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Abstract

Recent research has shown that word embedding spaces learned from text corpora
of different languages can be aligned without any parallel data supervision. Inspired
by the success in unsupervised cross-lingual word embeddings, in this paper we
target learning a cross-modal alignment between the embedding spaces of speech
and text learned from corpora of their respective modalities in an unsupervised
fashion. The proposed framework learns the individual speech and text embedding
spaces, and attempts to align the two spaces via adversarial training, followed by
a refinement procedure. We show how our framework could be used to perform
spoken word classification and translation, and the experimental results on these two
tasks demonstrate that the performance of our unsupervised alignment approach
is comparable to its supervised counterpart. Our framework is especially useful
for developing automatic speech recognition (ASR) and speech-to-text translation
systems for low- or zero-resource languages, which have little parallel audio-text
data for training modern supervised ASR and speech-to-text translation models,
but account for the majority of the languages spoken across the world.

1 Introduction

Word embeddings—continuous-valued vector representations of words—are almost ubiquitous in
recent natural language processing research. Most successful methods for learning word embed-
dings [1, 2, 3] rely on the distributional hypothesis [4], i.e., words occurring in similar contexts tend
to have similar meanings. Exploiting word co-occurrence statistics in a text corpus leads to word
vectors that reflect semantic similarities and dissimilarities: similar words are geometrically close in
the embedding space, and conversely, dissimilar words are far apart.

Continuous word embedding spaces have been shown to exhibit similar structures across languages [5].
The intuition is that most languages share similar expressive power and are used to describe similar
human experiences across cultures; hence, they should share similar statistical properties. Inspired by
the notion, several studies have focused on designing algorithms that exploit this similarity to learn a
cross-lingual alignment between the embedding spaces of two languages, where the two embedding
spaces are trained from independent text corpora [6, 7, 8, 9, 10, 11, 12]. In particular, recent research
has shown that such cross-lingual alignments can be learned without relying on any form of bilingual
supervision [13, 14, 15], and has been applied to training neural machine translation (NMT) systems
in a completely unsupervised fashion [16, 17]. This eliminates the need for a large parallel training
corpus to train NMT systems.

Speech, as another form of language, is rarely considered as a source for learning semantics, compared
to text. Although there is work that explores the concept of learning vector representations from
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speech [18, 19, 20, 21, 22, 23], they are primarily based on acoustic-phonetic similarity, and aim to
represent the way a word sounds rather than its meaning.

Recently, the Speech2Vec [24] model was developed to be capable of representing audio segments
excised from a speech corpus as fixed dimensional vectors that contain semantic information of the
underlying spoken words. The design of Speech2Vec is based on a Recurrent Neural Network (RNN)
Encoder-Decoder framework [25, 26], and borrows the methodology of Skip-grams or continuous
bag-of-words (CBOW) from Word2Vec [1] for training. Since Speech2Vec and Word2Vec share
the same training methodology and speech and text are similar media for communicating, the two
embedding spaces learned respectively by Speech2Vec from speech and Word2Vec from text are
expected to exhibit similar structure.

Motivated by the recent success in unsupervised cross-lingual alignment [13, 15, 14] and the assump-
tion that the embedding spaces of the two modalities (speech and text) share similar structure, we
are interested in learning an unsupervised cross-modal alignment between the two spaces. Such an
alignment would be useful for developing automatic speech recognition (ASR) and speech-to-text
translation systems for low- or zero-resource languages that lack parallel corpora of speech and
text for training. In this paper, we propose a framework for unsupervised cross-modal alignment,
borrowing the methodology from unsupervised cross-lingual alignment presented in [14]. The frame-
work consists of two steps. First, it uses Speech2Vec [24] and Word2Vec [1] to learn the individual
embedding spaces of speech and text. Next, it leverages adversarial training to learn a linear mapping
from the speech embedding space to the text embedding space, followed by a refinement procedure.

The paper is organized as follows. Section 2 describes how we obtain the speech embedding space in a
completely unsupervised manner using Speech2Vec. Next, we present our unsupervised cross-modal
alignment approach in Section 3. In Section 4, we describe the tasks of spoken word classification
and translation, which are similar to ASR and speech-to-text translation, respectively, except that
now the input are audio segments corresponding to words. We then evaluate the performance of our
unsupervised alignment on the two tasks and analyze our results in Section 5. Finally, we conclude
and point out some interesting future work possibilities in Section 6. To the best of our knowledge,
this is the first work that achieves fully unsupervised spoken word classification and translation.

