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Abstract

Recent attempts to achieve fairness in predictive models focus on the balance
between fairness and accuracy. In sensitive applications such as healthcare or
criminal justice, this trade-off is often undesirable as any increase in prediction
error could have devastating consequences. In this work, we argue that the fairness
of predictions should be evaluated in context of the data, and that unfairness
induced by inadequate samples sizes or unmeasured predictive variables should
be addressed through data collection, rather than by constraining the model. We
decompose cost-based metrics of discrimination into bias, variance, and noise, and
propose actions aimed at estimating and reducing each term. Finally, we perform
case-studies on prediction of income, mortality, and review ratings, confirming
the value of this analysis. We find that data collection is often a means to reduce
discrimination without sacrificing accuracy.

1 Introduction

As machine learning algorithms increasingly affect decision making in society, many have raised
concerns about the fairness and biases of these algorithms, especially in applications to healthcare or
criminal justice, where human lives are at stake (Angwin et al., 2016; Barocas & Selbst, 2016). It is
often hoped that the use of automatic decision support systems trained on observational data will
remove human bias and improve accuracy. However, factors such as data quality and model choice
may encode unintentional discrimination, resulting in systematic disparate impact.

We study fairness in prediction of outcomes such as recidivism, annual income, or patient mortality.
Fairness is evaluated with respect to protected groups of individuals defined by attributes such as
gender or ethnicity (Ruggieri et al., 2010). Following previous work, we measure discrimination
in terms of differences in prediction cost across protected groups (Calders & Verwer, 2010; Dwork
et al., 2012; Feldman et al., 2015). Correcting for issues of data provenance and historical bias in
labels is outside of the scope of this work. Much research has been devoted to constraining models to
satisfy cost-based fairness in prediction, as we expand on below. The impact of data collection on
discrimination has received comparatively little attention.

Fairness in prediction has been encouraged by adjusting models through regularization (Bechavod
& Ligett, 2017; Kamishima et al., 2011), constraints (Kamiran et al., 2010; Zafar et al., 2017), and
representation learning (Zemel et al., 2013). These attempts can be broadly categorized as model-
based approaches to fairness. Others have applied data preprocessing to reduce discrimination (Hajian
& Domingo-Ferrer, 2013; Feldman et al., 2015; Calmon et al., 2017). For an empirical comparison,
see for example Friedler et al. (2018). Inevitably, however, restricting the model class or perturbing
training data to improve fairness may harm predictive accuracy (Corbett-Davies et al., 2017).

A tradeoff of predictive accuracy for fairness is sometimes difficult to motivate when predictions
influence high-stakes decisions. In particular, post-hoc correction methods based on randomizing
predictions (Hardt et al., 2016; Pleiss et al., 2017) are unjustifiable for ethical reasons in clinical tasks
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such as severity scoring. Moreover, as pointed out by Woodworth et al. (2017), post-hoc correction
may lead to suboptimal predictive accuracy compared to other equally fair classifiers.

Disparate predictive accuracy can often be explained by insufficient or skewed sample sizes or
inherent unpredictability of the outcome given the available set of variables. With this in mind, we
propose that fairness of predictive models should be analyzed in terms of model bias, model variance,
and outcome noise before they are constrained to satisfy fairness criteria. This exposes and separates
the adverse impact of inadequate data collection and the choice of the model on fairness. The cost of
fairness need not always be one of predictive accuracy, but one of investment in data collection and
model development. In high-stakes applications, the benefits often outweigh the costs.

In this work, we use the term “discrimination" to refer to specific kinds of differences in the predictive
power of models when applied to different protected groups. In some domains, such differences may
not be considered discriminatory, and it is critical that decisions made based on this information
are sensitive to this fact. For example, in prior work, researchers showed that causal inference may
help uncover which sources of differences in predictive accuracy introduce unfairness (Kusner et al.,
2017). In this work, we assume that observed differences are considered discriminatory and discuss
various means of explaining and reducing them.

Main contributions We give a procedure for analyzing discrimination in predictive models with
respect to cost-based definitions of group fairness, emphasizing the impact of data collection. First,
we propose the use of bias-variance-noise decompositions for separating sources of discrimination.
Second, we suggest procedures for estimating the value of collecting additional training samples.
Finally, we propose the use of clustering for identifying subpopulations that are discriminated against
to guide additional variable collection. We use these tools to analyze the fairness of common learning
algorithms in three tasks: predicting income based on census data, predicting mortality of patients in
critical care, and predicting book review ratings from text. We find that the accuracy in predictions of
the mortality of cancer patients vary by as much as 20% between protected groups. In addition, our
experiments confirm that discrimination level is sensitive to the quality of the training data.

