedding that explicitly encodes
the spatial location of object landmarks.

A series of concurrent works propose similar methods for unsupervised learning of object structure.
Shu et al. [38] learn to factor a single object-category-specific image into an appearance template in a
canonical coordinate system, and a deformation field which warps the template to reconstruct the input,
as in an auto-encoder. They encourage this factorisation by controlling the size of the embeddings.
Similarly, Wiles et al. [S1] learn a dense deformation field for faces but obtain the template from a
second related image, as in our method. Suwajanakorn et al. [43] learn 3D-keypoints for objects
from two images which differ by a known 3D transformation, by enforcing equivariance [45]]. Finally,
the method of Zhang et al. [55] shares several similarities with ours, in that they also use image
generation with the goal of learning landmarks. However, their method is based on generating a
single image from itself using landmark-transported features. This, we show is insufficient to learn
geometry and requires, as they do, to also incorporate the principle of equivariance [45]. This is a key
difference with our method, as ours results in a much simpler system that does not require to know
the optical-flow/correspondences between images, and can learn from raw videos directly.

3 Method

Let x,x' € X = RIXWXC be two images of an object, for example extracted as frames in a video
sequence, or synthetically generated by randomly deforming x into x’. We call x the source image
and x’ the target image and we use € to denote the image domain, namely the H x W lattice.

We are interested in learning a function ®(x) = y € ) that captures the “structure” of the object in
the image as a set of K object landmarks. As a first approximation, assume that y = (uq,...,ux) €
0K = Y are K coordinates uy, € €2, one per landmark.

In order to learn the map ® in an unsupervised manner, we consider the problem of conditional image
generation. Namely, we wish to learn a generator function

VX x)Y— X, (x,y)—x

such that the target image x’ = U(x, ®(x’)) is reconstructed from the source image x and the
representation’y’ = ®(x') of the rarget image. In practice, we learn both functions ® and ¥ jointly
to minimise the expected reconstruction loss ming ¢ Ex x [£(X, ¥(x, ®(x')))] . Note that, if we
do not restrict the form of ), then a trivial solution to this problem is to learn identity mappings
by setting y’ = ®(x’') = x’ and ¥(x,y’) = y’. However, given that y’ has the “form” of a set of
landmark detections, the model is strongly encouraged to learn those. This is explained next.

3.1 Heatmaps bottleneck

In order for the model ®(x) to learn to extract keypoint-like structures from the image, we terminate
the network @ with a layer that forces the output to be akin to a set of K keypoint detections. This
is done in three steps. First, K heatmaps S, (x;k),u € € are generated, one for each keypoint
k =1,..., K. These heatmaps are obtained in parallel as the channels of a R *W X tensor using
a standard convolutional neural network architecture. Second, each heatmap is renormalised to a
probability distribution via (spatial) Softmax and condensed to a point by computing the (spatial)

expected value of the latter:
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Third, each heatmap is replaced with a Gaussian-like function centred at u; with a small fixed
standard deviation o
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Figure 2: Unsupervised Landmarks. [left]: CelebA images showing the synthetically transformed
source x and target X’ images, the reconstructed target ¥(x, ®(x’)), and the unsupervised landmarks
®(x'). [middle]: The same for video frames from VoxCeleb. [right]: Two example images with
selected (8 out of 10) landmarks wuj overlaid and their corresponding 2D score maps S, (x; k)
(see section@ brighter pixels indicate higher confidence).

The end result is a new tensor y = ®(x) € RI*WXK that encodes as Gaussian heatmaps the

location of K maxima. Since it is possible to recover the landmark locations exactly from these
heatmaps, this representation is equivalent to the one considered above (2D coordinates); however, it
is more useful as an input to a generator network, as discussed later.

One may wonder whether this construction can be simplified by removing steps two and three and
simply consider S(x) (possibly after re-normalisation) as the output of the encoder ®(x). The answer
is that these steps, and especially eq. (I), ensure that very little information from x is retained, which,
as suggested above, is key to avoid degenerate solutions. Converting back to Gaussian landmarks
in eq. (2), instead of just retaining 2D coordinates, ensures that the representation is still utilisable by
the generator network.