2 Unsupervised Learning of the Speech Embedding Space

Recently, there is an increasing interest in learning the semantics of a language directly, and only
from raw speech [24, 27, 28]. Assuming utterances in a speech corpus are already pre-segmented
into audio segments corresponding to words using word boundaries obtained by forced alignment,
existing approaches aim to represent each audio segment as a fixed dimensional embedding vector,
with the hope that the embedding is able to capture the semantic information of the underlying spoken
word. However, some supervision leaks into the learning process through the use of forced alignment,
rendering the approaches not fully unsupervised.

In this paper, we use Speech2Vec [24], a recently proposed deep neural network architecture that has
been shown capable of capturing the semantics of spoken words from raw speech, for learning the
speech embedding space. To eliminate the need of forced alignment, we propose a simple pipeline for
training Speech2Vec in a totally unsupervised manner. We briefly review Speech2Vec in Section 2.1,
and introduce the unsupervised pipeline in Section 2.2.

2.1 Speech2Vec

In text, a Word2Vec [1] model is a shallow, two-layer fully-connected neural network that is trained to
reconstruct the contexts of words. There are two methodologies for training Word2Vec: Skip-grams
and CBOW. The objective of Skip-grams is for each word w(n) in a text corpus, the model is trained
to maximize the probability of words {w(n−k), . . . ,w(n−1),w(n+1), . . . ,w(n+k)} within a window
of size k given w(n). The objective of CBOW, on the other hand, aims to infer the current word w(n)

from its nearby words {w(n−k), . . . ,w(n−1),w(n+1), . . . ,w(n+k)}.
Speech2Vec [24], inspired by Word2Vec, borrows the methodology of Skip-grams or CBOW for
training. Unlike text, where words are represented by one-hot vectors as input and output for
training Word2Vec, an audio segment is represented by a variable-length sequence of acoustic
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features, x = (x1,x2, . . . ,xT ), where xt is the acoustic feature such as Mel-Frequency Cepstral
Coefficients at time t, and T is the length of the sequence. In order to handle variable-length input
and output sequences of acoustic features, Speech2Vec replaces the two fully-connected layers in the
Word2Vec model with a pair of RNNs, one as an Encoder and the other as a Decoder [25, 26]. When
training Speech2Vec with Skip-grams, the Encoder RNN takes the audio segment (corresponding to
the current word) as input and encodes it into a fixed dimensional embedding z(n) that represents
the entire input sequence x(n). Subsequently, the Decoder RNN aims to reconstruct the audio seg-
ments {x(n−k), . . . ,x(n−1),x(n+1), . . . ,x(n+k)} (corresponding to nearby words) within a window
of size k from z(n). Similar to the concept of training Word2Vec with Skip-grams, the intuition
behind this methodology is that, in order to successfully decode nearby audio segments, the encoded
embedding z(n) should contain sufficient semantic information of the current audio segment x(n).
In contrast to training Speech2Vec with Skip-grams that aims to predict nearby audio segments
from z(n), training Speech2Vec with CBOW sets x(n) as the target and aims to infer it from nearby
audio segments. By using the same training methodology (Skip-grams or CBOW) as Word2Vec, it is
reasonable to assume that the embedding space learned by Speech2Vec from speech exhibits similar
structure to that learned by Word2Vec from text.

After training the Speech2Vec model, each audio segment is transformed into an embedding vector
that contains the semantic information of the underlying word. In a Word2Vec model, the embedding
for a particular word is deterministic, which means that every instance of the same word will be
represented by one, and only one, embedding vector. In contrast, for audio segments every instance
of a spoken word is different (due to speaker, channel, and other contextual differences, etc.), so
every instance of the same underlying word is represented by a different (though hopefully similar)
embedding vector. Embedding vectors of the same spoken words can be averaged to obtain a single
word embedding based on the identity of each audio segment, as is done in [24].

2.2 Unsupervised Speech2Vec

Speech2Vec and Word2Vec learn the semantics of words by making use of the co-occurrence
information in their respective modalities, and are both intrinsically unsupervised. However, unlike
text where the content can be easily segmented into word-like units, speech has a continuous form
by nature, making the word boundaries challenging to locate. All utterances in the speech corpus
are assumed to be perfectly segmented into audio segments based on the word boundaries obtained
by forced alignment with respect to the reference transcriptions [24]. Such an assumption, however,
makes the process of learning word embeddings from speech not truly unsupervised.

Unsupervised speech segmentation is a core problem in zero-resource speech processing in the
absence of transcriptions, lexicons, or language modeling text. Early work mainly focused on
unsupervised term discovery, where the aim is to find word- or phrase-like patterns in a collection of
speech [29, 30]. While useful, the discovered patterns are typically isolated segments spread out over
the data, leaving much speech as background. This has prompted several studies on full-coverage
approaches, where the entire speech input is segmented into word-like units [31, 32, 33, 34].