2 Background

We study fairness in prediction of an outcome Y ∈ Y . Predictions are based on a set of covariates
X ∈ X ⊆ Rk and a protected attribute A ∈ A. In mortality prediction, X represents the medical
history of a patient in critical care, A the self-reported ethnicity, and Y mortality. A model is
considered fair if its errors are distributed similarly across protected groups, as measured by a
cost function γ. Predictions learned from a training set d are denoted Ŷd := h(X,A) for some
h : X × A → Y from a class H. The protected attribute is assumed to be binary, A = {0, 1}, but
our results generalize to the non-binary case. A dataset d = {(xi, ai, yi)}ni=1 consists of n samples
distributed according to p(X,A, Y ). When clear from context, we drop the subscript from Ŷd.

A popular cost-based definition of fairness is the equalized odds criterion, which states that a binary
classifier Ŷ is fair if its false negative rates (FNR) and false positive rates (FPR) are equal across
groups (Hardt et al., 2016). We define FPR and FNR with respect to protected group a ∈ A by

FPRa(Ŷ ) := EX [Ŷ | Y = 0, A = a], FNRa(Ŷ ) := EX [1− Ŷ | Y = 1, A = a] .

Exact equality, FPR0(Ŷ ) = FPR1(Ŷ ), is often hard to verify or enforce in practice. Instead, we
study the degree to which such constraints are violated. More generally, we use differences in cost
functions γa between protected groups a ∈ A to define the level of discrimination Γ,

Γγ(Ŷ ) :=
∣∣∣γ0(Ŷ )− γ1(Ŷ )

∣∣∣ . (1)

In this work we study cost functions γa ∈ {FPRa,FNRa,ZOa} in binary classification tasks, with
ZOa(Ŷ ) := EX [1[Ŷ 6= Y ] | A = a] the zero-one loss. In regression problems, we use the group-
specific mean-squared error MSEa := EX [(Ŷ − Y )2 | A = a]. According to (1), predictions Ŷ
satisfy equalized odds on d if ΓFPR(Ŷ ) = 0 and ΓFNR(Ŷ ) = 0.

Calibration and impossibility A score-based classifier is calibrated if the prediction score as-
signed to a unit equals the fraction of positive outcomes for all units assigned similar scores. It
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Figure 1: Scenarios illustrating how properties of the training set and model choice affect perceived
discrimination in a binary classification task, under the assumption that outcomes and predictions are
unaware, i.e. p(Y | X,A) = p(Y | X) and p(Ŷ | X,A) = p(Ŷ | X). Through bias-variance-noise
decompositions (see Section 3.1), we can identify which of these dominate in their effect on fairness.
We propose procedures for addressing each component in Section 4, and use them in experiments
(see Section 5) to mitigate discrimination in income prediction and prediction of ICU mortality.

is impossible for a classifier to be calibrated in every protected group and satisfy multiple cost-
based fairness criteria at once, unless accuracy is perfect or base rates of outcomes are equal across
groups (Chouldechova, 2017). A relaxed version of this result (Kleinberg et al., 2016) applies to the
discrimination level Γ. Inevitably, both constraint-based methods and our approach are faced with a
choice between which fairness criteria to satisfy, and at what cost.

3 Sources of perceived discrimination

There are many potential sources of discrimination in predictive models. In particular, the choice
of hypothesis class H and learning objective has received a lot of attention (Calders & Verwer,
2010; Zemel et al., 2013; Fish et al., 2016). However, data collection—the chosen set of predictive
variables X , the sampling distribution p(X,A, Y ), and the training set size n—is an equally integral
part of deploying fair machine learning systems in practice, and it should be guided to promote
fairness. Below, we tease apart sources of discrimination through bias-variance-noise decompositions
of cost-based fairness criteria. In general, we may think of noise in the outcome as the effect of a
set of unobserved variables U , potentially interacting with X . Even the optimal achievable error for
predictions based on X may be reduced further by observing parts of U . In Figure 1, we illustrate
three common learning scenarios and study their fairness properties through bias, variance, and noise.