Separable implementation. In practice, we consider a separable variant of eq. (I) for computa-
tional efficiency. Namely, let u = (uq, u2) be the two components of each pixel coordinate and write
Q = Q1 x Q5. Then we set

D ca, u;eSui O6F)
s Su(SR) = D S ()
u; €€ u; €Q;

where ¢ = 1,2 and j = 2, 1 respectively. Figurevisualizes the source x, target x’ and generated
U(x, ®(x’)) images, as well as x’ overlaid with the locations of the unsupervised landmarks ®(x’).
It also shows the heatmaps .S, (x; k) and marginalized separable softmax distributions on the top and
left of each heatmap for K = 10 keypoints.

ufi(x) =

3.2 Generator network using a perceptual loss

The goal of the generator network X' = W(x,y’) is to map the source image x and the distilled
version y’ of the target image x’ to a reconstruction of the latter. Thus the generator network is
optimised to minimise a reconstruction error £(x’,%’). The design of the reconstruction error is
important for good performance. Nowadays the standard practice is to learn such a loss function
using adversarial techniques, as exemplified in numerous variants of GANs. However, since the goal
here is not generative modelling, but rather to induce a representation y’ of the object geometry for
reconstructing a specific target image (as in an auto-encoder), a simpler method may suffice.

Inspired by the excellent results for photo-realistic image synthesis of [4], we resort here to use the
“content representation” or “perceptual” loss used successfully for various generative networks [12} [T,
[l [31]l. The perceptual loss compares a set of the activations extracted from multiple layers
of a deep network for both the reference and the generated images, instead of the only raw pixel
values. We define the loss as £(x/,x") = >, || (x’) — T'y(X')||3, where I'(x) is an off-the-shelf
pre-trained neural network, for example VGG-19 [39], T'; denotes the output of the I-th sub-network
(obtained by chopping I' at layer ). As our goal is to have a purely-unsupervised learning, we
pre-train the network by using a self-supervised approach, namely colorising grayscale images [23].



, n supervised Thewlis [45] Ours selfsup

1 10.82 12.89 £ 3.21
5 9.25 8.16 £ 0.96
110 8.49 7.19 £ 0.45

100 — 4.294+0.34
500 — 2.83 £0.06
1000 — 2.73+0.03
5000 2.60 = 0.00

All (19,000) 7.15 2.58+ N/A

Figure 3: Sample Efficiency for Supervised Regression on MAFL. [left]: Supervised linear
regression of 5 keypoints (bottom-row) from 10 unsupervised (top-row) on MAFL test set. Centre
of the white-dots correspond to the ground-truth location, while the dark ones are the predictions.
Both unsupervised and supervised landmarks show a good degree of equivariance with respect to
head rotation (columns 2, 4) and invariance to headwear or eyewear (columns 1, 3). [right]: MSE
(o) (normalised by inter-ocular distance (in %)) on the MAFL test-set for varying number (1) of
supervised samples from MAFL training set used for learning the regressor from 30 unsupervised
landmarks. {: we outperform the previous state-of-the-art [45]] with only 10 labelled examples.

We also test using a VGG-19 model pre-trained for image classification in ImageNet. All other
networks are trained from scratch. The parameters oy > 0,1 = 1, ..., n are scalars that balance the
terms. We use a linear combination of the reconstruction error for ‘input’, ‘convl_2’, ‘conv2_2’,
‘conv3_2’, ‘conv4_2’ and ‘conv5_2" layers of VGG-19; {«; } are updated online during training to
normalise the expected contribution from each layer as in [4]]. However, we use the {5 norm instead
of their /1, as it worked better for us.

4 Experiments

In section .| we provide the details of the landmark detection and generator networks; a common
architecture is used across all datasets. Next, we evaluate landmark detection accuracy on faces
(section[d.2)) and human-body (sectiond.3). In sectionf.4) we analyse the invariance of the learned
landmarks to various nuisance factors, and finally in section [4.5]study the factorised representation of
object style and geometry in the generator.