In this paper, we use an off-the-shelf, full-coverage, unsupervised segmentation system for segmenting
our data into word-like units. Three representative systems are explored in this paper. The first
one, referred to as Bayesian embedded segmental Gaussian mixture model (BES-GMM) [35], is
a probabilistic model that represents potential word segments as fixed-dimensional acoustic word
embeddings [23], and builds a whole-word acoustic model in this embedding space while jointly
doing segmentation. The second one, called embedded segmental K-means model (ES-KMeans) [36],
is an approximation to BES-GMM that uses hard clustering and segmentation, rather than full
Bayesian inference. The third one is the recurring syllable-unit segmenter called SylSeg [37], a
fast and heuristic method that applies unsupervised syllable segmentation and clustering, to predict
recurring syllable sequences as words.

After training the Speech2Vec model using the audio segments obtained by an unsupervised segmen-
tation method, each audio segment is then transformed into an embedding that contains the semantic
information about the segment. Since we do not know the identity of the embeddings, we use the
k-means algorithm to cluster them into K clusters, potentially corresponding to K different word
types. We then average all embeddings that belong to the same cluster (potentially the instances of

3



the same underlying word) to obtain a single embedding. Note that by doing so, it is possible that we
group the embeddings corresponding to different words that are semantically similar into one cluster.

3 Unsupervised Alignment of Speech and Text Embedding Spaces

Suppose we have speech and text embedding spaces trained on independent speech and text corpora.
Our goal is to learn a mapping, without using any form of cross-modal supervision, between them
such that the two spaces are aligned.

Let S = {s1, s2, . . . , sm} ⊆ Rd1 and T = {t1, t2, . . . , tn} ⊆ Rd2 be two sets of m and n word
embeddings of dimensionality d1 and d2 from the speech and text embedding spaces, respectively.
Ideally, if we have a known dictionary that specifies which si ∈ S corresponds to which tj ∈ T , we
can learn a linear mapping W between the two embedding spaces such that

W ∗ = argmin
W∈Rd2×d1

‖WX − Y ‖2, (1)

where X and Y are two aligned matrices of size d1 × k and d2 × k formed by k word embeddings
selected from S and T , respectively. At test time, the transformation result of any audio segment a
in the speech domain can be defined as argmaxtj∈T cos(Wsa, tj). In this paper, we show how
to learn this mapping W without using any cross-modal supervision. The proposed framework,
inspired by [14], consists of two steps: domain-adversarial training for learning an initial proxy of W ,
followed by a refinement procedure which uses the words that match the best to create a synthetic
parallel dictionary for applying Equation 1.

3.1 Domain-Adversarial Training

The intuition behind this step is to make the mapped S and T indistinguishable. We define a
discriminator, whose goal is to discriminate between elements randomly sampled from WS =
{Ws1,Ws2, . . . ,Wsm} and T . The mapping W , which can be viewed as the generator, is trained
to prevent the discriminator from making accurate predictions. This is a two-player game, where
the discriminator aims at maximizing its ability to identify the origin of an embedding, and W aims
at preventing the discriminator from doing so by making WS and T as similar as possible. Given
the mapping W , the discriminator, parameterized by θD, is optimized by minimizing the following
objective function:

LD(θD|W ) = − 1

m

m∑
i=1

logPθD (speech = 1|Wsi)−
1

n

n∑
j=1

logPθD (speech = 0|tj), (2)

where PθD (speech = 1|v) is the probability that vector v originates from the speech embedding
space (as opposed to an embedding from the text embedding space). Given the discriminator, the
mapping W aims to fool the discriminator’s ability to accurately predict the original domain of the
embeddings by minimizing the following objective function:

LW (W |θD) = −
1

m

m∑
i=1

logPθD (speech = 0|Wsi)−
1

n

n∑
j=1

logPθD (speech = 1|tj) (3)

The discriminator θD and the mapping W are optimized iteratively to respectively minimize LD
and LW following the standard training procedure of adversarial networks [38].

3.2 Refinement Procedure

The domain-adversarial training step learns a rotation matrix W that aligns the speech and text
embedding spaces. To further improve the alignment, we use theW learned in the domain-adversarial
training step as an initial proxy and build a synthetic parallel dictionary that specifies which si ∈ S
corresponds to which tj ∈ T .