To account for randomness in the sampling of training sets, we redefine discrimination level (1) in
terms of the expected cost γa(Ŷ ) := ED[γa(ŶD)] over draws of a random training set D.

Definition 1. The expected discrimination level Γ(Ŷ ) of a predictive model Ŷ learned from a random
training set D, is

Γ(Ŷ ) :=
∣∣∣ED [γ0(ŶD)− γ1(ŶD)

]∣∣∣ =
∣∣∣γ0(Ŷ )− γ1(Ŷ )

∣∣∣ .
Γ(Ŷ ) is not observed in practice when only a single training set d is available. If n is small, it is
recommended to estimate Γ through re-sampling methods such as bootstrapping (Efron, 1992).

3.1 Bias-variance-noise decompositions of discrimination level

An algorithm that learns models ŶD from datasets D is given, and the covariates X and size of
the training data n are fixed. We assume that ŶD is a deterministic function ŷD(x, a) given the
training set D, e.g. a thresholded scoring function. Following Domingos (2000), we base our
analysis on decompositions of loss functions L evaluated at points (x, a). For decompositions
of costs γa ∈ {ZO,FPR,FNR} we let this be the zero-one loss, L(y, y′) = 1[y 6= y′] , and for
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γa = MSE, the squared loss, L(y, y′) = (y − y′)2. We define the main prediction ỹ(x, a) =

arg miny′ ED[L(ŶD, y
′) | X = x,A = a] as the average prediction over draws of training sets

for the squared loss, and the majority vote for the zero-one loss. The (Bayes) optimal prediction
y∗(x, a) = arg miny′ EY [L(Y, y′) | X = x,A = a] achieves the smallest expected error with
respect to the random outcome Y .

Definition 2 (Bias, variance and noise). Following Domingos (2000), we define bias B, variance V
and noise N at a point (x, a) below.

B(Ŷ , x, a) = L(y∗(x, a), ỹ(x, a)) N(x, a) = EY [L(y∗(x, a), Y ) | X = x,A = a]

V (Ŷ , x, a) = ED[L(ỹ(x, a), ŷD(x, a))] .
(2)

Here, y∗, ŷ and ỹ, are all deterministic functions of (x, a), while Y is a random variable.

In words, the bias B is the loss incurred by the main prediction relative to the optimal prediction. The
variance V is the average loss incurred by the predictions learned from different datasets relative to
the main prediction. The noise N is the remaining loss independent of the learning algorithm, often
known as the Bayes error. We use these definitions to decompose Γ under various definitions of γa.

Theorem 1. With γa the group-specific zero-one loss or class-conditional versions (e.g. FNR, FPR),
or the mean squared error, γa and the discrimination level Γ admit decompositions of the form

γa(Ŷ ) = Na︸︷︷︸
Noise

+Ba(Ŷ )︸ ︷︷ ︸
Bias

+ V a(Ŷ )︸ ︷︷ ︸
Variance

and Γ =
∣∣(N0 −N1) + (B0 −B1) + (V 0 − V 1)

∣∣
where we leave out Ŷ in the decomposition of Γ for brevity. With B, V defined as in (2), we have

Ba(Ŷ ) = EX [B(ỹ, X, a) | A = a] and V a(Ŷ ) = EX,D[cv(X)V (ŶD, X, a) | A = a] .

For the zero-one loss, cv(x, a) = 1 if ŷm(x, a) = y∗(x, a), otherwise cv(x, a) = −1. For the squared
loss cv(x, a) = 1. The noise term for population losses is

Na := EX [cn(X, a)L(y∗(X, a), Y ) | A = a]

and for class-conditional losses w.r.t class y ∈ {0, 1},

Na(y) := EX [cn(X, a)L(y∗(X, a), y) | A = a, Y = y] .

For the zero-one loss, and class-conditional variants, cn(x, a) = 2ED[1[ŷD(x, a) = y∗(x, a)]]− 1
and for the squared loss, cn(x, a) = 1.

Proof sketch. Conditioning and exchanging order of expectation, the cases of mean squared error and
zero-one losses follow from Domingos (2000). Class-conditional losses follow from a case-by-case
analysis of possible errors. See the supplementary material for a full proof.