4.1 Model details

Landmark detection network. The landmark detector ingests the image x’ to produce K landmark
heatmaps y’. It is composed of sequential blocks consisting of two convolutional layers each. All
the layers use 3x3 filters, except the first one which uses 7x7. Each block doubles the number
of feature channels in the previous block, with 32 channels in the first one. The first layer in each
block, except the first block, downsamples the input tensor using stride 2 convolution. The spatial
size of the final output, outputting the heatmaps, is set to 16 x 16. Thus, due to downsampling, for a
network with n — 3, n > 4 blocks, the resolution of the input image is H xW = 2" x2", resulting in
16x16x (32 - 2"73) tensor. A final 1x 1 convolutional layer maps this tensor to a 16x16x K tensor,
with one layer per landmark. As described in section[3.1] these K feature channels are then used to
render 16 x 16 x K 2D-Gaussian maps y’ (with o = 0.1).

Image generation network. The image generator takes as input the image x and the landmarks
y' = ®(x’) extracted from the second image in order to reconstruct the latter. This is achieved in
two steps: first, the image x is encoded as a feature tensor z € R16*16XC yging a convolutional
network with exactly the same architecture as the landmark detection network except for the final
1x1 convolutional layer, which is omitted; next, the features z and the landmarks y’ are stacked
together (along the channel dimension) and fed to a regressor that reconstructs the target frame x’.

The regressor also comprises of sequential blocks with two convolutional layers each. The input to
each successive block, except the first one, is upsampled two times through bilinear interpolation,
while the number of feature channels is halved; the first block starts with 256 channels, and a
minimum of 32 channels are maintained till a tensor with the same spatial dimensions as x’ is
obtained. A final convolutional layer regresses the three RGB channels with no non-linearity. All



head wrists elbows shoulders average sample efficiency

100

200
500
1000
5000
10000

accuracy [%]

0 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
Charles (2013) Pfister (2014) Yang (2013) Pfister (2015)
v - 10 =

ours ours selfsup. ‘

BBC Pose Accuracy (%) at d = 6 pixels
Head Wrsts Elbws Shldrs Avg.

B Pfister er al. [35] 98.00 88.45 77.10 93.50 88.01
Charles et al. [3] 95.40 72.95 68.70 90.30 79.90
Cheneral [5] 659 479 665 768 64.1
Pfister et al. 74.90 53.05 46.00 71.40 59.40
Yang er al. [53] 63.40 53.70 49.20 46.10 51.63

Ours (selfsup.)  81.10 49.05 53.05 70.10 60.79
Ours 76.10 56.50 70.70 74.30 68.44

Figure 4: Learning Human Pose. 50 unsupervised keypoints are learnt on the BBC Pose dataset.
Annotations (empty circles in the images) for 7 keypoints are provided, corresponding to — head,
wrists, elbows and shoulders. Solid circles represent the predicted positions; in [fig-top] these are
raw discovered keypoints which correspond maximally to each annotation; in [fig-bottom] these are
regressed (linearly) from the discovered keypoints. [table]: Comparison against supervised methods;
%-age of points within d= 6-pixels of ground-truth is reported. [top-row]: accuracy-vs-distance d, for
each body-part; [top-row-rightmost]: average accuracy for varying number of supervised samples
used for regression.

layers use 3% 3 filters and each block has two layers similarly to the landmark network.

All the weights are initialised with random Gaussian noise (o = 0.01), and optimised using Adam
with a weight decay of 5 - 10~%. The learning rate is set to 102, and lowered by a factor of 10 once
the training error stops decreasing; the ¢5-norm of the gradients is bounded to 1.0.