To ensure a high-quality dictionary, we consider the most frequent words from S and T , since more
frequent words are expected to have better quality of embedding vectors, and only retain their mutual
nearest neighbors. For deciding mutual nearest neighbors, we use the Cross-Domain Similarity Local
Scaling proposed in [14] to mitigate the so-called hubness problem [39] (points tending to be nearest
neighbors of many points in high-dimensional spaces). Subsequently, we apply Equation 1 on this
generated dictionary to refine W .
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4 Spoken Word Classification and Translation

Conventional hybrid ASR systems [40] and recent end-to-end ASR models [41, 42, 43, 44] rely on a
large amount of parallel audio-text data for training. However, most languages spoken across the
world lack parallel data, so it is no surprise that only very few languages support ASR. It is the same
story for speech-to-text translation [45], which typically pipelines ASR and machine translation,
and could be even more challenging to develop as it requires both components to be well trained.
Compared to parallel audio-text data, the cost of accumulating independent corpora of speech and text
is significantly lower. With our unsupervised cross-modal alignment approach, it becomes feasible to
build ASR and speech-to-text translation systems using independent corpora of speech and text only,
a setting suitable for low- or zero-resource languages.

Since a cross-modal alignment is learned to link the word embedding spaces of speech and text, we
perform the tasks of spoken word classification and translation to directly evaluate the effectiveness of
the alignment. The two tasks are similar to standard ASR and speech-to-text translation, respectively,
except that now the input is an audio segment corresponding to a word.

4.1 Spoken Word Classification

The goal of this task is to recognize the underlying spoken word of an input audio segment. Suppose
we have two independent corpora of speech and text that belong to the same language. The speech
and text embedding spaces, denoted by S and T , can be obtained by training Speech2Vec and
Word2Vec on the respective corpus. The alignment W between S and T can be learned in an
either supervised or unsupervised way. At test time, given an input audio segment, it is first
transformed into an embedding vector s in the speech embedding space S by Speech2Vec. The
vector s is then mapped to the text embedding space as ts = Ws ∈ T . In T , the word that has
embedding vector t∗ = argmaxt∈T cos(t, ts) closest to ts will be taken as the classification result.
The performance is measured by accuracy.

4.2 Spoken Word Translation

This task is similar to the one in the text domain that considers the problem of retrieving the translation
of given source words, except that the source words are in the form of audio segments. Spoken word
translation can be performed in the exact same way as spoken word classification, but the speech
and text corpora belong to different languages. At test time, we follow the standard practice of word
translation and measure how many times one of the correct translations (in text) of the input audio
segment is retrieved, and report precision@ k for k = 1 and 5. We use the bilingual dictionaries
provided by [14] to obtain the correct translations of a given source word.

5 Experiments

In this section, we empirically demonstrate the effectiveness of our unsupervised cross-modal
alignment approach on spoken word classification and translation introduced in Section 4.

5.1 Datasets

Table 1: The detailed statistics of the corpora.
Corpus Train Test Words Segments

English LibriSpeech 420 hr 50 hr 37K 468K
French LibriSpeech 200 hr 30 hr 26K 260K

English SWC 355 hr 40 hr 25K 284K
German SWC 346 hr 40 hr 31K 223K

For our experiments, we used English and
French LibriSpeech [46, 47], and English and
German Spoken Wikipedia Corpora (SWC) [48].
All corpora are read speech, and come with a
collection of utterances and the corresponding
transcriptions. For convenience, we denote the
speech and text data of a corpus in uppercase and
lowercase, respectively. For example, ENswc

and enswc represent the speech and text data, re-
spectively, of English SWC. In Table 1, column
Train is the size of the speech data used for training the speech embeddings; column Test is the size
of the speech data used for testing, where the corresponding number of audio segments (i.e., spoken
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word tokens) is specified in column Segments; column Words provides the number of distinct words
in that corpus. Train and test sets are split in a way so that there are no overlapping speakers.

5.2 Details of Training and Model Architectures

The speech embeddings were trained using Speech2Vec with Skip-grams by setting the window
size k to three. The Encoder is a single-layer bidirectional LSTM, and the Decoder is a single-layer
unidirectional LSTM. The model was trained by stochastic gradient descent (SGD) with a fixed
learning rate of 10−3. The text embeddings were obtained by training Word2Vec on the transcriptions
using the fastText implementation without subword information [3]. The dimension of both speech
and text embeddings is 50.1

For the adversarial training, the discriminator was a two-layer neural network of size 512 with ReLU
as the activation function. Both the discriminator and W were trained by SGD with a fixed learning
rate of 10−3. For the refinement procedure, we used the default setting specified in [14].2

5.3 Comparing Methods

Table 2: Different configurations for training Speech2Vec to obtain the speech embeddings with
decreasing level of supervision. The last column specifies whether the configuration is unsupervised.