Theorem 1 points to distinct sources of perceived discrimination. Significant differences in bias
B0 − B1 indicate that the chosen model class is not flexible enough to fit both protected groups
well (see Figure 1c). This is typical of (misspecified) linear models which approximate non-linear
functions well only in small regions of the input space. Regularization or post-hoc correction of
models effectively increase the bias of one of the groups, and should be considered only if there is
reason to believe that the original bias is already minimal.

Differences in variance, V 0 − V 1, could be caused by differences in sample sizes n0, n1 or group-
conditional feature variance Var(X | A), combined with a high capacity model. Targeted collection
of training samples may help resolve this issue. Our decomposition does not apply to post-hoc
randomization methods (Hardt et al., 2016) but we may treat these in the same way as we do random
training sets and interpret them as increasing the variance V a of one group to improve fairness.

When noise is significantly different between protected groups, discrimination is partially unrelated
to model choice and training set size and may only be reduced by measuring additional variables.

Proposition 1. If N0 6= N1, no model can be 0-discriminatory in expectation without access to
additional information or increasing bias or variance w.r.t. to the Bayes optimal classifier.
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Proof. By definition, Γ = 0 =⇒ (N1 −N0) = (B0 −B1) + (V 0 − V 1). As the Bayes optimal
classifier has neither bias nor variance, the result follows immediately.

In line with Proposition 1, most methods for ensuring algorithmic fairness reduce discrimination by
trading off a difference in noise for one in bias or variance. However, this trade-off is only motivated
if the considered predictive model is close to Bayes optimal and no additional predictive variables
may be measured. Moreover, if noise is homoskedastic in regression settings, post-hoc randomization
is ill-advised, as the difference in Bayes error N0 −N1 is zero, and discrimination is caused only by
model bias or variance (see the supplementary material for a proof).

Estimating bias, variance and noise Group-specific variance V a may be estimated through sam-
ple splitting or bootstrapping (Efron, 1992). In contrast, the noise Na and bias Ba are difficult to
estimate whenX is high-dimensional or continuous. In fact, no convergence results of noise estimates
may be obtained without further assumptions on the data distribution (Antos et al., 1999). Under some
such assumptions, noise may be approximately estimated using distance-based methods (Devijver
& Kittler, 1982), nearest-neighbor methods (Fukunaga & Hummels, 1987; Cover & Hart, 1967),
or classifier ensembles (Tumer & Ghosh, 1996). When comparing the discrimination level of two
different models, noise terms cancel, as they are independent of the model. As a result, differences in
bias may be estimated even when the noise is not known (see the supplementary material).

Testing for significant discrimination When sample sizes are small, perceived discrimination
may not be statistically significant. In the supplementary material, we give statistical tests both for
the discrimination level Γ(Ŷ ) and the difference in discrimination level between two models Ŷ , Ŷ ′.

4 Reducing discrimination through data collection

In light of the decomposition of Theorem 1, we explore avenues for reducing group differences in
bias, variance, and noise without sacrificing predictive accuracy. In practice, predictive accuracy
is often artificially limited when data is expensive or impractical to collect. With an investment in
training samples or measurement of predictive variables, both accuracy and fairness may be improved.

4.1 Increasing training set size

Standard regularization used to avoid overfitting is not guaranteed to improve or preserve fairness.
An alternative route is to collect more training samples and reduce the impact of the bias-variance
trade-off. When supplementary data is collected from the same distribution as the existing set,
covariate shift may be avoided (Quionero-Candela et al., 2009). This is often achievable; labeled
data may be expensive, such as when paying experts to label observations, but given the means to
acquire additional labels, they would be drawn from the original distribution. To estimate the value
of increasing sample size, we predict the discrimination level Γ(ŶD) as D increases in size.

The curve measuring generalization performance of predictive models as a function of training set
size n is called a Type II learning curve (Domhan et al., 2015). We call γa(Ŷ , n) := E[γa(ŶDn

)], as
a function of n, the learning curve with respect to protected group a. We define the discrimination
learning curve Γ(Ŷ , n) := |γ0(Ŷ , n) − γ1(Ŷ , n)| (see Figure 2a for an example). Empirically,
learning curves behave asymptotically as inverse power-law curves for diverse algorithms such as
deep neural networks, support vector machines, and nearest-neighbor classifiers, even when model
capacity is allowed to grow with n (Hestness et al., 2017; Mukherjee et al., 2003). This observation
is also supported by theoretical results (Amari, 1993).