4.2 Learning facial landmarks

Setup. We explore extracting source-target image pairs (x,x’) using either (1) synthetic trans-
formations, or (2) videos. In the first case, the pairs are obtained as (x,x’) = (g1X¢, g2Xo) by
applying two random thin-plate-spline (TPS) [11} warps gi, g2 to a given sample image xq. We
use the 200k CelebA [24] images after resizing them to 128 x 128 resolution. The dataset provides
annotations for 5 facial landmarks — eyes, nose and mouth corners, which we do not use for training.
Following [43] we exclude the images in MAFL [57] test-set from the training split and generate
synthetically-deformed pairs as in [45] [55]], but the transformations themselves are not required for
training. We discount the reconstruction loss in the regions of the warped image which lie outside the
original image to avoid modelling irrelevant boundary artefacts.

In the second case, (x,x’) are two frames sampled from a video. We consider VoxCeleb [28§]], a
large dataset of face tracks, consisting of 1251 celebrities speaking over 100k English language
utterances. We use the standard training split and remove any overlapping identities which appear in
the test sets of MAFL and AFLW. Pairs of frames from the same video, but possibly belonging to
different utterances are randomly sampled for training. By using video data for training our models
we eliminate the need for engineering synthetic data.

) ] L

L

Figure 5: Unsupervised Landmarks on Human3.6M. [left]: an example quadruplet source-target-
reconstruction-keypoint (left to right) from Human3.6M. [right]: learned keypoints on a test video
sequence. The landmarks consistently track the legs, arms, torso and head across frames.



Qualitative results. Figure [2| shows the learned heatmaps and source-target-reconstruction-
keypoints quadruplets (x, x’, ¥ (x, ®(x’)) , ®(x’)) for synthetic transformations and videos. We note
that the method extracts keypoints which consistently track facial features across deformation and
identity changes (e.g., the green circle tracks the lower chin, and the light blue square lies between
the eyes). The regressed semantic keypoints on the MAFL test set are visualised in fig. [3] where they
are localised with high accuracy. Further, the target image x’ is also reconstructed accurately.

Quantitative results. We follow [45]44] and use un-

supervised keypoints learnt on CelebA and VoxCeleb to Method K MAFL AFLW
regress manually-annotated keypoints in the MAFL and Supervised

AFLW [23] test sets. We freeze the parameters of the RCPR [2] - 11.60
unsupervised detector network (®) and learn a linear re- CFAN [54] 15.84 10.94
gressor (without bias) from our unsupervised keypoints ~ Cascaded CNN [41]] 9.73 8.97
to 5 manually-labelled ones from the respective training TCDCN [57] 7.95 7.65
sets. Model selection is done using 10% validation split ~RAR [41] - 7.23
of the training data. MTCNN [>0] 539 6.90
We report results in terms of standard MSE normalised TheWIiSIJ[réllgle]pervlsed / s;:(l)f—s;lpie;rwsed 7
by the inter-ocular distance expressed as a percent- 50 667 10.53
age [157]], and ghow a few regressed keypoints in fig. 3l 1ycwiis [@4](frames) — 5.83 3.80
Before evaluating on AFLW, we finetune our networks — gpy 4 [38] _ 545 _
pre-trained on CelebA or VoxCeleb on the AFLW train- Zhang [53) 10 3.46 7.01
ing set. We do not use any labels during finetuning. w/ equiv. 30 3.16 6.58
Sample efficiency. Figure [3|reports the performance of Wi‘f/e/;) f ([1;1 i\]/ EO gﬁ B
detectors trained on CelebA as a function of the number —

n of supervised examples used to translate from unsuper- Ours, training set: CelebA

vised to supervised keypoints. We note that n = 10 js  10ss-net: selfsup. 10 3.19 6.86

30 2.58 6.31

already sufficient for results comparable to the previous 50 2.54 6.33

state-of-the-art (SoA) method of Thewlis et al. [45]],

and that performance almost saturates at n = 500 loss-net: sup. ;g 32% ggg
(vs. 19,000 available training samples). 50 2.59 6.35
Vs. SoA. Tablecompares our regression results to the Ours, training set: VoxCeleb