Configuration Speech2Vec training Unsupervised
How word segments were obtained How embeddings were grouped together

A & A∗ Forced alignment Use word identity 7
B Forced alignment k-means 7
C BES-GMM [35] k-means 3
D ES-KMeans [36] k-means 3
E SylSeg [37] k-means 3
F Equally sized chunks k-means 3

Alignment-Based Approaches Given the speech and text embeddings, alignment-based ap-
proaches learn the alignment between them in an either supervised or unsupervised way; for an input
audio segment, they perform spoken word classification and translation as described in Section 4.

By varying how word segments were obtained before being fed to Speech2Vec and how the em-
beddings were grouped together, the level of supervision is gradually decreased towards a fully
unsupervised configuration. In configuration A, the speech training data was segmented into words
using forced alignment with respect to the reference transcription, and the embeddings of the same
word were grouped together using their word identities. In configuration B, the word segments were
also obtained by forced alignment, but the embeddings were grouped together by performing k-means
clustering. In configurations C,D, and E, the speech training data was segmented into word-like
units using different unsupervised segmentation algorithms described in Section 2.2. Configuration F
serves as a baseline by naively segmenting the speech training data into equally sized chunks. Unlike
configurations A and B, configurations C,D,E, and F did not require the reference transcriptions to
do forced alignment and the embeddings were grouped together by performing k-means clustering,
and are thus unsupervised. Configurations A to F all used our unsupervised alignment approach to
align the speech and text embedding spaces.

We also implemented configurationA∗, which trained Speech2Vec in the same way as configurationA,
but learned the alignment using a parallel dictionary as cross-modal data supervision. The different
configurations are summarized in Table 2.

Word Classifier We established an upper bound by using the fully-supervised Word Classifier
that was trained to map audio segments directly to their corresponding word identities. The Word
Classifier was composed of a single-layer bidirectional LSTM with a softmax layer appended at the
output of its last time step. This approach is specific to spoken word classification.

1We tried window size k ∈ {1, 2, 3, 4, 5} and embedding dimension d ∈ {50, 100, 200, 300} and found
that the reported k and d yield the best performance

2We also tried multi-layer neural network to model W . However, we did not observe any improvement on
our evaluation tasks when using it compared to a linear W . This discovery aligns with [5].
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Majority Word Baseline For both spoken word classification and translation tasks, we imple-
mented a straightforward baseline dubbed Major-Word, where for classification, it always predicts the
most frequent word, and for translation, it always predicts the most commonly paired word. Results
of the Major-Word offer us insight into the word distribution of the test set.

5.4 Results and Discussion

Table 3: Accuracy on spoken word classification. ENls − enswc means that the speech and text
embeddings were learned from the speech training data of English LibriSpeech and text training data
of English SWC, respectively, and the testing audio segments came from English LibriSpeech. The
same rule applies to Table 5 and Table 6. For the Word Classifier, ENls − enswc and ENswc − enls
could not be obtained since it requires parallel audio-text data for training.

Corpora ENls − enls FRls − frls ENswc − enswc DEswc − deswc ENls − enswc ENswc − enls

Nonalignment-based approach

Word Classifier 89.3 83.6 86.9 80.4 – –

Alignment-based approach with cross-modal supervision (parallel dictionary)

A∗ 25.4 27.1 29.1 26.9 21.8 23.9

Alignment-based approaches without cross-modal supervision (our approach)

A 23.7 24.9 25.3 25.8 18.3 21.6
B 19.4 20.7 22.6 21.5 15.9 17.4
C 10.9 12.6 14.4 13.1 6.9 8.0
D 11.5 12.3 14.2 12.4 7.5 8.3
E 6.5 7.2 8.9 7.4 4.5 5.9
F 0.8 1.4 2.8 1.2 0.2 0.5

Majority Word Baseline

Major-Word 0.3 0.2 0.3 0.4 0.3 0.3

Spoken Word Classification Table 3 presents our results on spoken word classification. We
observe that the accuracy decreases as the level of supervision decreases, as expected. We also note
that although the Word Classifier significantly outperforms all the other approaches under all corpora
settings, the prerequisite for training such a fully-supervised approach is unrealistic—it requires the
utterances to be perfectly segmented into audio segments corresponding to words with the word
identity of each segment known. We emphasize that the Word Classifier is just used to establish an
upper bound performance that gives us an idea on how good the classification results could be.

For alignment-based approaches, configuration A∗ achieves the highest accuracies under all corpora
settings by using a parallel dictionary as cross-modal supervision for learning the alignment. However,
we see that configuration A using our unsupervised alignment approach only suffers a slight decrease
in performance, which demonstrates that our unsupervised alignment approach is almost as effective
as it supervised counterpart A∗. As we move towards unsupervised methods (k-means clustering) for
grouping embeddings, in configuration B, a decrease in performance is observed.