Assumption 1 (Learning curves). The population prediction loss γ(Ŷ , n), and group-specific losses
γ0(Ŷ , n), γ1(Ŷ , n), for a fixed learning algorithm Ŷ , behave asymptotically as inverse power-law
curves with parameters (α, β, δ). That is, ∃M,M0,M1 such that for n ≥M,na ≥Ma,

γ(Ŷ , n) = αn−β + δ and ∀a ∈ A : γa(Ŷ , na) = αan
−βa
a + δa (3)

Intercepts, δ, δa in (3) represent the asymptotic bias B(ŶD∞) and the Bayes error N , with the former
vanishing for consistent estimators. Accurately estimating δ from finite samples is often challenging
as the first term tends to dominate the learning curve for practical sample sizes.
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In experiments, we find that the inverse power-laws model fit group conditional (γa) and class-
conditional (FPR, FNR) errors well, and use these to extrapolate Γ(Ŷ , n) based on estimates from
subsampled data.

4.2 Measuring additional variables

When discrimination Γ is dominated by a difference in noise, N0−N1, fairness may not be improved
through model selection alone without sacrificing accuracy (see Proposition 1). Such a scenario is
likely when available covariates are not equally predictive of the outcome in both groups. We propose
identification of clusters of individuals in which discrimination is high as a means to guide further
variable collection—if the variance in outcomes within a cluster is not explained by the available
feature set, additional variables may be used to further distinguish its members.

Let a random variable C represent a (possibly stochastic) clustering such that C = c indicates
membership in cluster c. Then let ρa(c) denote the expected prediction cost for units in cluster c with
protected attribute a. As an example, for the zero-one loss we let

ρZO
a (c) := EX [1[Ŷ 6= Y ] | A = a,C = c],

and define ρ analogously for false positives or false negatives. Clusters c for which |ρ0(c)− ρ1(c)| is
large identify groups of individuals for which discrimination is worse than average, and can guide
targeted collection of additional variables or samples. In our experiments on income prediction, we
consider particularly simple clusterings of data defined by subjects with measurements above or
below the average value of a single feature x(c) with c ∈ {1, . . . , k}. In mortality prediction, we
cluster patients using topic modeling. As measuring additional variables is expensive, the utility of a
candidate set should be estimated before collecting a large sample (Koepke & Bilenko, 2012).

5 Experiments

We analyze the fairness properties of standard machine learning algorithms in three tasks: prediction
of income based on national census data, prediction of patient mortality based on clinical notes, and
prediction of book review ratings based on review text.1 We disentangle sources of discrimination by
assessing the level of discrimination for the full data,estimating the value of increasing training set
size by fitting Type II learning curves, and using clustering to identify subgroups where discrimination
is high. In addition, we estimate the Bayes error through non-parametric techniques.

In our experiments, we omit the sensitive attribute A from our classifiers to allow for closer com-
parison to previous works, e.g. Hardt et al. (2016); Zafar et al. (2017). In preliminary results, we
found that fitting separate classifiers for each group increased the error rates of both groups due to the
resulting smaller sample size, as classifiers could not learn from other groups. As our model objective
is to maximize accuracy over all data points, our analysis uses a single classifier trained on the entire
population.

5.1 Income prediction

Predictions of a person’s salary may be used to help determine an individual’s market worth, but
systematic underestimation of the salary of protected groups could harm their competitiveness on the
job market. The Adult dataset in the UCI Machine Learning Repository (Lichman, 2013) contains
32,561 observations of yearly income (represented as a binary outcome: over or under $50,000) and
twelve categorical or continuous features including education, age, and marital status. Categorical
attributes are dichotomized, resulting in a total of 105 features.

We follow Pleiss et al. (2017) and strive to ensure fairness across genders, which is excluded as
a feature from the predictive models. Using an 80/20 train-test split, we learn a random forest
predictor, which is is well-calibrated for both groups (Brier (1950) scores of 0.13 and 0.06 for
men and women). We find the difference in zero-one loss ΓZO(Ŷ ) has a 95%-confidence interval2
.085±.069 with decision thresholds at 0.5. At this threshold, the false negative rates are 0.388±0.026
and 0.448± 0.064 for men and women respectively, and the false positive rates 0.111± 0.011 and

1A synthetic experiment validating group-specific learning curves is left to the supplementary material.
2Details for computing statistically significant discrimination can be found in the supplementary material.
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Method Elow Eup group
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Bhattacharyya 0.001 0.040 men

(Bhattacharyya, 1943) 0.001 0.027 women
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(Cover & Hart, 1967) 0.04 0.07 women
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men and women are non-overlapping for Nearest Neighbors.