SoA. We experiment regressing from K={10, 30,50} loss-net: selfsup. 30 3.94 6.75
unsupervised landmarks, using the self-supervised and w/ bias 30 3.63 -
the supervised perceptual loss networks; the number of ~ loss-net: sup. 30 4.01 7.10

samples n used for regression is maxed out (= 19000) . ]

to be consistent with previous works. On both MAFL Table 1: Comparison with state-of-the-
and AFLW datasets, at 2.58% and 6.31% error respec- arton MAFL and AFLW. K is the num-
tively (for K = 30), we significantly outperform all Per of unsupervised landmarks. f: train
the supervised and unsupervised methods. Notably, we & 2-1ayer MLP instead of a linear regres-
perform better than the concurrent work of Zhang et SOT 1+ use the larger VoxCeleb2 [[7] dataset
al. [55] (MAFL: 3.16%; AFLW: 6.58%), while using [OF unsupervised training, and include a
a simpler method. When synthetic warps are removed bias term in their regressor (through batch-
from [53], so that the equivariance constraint cannot be normalization). Normalised %-MSE is re-
employed, our method is significantly better (2.58% vs Ported (see fig. B)-

8.42% on MAFL). We are also significantly better than many SoA supervised detectors [54, 41, [57]]
using only 7 = 100 supervised training examples, which shows that the approach is very effective at
exploiting the unlabelled data. Finally, training with VoxCeleb video frames degrades the performance
due to domain gap; including a bias in the linear regressor improves the performance.

ours content
fc-layer (d) —» 10 20 60 K—30 loss — ¢, adv+ly ly adv.+ o (ours)
MAFL 20.60 21.94 2896 2.58 MAFL (K=30) 3.64 3.62 284 280 2.58

Table 2: Abalation Study. [left]: The keypoint bottleneck when replaced with a low d-dimensional,
d = {10, 20,60}, fully-connected (fc) layer leads to significantly worse landmark detection perfor-
mance (%-MSE) on the MAFL dataset. [right]: Replacing the content loss with ¢1, £5 losses on the
images, optionally paired with an adversarial loss (adv.) also degrades the performance.
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Figure 6: Invariant Localisation. Unsupervised keypoints discovered on smallINORB test set for
the car and airplane categories. Out of 20 learned keypoints, we show the most geometrically
stable ones: they are invariant to pose, shape, and illumination. [b—c]: elevation-vs-azimuth; [a, d]:
shape-vs-illumination (y-axis-vs-z-axis).

Ablation study. In table[2] we present two ablation studies, first on the keypoint bottleneck, and
second where we compare against adversarial and other image-reconstruction losses. For both the
settings, we take the best performing model configuration for facial landmark detection on the MAFL
dataset.

Keypoint bottleneck. The keypoint bottleneck has two functions: (1) it provides a differentiable and
distributed representation of the location of landmarks, and (2) it restricts the information from the
target image to spatial locations only. When the bottleneck is replaced with a generic low dimensional
fully-connected layer (as in a conventional auto-encoder) the performance degrades significantly This
is because the continuous vector embedding is not encouraged to encode geometry explicitly.

Reconstruction loss. We replace our content/perceptual loss with ¢; and /5 losses on generated pixels;
the losses are also optionally paired with an adversarial term [13]] to encourage verisimilitude as
in [18]]. All of these alternatives lead to worse landmark detection performance (table |Z[) While
GANS are useful for aligning image distributions, in our setting we reconstruct a specific target image
(similar to an auto-encoder). For this task, it is enough to use a simple content/perceptual loss.

4.3 Learning human body landmarks

Setup. Articulated limbs make landmark localisation on human body significantly more challeng-
ing than faces. We consider two video datasets, BBC-Pose [3]], and Human3.6M [17]. BBC-Pose
comprises of 20 one-hour long videos of sign-language signers with varied appearance, and dynamic
background; the test set includes 1000 frames. The frames are annotated with 7 keypoints correspond-
ing to head, wrists, elbows, and shoulders which, as for faces, we use only for quantitative evaluation,
not for training. Human3.6M dataset contains videos of 11 actors in various poses, shot from multiple
viewpoints. Image pairs are extracted by randomly sampling frames from the same video sequence,
with the additional constraint of maintaining the time difference within the range 3-30 frames for
Human3.6M. Loose crops around the subjects are extracted using the provided annotations and
resized to 128 x 128 pixels. Detectors for K = 20 and K = 50 keypoints are trained on Human3.6M
and BBC-Pose respectively.