The performance of using unsupervised segmentation algorithms is behind using exact word segments
for training Speech2Vec, shown in configurations C,D, and E versus B. We hypothesize that
word segmentation is a critical step, since incorrectly separated words lack a logical embedding,
which in turn hinders the clustering process. The importance of proper segmentation is evident in
configuration F as it performs the worst.

The aforementioned analysis applies to different corpora settings. We also observe that the perfor-
mance of the embeddings learned from different corpora is inferior to the ones learned from the same
corpus (refer to columns 1 and 3, versus 5 and 6, in Table 3). We think this is because the embedding
spaces learned from the same corpora (e.g., both embeddings were learned from LibriSpeech) exhibit
higher similarity than those learned from different corpora, making the alignment more accurate.

Spoken Word Synonyms Retrieval Word classification does not display the full potential of our
alignment approach. In Table 4 we show a list of retrieved results of example input audio segments.
The words were ranked according to the cosine similarity between their embeddings and that of the
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audio segment mapped from the speech embedding space. We observe that the list actually contain
both synonyms and different lexical forms of the audio segment. This provides an explanation of why
the performance of alignment-based approaches on word classification is poor: the top ranked word
may not match the underlying word of the input audio segment, and would be considered incorrect
for word classification, despite that the top ranked word has high chance of being semantically similar
to the underlying word.

Table 4: Retrieved results of example audio segments that are considered incorrect in word classifica-
tion. The match for each audio segment is marked in bold.

Rank Input audio segments

beautiful clever destroy suitcase

1 lovely cunning destroyed bags
2 pretty smart destroy suitcases
3 gorgeous clever annihilate luggage
4 beautiful crafty destroying briefcase
5 nice wisely destruct suitcase

We define word synonyms retrieval to also consider synonyms as valid results, as opposed to the word
classification. The synonyms were derived using another language as a pivot. Using the cross-lingual
dictionaries provided by [14], we looked up the acceptable word translations, and for each of those
translations, we took the union of their translations back to the original language. For example, in
English, each word has 3.3 synonyms (excluding itself) on average. Table 5 shows the results of word
synonyms retrieval. We see that our approach performs better at retrieving synonyms than classifying
words, an evidence that the system is learning the semantics rather than the identities of words. This
showcases the strength of our semantics-focused approach.

Table 5: Results on spoken word synonyms retrieval. We measure how many times one of the
synonyms of the input audio segment is retrieved, and report precision@k for k = 1, 5.

Corpora ENls − enls FRls − frls ENswc − enswc DEswc − deswc ENls − enswc ENswc − enls

Average P@k P@1 P@5 P@1 P@5 P@1 P@5 P@1 P@5 P@1 P@5 P@1 P@5

Alignment-based approach with cross-modal supervision (parallel dictionary)

A∗ 52.6 66.9 46.6 69.4 47.4 62.5 49.2 63.7 41.3 54.2 39.0 49.4

Alignment-based approaches without cross-modal supervision (our approach)

A 43.2 57.0 42.4 58.0 36.3 50.4 32.6 48.8 33.9 47.5 33.4 45.7
B 35.0 48.2 35.4 50.4 33.8 44.6 29.3 45.4 30.0 42.9 31.1 40.7
C 27.7 37.3 26.4 35.7 21.1 30.3 26.2 34.5 22.4 28.9 17.1 26.3
D 26.7 35.2 27.2 36.3 21.1 28.2 25.3 33.2 21.2 29.3 18.7 25.1
E 17.7 24.2 20.8 28.4 17.3 21.8 18.3 23.0 15.2 21.1 11.2 17.8
F 3.5 5.7 5.2 6.9 3.8 5.8 2.7 4.9 3.2 5.7 2.9 4.4

Spoken word translation Table 6 presents the results on spoken word translation. Similar to
spoken word classification, configurations with more supervision yield better performance than those
with less supervision. Furthermore, we observe that translating using the same corpus outperforms
those using different corpora (refer to ENswc − deswc versus ENls − deswc). We attribute this to the
higher structural similarity between the embedding spaces learned from the same corpora.

6 Conclusions

In this paper, we propose a framework capable of aligning speech and text embedding spaces in an
unsupervised manner. The method learns the alignment from independent corpora of speech and
text, without requiring any cross-modal supervision, which is especially important for low- or zero-
resource languages that lack parallel data with both audio and text. We demonstrate the effectiveness
of our unsupervised alignment by showing comparable results to its supervised alignment counterpart
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Table 6: Results on spoken word translation. We measure how many times one of the correct
translations of the input audio segment is retrieved, and report precision@k for k = 1, 5.