Figure 2: Discrimination level and noise estimation in income prediction with the Adult dataset.

0.033± 0.008. We focus on random forest classifiers, although we found similar results for logistic
regression and decision trees.

We examine the effect of varying training set size n on discrimination. We fit inverse power-law
curves to estimates of FPR(Ŷ , n) and FNR(Ŷ , n) using repeated sample splitting where at least
20% of the full data is held out for evaluating generalization error at every value of n. We tune
hyperparameters for each training set size for decision tree classifiers and logistic regression but
tuned over the entire dataset for random forest. We include full training details in the supplementary
material. Metrics are averaged over 50 trials. See Figure 2a for the results for random forests. Both
FPR and FNR decrease with additional training samples. The discrimination level ΓFNR for false
negatives decreases by a striking 40% when increasing the training set size from 1000 to 10,000. This
suggests that trading off accuracy for fairness at small sample sizes may be ill-advised. Based on
fitted power-law curves, we estimate that for unlimited training data drawn from the same distribution,
we would have ΓFNR(Ŷ ) ≈ 0.04 and ΓFPR(Ŷ ) ≈ 0.08.

In Figure 2b, we compare estimated upper and lower bounds on noise (Elow and Eup) for men
and women using the Mahalanobis and Bhattacharyya distances (Devijver & Kittler, 1982), and
a k-nearest neighbor method (Cover & Hart, 1967) with k = 5 and 5-fold cross validation. Men
have consistently higher noise estimates than women, which is consistent with the differences in
zero-one loss found using all models. For nearest neighbors estimates, intervals for men and women
are non-overlapping, which suggests that noise may contribute substantially to discrimination.

To guide attempts at reducing discrimination further, we identify clusters of individuals for whom
false negative predictions are made at different rates between protected groups, with the method
described in Section 4.2. We find that for individuals in executive or managerial occupations (12% of
the sample), false negatives are more than twice as frequent for women (0.412) as for men (0.157).
For individuals in all other occupations, the difference is significantly smaller, 0.543 for women and
0.461 for men, despite the fact that the disparity in outcome base rates in this cluster is large (0.26
for men versus 0.09 for women). A possible reason is that in managerial occupations the available
variable set explains a larger portion of the variance in salary for men than for women. If so, further
sub-categorization of managerial occupations could help reduce discrimination in prediction.

5.2 Intensive care unit mortality prediction

Unstructured medical data such as clinical notes can reveal insights for questions like mortality
prediction; however, disparities in predictive accuracy may result in discrimination of protected
groups. Using the MIMIC-III dataset of all clinical notes from 25,879 adult patients from Beth
Israel Deaconess Medical Center (Johnson et al., 2016), we predict hospital mortality of patients
in critical care. Fairness is studied with respect to five self-reported ethnic groups of the following
proportions: Asian (2.2%), Black (8.8%), Hispanic (3.4%), White (70.8%), and Other (14.8%). Notes
were collected in the first 48 hours of an intensive care unit (ICU) stay; discharge notes were excluded.
We only included patients that stayed in the ICU for more than 48 hours. We use the tf-idf statistics
of the 10,000 most frequent words as features. Training a model on 50% of the data, selecting
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Figure 3: Mortality prediction from clinical notes using logistic regression. Best viewed in color.

hyper-parameters on 25%, and testing on 25%, we find that logistic regression with L1-regularization
achieves an AUC of 0.81. The logistic regression is well-calibrated with Brier scores ranging from
0.06-0.11 across the five groups; we note better calibration is correlated with lower prediction error.