Qualitative results. Figure[dshows raw unsupervised keypoints and the regressed semantic ones on
the BBC-Pose dataset. For each annotated keypoint, a maximally matching unsupervised keypoint is
identified by solving bipartite linear assignment using mean distance as the cost. Regressed keypoints
consistently track the annotated points. Figure [5[shows (x, x’, ¥ (x, ®(x’)), ®(x’)) quadruplets, as
for faces, as well as the discovered keypoints. All the keypoints lie on top of the human actors, and
consistently track the body across identities and poses. However, the model cannot discern frontal
and dorsal sides of the human body apart, possibly due to weak cues in the images, and no explicit
constraints enforcing such consistency.

Quantitative results.  Figure[d compares the accuracy of localising the 7 keypoints on BBC-Pose
against supervised methods, for both self-supervised and supervised perceptual loss networks. The
accuracy is computed as the the %-age of points within a specified pixel distance d. In this case, the
top two supervised methods are better than our unsupervised approach, but we outperform [33} /53]
using 1k training samples (vs. 10k); furthermore, methods such as [35]] are specialised for videos and



Figure 7: Disentangling Style and Geometry. Image generation conditioned on spatial keypoints
induces disentanglement of representations for style and geometry in the generator. Source image
(x) imparts style (e.g. colour, texture), while the target image (x’) influences the geometry (e.g.
shape, pose). Here, during inference, x [middle] is sampled to have a different style than x’ [top],
although during training, image pairs with consistent style were sampled. The generated images
[bottom] borrow their style from x, and geometry from x’. (a) SVHN Digits: the foreground and
background colours are swapped. (b) AFLW Faces: pose of the style image x is made consistent
with x’. (¢c) Human3.6M: the background, hat, and shoes are retained from x, while the pose is
borrowed from x’. All images are sampled from respective test sets, never seen during training.

leverage temporal smoothness. Training using the supervised perceptual loss is understandably better
than using the self-supervised one. Performance is particularly good on parts such as the elbow.

4.4 Learning 3D object landmarks: pose, shape, and illumination invariance

We train our unsupervised keypoint detectors on the SmallNORB [26] dataset, comprising 5 object
categories with 10 object instances each, imaged from regularly spaced viewpoints and under different
illumination conditions. We train category-specific detectors for K = 20 keypoints using image-pairs
from neighbouring viewpoints and show results in fig. [ for car and airplane (see supplementary
material for visualisation of other object categories). Keypoints most invariant to various factors are
visualised. These landmarks are especially robust to changes in illumination and elevation angle.
They are also invariant to smaller changes in azimuth (480°), but fail to generalise beyond that. Most
interesting, they localise structurally similar regions, even when there is a large change in object shape
(e.g. fig.[6}(d)); such landmarks could thus be leveraged for viewpoint-invariant semantic matching.

4.5 Disentangling appearance and geometry

In fig. [7] we show that our method can be interpreted as disentangling appearance from geometry.
Generator/ keypoint networks are trained on SVHN digits [29], AFLW faces, and Human3.6M people.
The generator network is capable of retaining the geometry of an image, and substituting the style
with any other image in the dataset, including unrelated image pairs never seen during training. For
example, in the third column we re-render the number 3 by mixing its geometry with the appearance
of the number 5. This generalises significantly from the training examples, which only consist of
pairs of digits sampled from the same house number instance, sharing a common style.

5 Conclusions

In this paper we have shown that a simple network trained for conditional image generation can be
utilised to induce, without manual supervision, a object landmark detectors. On faces, our method
outperforms previous unsupervised as well as supervised methods for landmark detection. The
method can also extend to much more challenging data, such as detecting landmarks of people, and
diverse data, such as 3D objects and digits.
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