Corpora ENls − frls FRls − enls ENswc − deswc DEswc − enswc ENls − deswc FRls − deswc

Average P@k P@1 P@5 P@1 P@5 P@1 P@5 P@1 P@5 P@1 P@5 P@1 P@5

Alignment-based approach with cross-modal supervision (parallel dictionary)

A∗ 47.9 56.4 49.1 60.1 40.2 51.9 43.3 55.8 34.9 46.3 33.8 44.9

Alignment-based approaches without cross-modal supervision (our approach)

A 40.5 50.3 39.9 50.9 32.8 43.8 33.1 43.4 31.9 42.2 30.1 42.1
B 36.0 44.9 35.5 44.5 27.9 38.3 30.9 40.9 26.6 35.3 25.4 38.2
C 24.7 35.4 23.9 37.3 22.0 30.3 20.5 29.1 19.2 26.1 14.8 23.1
D 25.4 33.1 24.4 34.6 23.5 29.1 20.7 31.3 20.8 25.9 14.5 22.4
E 15.4 20.6 16.7 19.9 14.1 15.9 16.6 17.0 14.8 16.7 9.7 11.8
F 4.3 5.6 6.9 7.5 4.9 6.5 5.3 6.6 4.2 5.9 1.8 2.6

Majority Word Baseline

Major-Word 1.1 1.5 1.6 2.2 1.2 1.5 2.0 2.7 1.1 1.5 1.6 2.2

that uses full cross-modal supervision (A vs. A∗) on the tasks of spoken word classification and
translation. Future work includes devising unsupervised speech segmentation approaches that produce
more accurate word segments, an essential step to obtain high quality speech embeddings. We also
plan to extend current spoken word classification and translation systems to perform standard ASR
and speech-to-text translation, respectively.

Acknowledgments

The authors thank Hao Tang, Mandy Korpusik, and the MIT Spoken Language Systems Group for
their helpful feedback and discussions.

References
[1] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representations of

words and phrases and their compositionality,” in NIPS, 2013.
[2] J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global vectors for word representation,”

in EMNLP, 2014.
[3] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors with subword

information,” Transactions of the Association for Computational Linguistics, vol. 5, pp. 135–146,
2017.

[4] Z. S. Harris, “Distributional structure,” Word, vol. 10, no. 2-3, pp. 146–162, 1954.
[5] T. Mikolov, Q. Le, and I. Sutskever, “Exploiting similarities among languages for machine

translation,” arXiv preprint arXiv:1309.4168, 2013.
[6] M. Faruqui and C. Dyer, “Improving vector space word representations using multilingual

correlation,” in EACL, 2014.
[7] C. Xing, D. Wang, C. Liu, and Y. Lin, “Normalized word embedding and orthogonal transform

for bilingual word translation,” in NAACL HLT, 2015.
[8] M. Artetxe, G. Labaka, and E. Agirre, “Learning principled bilingual mappings of word

embeddings while preserving monolingual invariance,” in EMNLP, 2016.
[9] S. L. Smith, D. Turban, S. Hamblin, and N. Hammerla, “Offline bilingual word vectors,

orthogonal transformations and the inverted softmax,” in ICLR, 2016.
[10] M. Artetxe, G. Labaka, and E. Agirre, “Learning bilingual word embeddings with (almost) no

bilingual data,” in ACL, 2017.
[11] H. Cao, T. Zhao, S. Zhang, and Y. Meng, “A distribution-based model to learn bilingual word

embeddings,” in COLING, 2016.
[12] L. Duong, H. Kanayama, T. Ma, S. Bird, and T. Cohn, “Learning crosslingual word embeddings

without bilingual corpora,” in EMNLP, 2016.

9



[13] M. Zhang, Y. Liu, H. Luan, and M. Sun, “Adversarial training for unsupervised bilingual lexicon
induction,” in ACL, 2017.

[14] A. Conneau, G. Lample, M. Ranzato, L. Denoyer, and H. Jégou, “Word translation without
parallel data,” in ICLR, 2018.

[15] M. Zhang, Y. Liu, H. Luan, and M. Sun, “Earth mover’s distance minimization for unsupervised
bilingual lexicon induction,” in EMNLP, 2017.

[16] M. Artetxe, G. Labaka, E. Agirre, and K. Cho, “Unsupervised neural machine translation,” in
ICLR, 2018.

[17] G. Lample, L. Denoyer, and M. Ranzato, “Unsupervised machine translation using monolingual
corpora only,” in ICLR, 2018.

[18] W. He, W. Wang, and K. Livescu, “Multi-view recurrent neural acoustic word embeddings,” in
ICLR, 2017.

[19] S. Settle and K. Livescu, “Discriminative acoustic word embeddings: Recurrent neural network-
based approaches,” in SLT, 2016.