We report cost and discrimination level in terms of generalized zero-one loss (Pleiss et al., 2017).
Using an ANOVA test (Fisher, 1925) with p < 0.001, we reject the null hypothesis that loss is the
same among all five groups. To map the 95% confidence intervals, we perform pairwise comparisons
of means using Tukey’s range test (Tukey, 1949) across 5-fold cross-validation. As seen in Figure 3a,
patients in the Other and Hispanic groups have the highest and lowest generalized zero-one loss,
respectively, with relatively few overlapping intervals. Notably, the largest ethnic group (White) does
not have the best accuracy, whereas smaller ethnic groups tend towards extremes. While racial groups
differ in hospital mortality base rates (Table 1 in the Supplementary material), Hispanic (10.3%) and
Black (10.9%) patients have very different error rates despite similar base rates.

To better understand the discrimination induced by our model, we explore the effect of changing
training set size. To this end, we repeatedly subsample and split the data, holding out at least 20%
of the full data for testing. In Figure 3b, we show loss averaged over 50 trials of training a logistic
regression on increasingly larger training sets; estimated inverse power-law curves show good fits.
We see that some pairwise differences in loss decrease with additional training data.

Next, we identify clusters for which the difference in prediction errors between protected groups is
large. We learn a topic model with k = 50 topics generated using Latent Dirichlet Allocation (Blei
et al., 2003). Topics are concatenated into an n× k matrix Q where qic designates the proportion of
topic c ∈ [k] in note i ∈ [n]. Following prior work on enrichment of topics in clinical notes (Marlin
et al., 2012; Ghassemi et al., 2014), we estimate the probability of patient mortality Y given a topic
c as p̂(Y |C = c) := (

∑n
i=1 yiqic)/(

∑n
i=1 qic) where yi is the hospital mortality of patient i. We

compare relative error rates given protected group and topic using binary predicted mortality ŷi,
actual mortality yi, and group ai for patient i through

p̂(Ŷ 6= Y | A = a′, C = c) =

∑n
i=1 1(yi 6= ŷi)1(ai = a′)qic∑n

i=1 1(ai = a′)qic

which follows using substitution and conditioning on A. These error rates were computed using a
logistic regression with L1 regularization using an 80/20 train-test split over 50 trials. While many
topics have consistent error rates across groups, some topics (e.g. cardiac patients or cancer patients
as shown in Figure 3c) have large differences in error rates across groups. We include more detailed
topic descriptions in the supplementary material. Once we have identified a subpopulation with
particularly high error, for example cancer patients, we can consider collecting more features or
collecting more data from the same data distribution. We find that error rates differ between 0.12 and
0.30 across protected groups of cancer patients, and between 0.05 and 0.20 for cardiac patients.
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5.3 Book review ratings

In the supplementary material, we study prediction of book review ratings from review texts (Gnanesh,
2017). The protected attribute was chosen to be the gender of the author as determined from
Wikipedia. In the dataset, the difference in mean-squared error ΓMSE(Ŷ ) has 95%-confidence
interval 0.136 ± 0.048 with MSEM = 0.224 for reviews for male authors and MSEF = 0.358.
Strikingly, our findings suggest that ΓMSE(Ŷ ) may be completely eliminated by additional targeted
sampling of the less represented gender.

6 Discussion

We identify that existing approaches for reducing discrimination induced by prediction errors may be
unethical or impractical to apply in settings where predictive accuracy is critical, such as in healthcare
or criminal justice. As an alternative, we propose a procedure for analyzing the different sources
contributing to discrimination. Decomposing well-known definitions of cost-based fairness criteria in
terms of differences in bias, variance, and noise, we suggest methods for reducing each term through
model choice or additional training data collection. Case studies on three real-world datasets confirm
that collection of additional samples is often sufficient to improve fairness, and that existing post-hoc
methods for reducing discrimination may unnecessarily sacrifice predictive accuracy when other
solutions are available.

Looking forward, we can see several avenues for future research. In this work, we argue that
identifying clusters or subpopulations with high predictive disparity would allow for more targeted
ways to reduce discrimination. We encourage future research to dig deeper into the question of
local or context-specific unfairness in general, and into algorithms for addressing it. Additionally,
extending our analysis to intersectional fairness (Buolamwini & Gebru, 2018; Hébert-Johnson et al.,
2017), e.g. looking at both gender and race or all subdivisions, would provide more nuanced grappling
with unfairness. Finally, additional data collection to improve the model may cause unexpected
delayed impacts (Liu et al., 2018) and negative feedback loops (Ensign et al., 2017) as a result of
distributional shifts in the data. More broadly, we believe that the study of fairness in non-stationary
populations is an interesting direction to pursue.
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