
Supplemental Materials

S1 Calculating ∇θIstate(t)

We want to evaluate:

∇θIstate =
∑

g

ρG(g)
∑

s

(∇θp(s | g)) log
p(s | g)

p(s)
(S1)

+
∑

g

ρG(g)
∑

s

p(s | g)
∇θp(s | g)

p(s | g)
(S2)

−
∑

g

ρG(g)
∑

s

p(s | g)
∇θp(s)

p(s)
(S3)

≡T1 + T2 − T3, (S4)

where we denote the three terms by T1 , T2, and T3. The effect of T1 follows from the policy gradient
theorem and amounts to adding the following to the reward return:

T
∑

t
′
=t

log
pemp(st′ | g)

pemp(st′)
. (S5)

By the same argument, T2 =
∑

g p(g)
∑

s ∇θp(s | g) simply results in the addition of 1 to the info

return at each time step.

Finally, we have the third term:

T3 =
∑

g

ρG(g)
∑

st

p(st | g)

p(st)
∇θp(st) (S6)

=
∑

g

ρG(g)
∑

st

p(st | g)

p(st)
∇θ

∑

g
′

ρG

(

g
′

)

ρS(s0)

t
∏

t
′
=0

πg
′ (at′ | st′)P

(

st′+1
| st′ , at′

)

(S7)

=
∑

g

ρG(g)
∑

st

p(st | g)

p(st)

∑

g
′

ρG

(

g
′

)

ρS(s0)

t
∏

t
′
=0

(

∇θπg
′ (at′ | st′)

)

P
(

st′+1
| st′ , at′

)

(S8)

=
∑

g,st

ρG(g) ρS(s0)

t
∏

t
′
=0

πg(at′ | st′)P
(

st′+1
| st′ , at′

)

× (S9)

∑

g
′

ρG

(

g
′

) πg
′ (at′ | st′)

πg(at′ | st′)

∇θπg
′ (at′ | st′)

πg
′ (at′ | st′)

p(st | g)

p(st)
(S10)

=Eτ





∑

g
′

ρG

(

g
′

)

t
∏

t
′
=0

πg
′ (at′ | st′)

πg(at′ | st′)

(

∇θ log πg
′ (at′ | st′)

) p(st | g)

p(st)



 (S11)

where in the fourth line we multiply and divide by the policy under both g and g
′

in order to employ
the log derivative trick and to express the equation as an expectation under the present goal. The end
result is the update in equation 11.

S2 Experimental parameters and details

S2.1 Simple spatial navigation

In order to allow Bob to integrate information about the goal over time and remember it to guide
future actions, we endow Bob with a recurrent neural network (RNN) to process Alice’s state-action

12

pairs. We used a gated recurrent unit (GRU) Cho et al. [2014] to which Alice’s state-action pairs
are fed as a one-hot vector. We chose to use a scalar core state for the GRU since it was simply
tasked with tracking Bob’s belief about one of two goals, and could thus assign each goal to a
sign of the GRU core state/output, which is what Bob chose to do in practice. The GRU output
zt = RNN

(

salice
t , aalice

t

)

was then concatenated with a one-hot representation of Bob’s own state sbob
t

and fed into a fully-connected, feed-forward layer of 128 units with two readout heads: a policy head
(a linear layer with |A| units followed by a softmax, yielding abob

t ∼ πbob
(

sbob
t , zt

)

) and a value head

(a single linear readout node, yielding vt = V bob
(

sbob
t , zt

)

).

Alice Bob

training time, in steps 100k 200k

max episode length, in steps 100 100

entropy bonus (logarithmically annealed from/to) .5, .005 .5, .01

learning rate (Adam) 2.5× 10−2 5× 10−5

weight on value function regression term .5 .5

discount γ .8 .8

Table 1: Training parameters.

S2.2 Key game

The only difference from the previous set of training parameters is that Alice now trains longer (250k
instead of 100k steps).

Alice Bob

training time, in steps 250k 200k

max episode length, in steps 100 100

entropy bonus (logarithmically annealed from/to) .5, .005 .5, .01

learning rate (Adam) 2.5× 10−2 5× 10−5

weight on value function regression term .5 .5

discount γ .8 .8

Table 2: Training parameters.

13