[20] Y.-A. Chung, C.-C. Wu, C.-H. Shen, H.-Y. Lee, and L.-S. Lee, “Audio word2vec: Unsuper-
vised learning of audio segment representations using sequence-to-sequence autoencoder,” in
INTERSPEECH, 2016.

[21] H. Kamper, W. Wang, and K. Livescu, “Deep convolutional acoustic word embeddings using
word-pair side information,” in ICASSP, 2016.

[22] S. Bengio and G. Heigold, “Word embeddings for speech recognition,” in INTERSPEECH,
2014.

[23] K. Levin, K. Henry, A. Jansen, and K. Livescu, “Fixed-dimensional acoustic embeddings of
variable-length segments in low-resource settings,” in ASRU, 2013.

[24] Y.-A. Chung and J. Glass, “Speech2vec: A sequence-to-sequence framework for learning word
embeddings from speech,” in INTERSPEECH, 2018.

[25] I. Sutskever, O. Vinyals, and Q. Le, “Sequence to sequence learning with neural networks,” in
NIPS, 2014.

[26] K. Cho, B. van Merriënboer, Ç. Gülçehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio, “Learning phrase representations using RNN encoder-decoder for statistical machine
translation,” in EMNLP, 2014.

[27] Y.-C. Chen, C.-H. Shen, S.-F. Huang, and H.-Y. Lee, “Towards unsupervised automatic speech
recognition trained by unaligned speech and text only,” arXiv preprint arXiv:1803.10952, 2018.

[28] Y.-A. Chung and J. Glass, “Learning word embeddings from speech,” in NIPS ML4Audio
Workshop, 2017.

[29] A. Park and J. Glass, “Unsupervised pattern discovery in speech,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 16, no. 1, pp. 186–197, 2008.

[30] A. Jansen and B. Van Durme, “Efficient spoken term discovery using randomized algorithms,”
in ASRU, 2011.

[31] H. Kamper, A. Jansen, and S. Goldwater, “Unsupervised word segmentation and lexicon dis-
covery using acoustic word embeddings,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 24, no. 4, pp. 669–679, 2016.

[32] C.-Y. Lee, T. J. O’Donnell, and J. Glass, “Unsupervised lexicon discovery from acoustic input,”
Transactions of the Association for Computational Linguistics, vol. 3, pp. 389–403, 2015.

[33] M. Sun and H. Van hamme, “Joint training of non-negative tucker decomposition and discrete
density hidden markov models,” Computer Speech and Language, vol. 27, no. 4, pp. 969–988,
2013.

[34] O. Walter, T. Korthals, R. Haeb-Umbach, and B. Raj, “A hierarchical system for word discovery
exploiting dtw-based initialization,” in ASRU, 2013.

[35] H. Kamper, A. Jansen, and S. Goldwater, “A segmental framework for fully-unsupervised
large-vocabulary speech recognition,” Computer Speech and Language, vol. 46, pp. 154–174,
2017.

10



[36] H. Kamper, K. Livescu, and S. Goldwater, “An embedded segmental k-means model for
unsupervised segmentation and clustering of speech,” in ASRU, 2017.

[37] O. Räsänen, G. Doyle, and M. C. Frank, “Unsupervised word discovery from speech using
automatic segmentation into syllable-like units,” in INTERSPEECH, 2015.

[38] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio, “Generative adversarial nets,” in NIPS, 2014.

[39] G. Dinu, A. Lazaridou, and M. Baroni, “Improving zero-shot learning by mitigating the hubness
problem,” in ICLR Workshop Track, 2015.

[40] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep recurrent neural
networks,” in ICASSP, 2013.

[41] A. Graves and N. Jaitly, “Towards end-to-end speech recognition with recurrent neural networks,”
in ICML, 2014.

[42] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio, “Attention-based models
for speech recognition,” in NIPS, 2015.

[43] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend and spell: A neural network for large
vocabulary conversational speech recognition,” in ICASSP, 2016.

[44] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg, C. Case, J. Casper,
B. Catanzaro, Q. Cheng, G. Chen et al., “Deep speech 2: End-to-end speech recognition in
english and mandarin,” in ICML, 2016.

[45] A. Waibel and C. Fugen, “Spoken language translation,” IEEE Signal Processing Magazine,
vol. 3, no. 25, pp. 70–79, 2008.

[46] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “LibriSpeech: An ASR corpus based on
public domain audio books,” in ICASSP, 2015.

[47] A. Kocabiyikoglu, L. Besacier, and O. Kraif, “Augmenting Librispeech with French translations:
A multimodal corpus for direct speech translation evaluation,” in LREC, 2018.

[48] A. Köhn, F. Stegen, and T. Baumann, “Mining the spoken wikipedia for speech data and beyond,”
in LREC, 2016.

11


