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Abstract

Blind deconvolution is a ubiquitous problem of recovering two unknown
signals from their convolution. Unfortunately, this is an ill-posed problem
in general. This paper focuses on the short and sparse blind deconvolu-
tion problem, where the one unknown signal is short and the other one
is sparsely and randomly supported. This variant captures the structure
of the unknown signals in several important applications. We assume the
short signal to have unit `2 norm and cast the blind deconvolution problem
as a nonconvex optimization problem over the sphere. We demonstrate that
(i) in a certain region of the sphere, every local optimum is close to some
shift truncation of the ground truth, and (ii) for a generic short signal of
length k, when the sparsity of activation signal θ . k−2/3 and number of
measurementsm & poly (k), a simple initialization method together with a
descent algorithm which escapes strict saddle points recovers a near shift
truncation of the ground truth kernel.

1 Introduction
Blind deconvolution is the problem of recovering two unknown signals a0 and x0 from their
convolution y = a0 ∗ x0. This fundamental problem recurs across several fields, including
astronomy, microscopy data processing [1], neural spike sorting [2], computer vision [3], etc.
However, this problem is ill-posed without further priors on the unknown signals, as there
are infinitely many pairs of signals (a,x) whose convolution equals a given observation y.
Fortunately, in practice, the target signals (a,x) are often structured. In particular, a number
of practical applications exhibit a common short-and-sparse structure:
In Neural spike sorting: Neurons in the brain fire brief voltage spikes when stimulated. The
signatures of the spikes encode critical features of the neuron and the occurrence of such
spikes are usually sparse and random in time [2, 4].
InMicroscopy data analysis: Some nanoscale materials are contaminated by randomly and
sparsely distributed “defects”, which change the electronic structure of the material [1].
In Image deblurring: Blurred images due to camera shake can be modeled as a convolution of
the latent sharp image and a kernel capturing the motion of the camera. Although natural
images are not sparse, they typically have (approximately) sparse gradients [5, 6].
In the above applications, the observation signal y ∈ Rm is generated via the convolution
of a short kernel a0 ∈ Rk(k � m) and a sparse activation coefficient x0 ∈ Rm (‖x0‖0 � m).
Without loss of generality, we let y denote the circular convolution of a0 and x0

y = a0 ~ x0 = ã0 ~ x0, (1)
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Figure 1: Local Minimum.
Top: observation y = a0 ~x0,
and ground truth a0, and x0;
Bottom: recovered a ~ x, a,
andx at one localminimumof
a natural formulation in [16].

with ã0 ∈ Rm denoting the zero paddedm-length version of a0, which can be expressed as
ã0 = ιka0. Here, ιk : Rk → Rm is a zero padding operator. Its adjoint ι∗k : Rm → Rk acts as
a projection onto the lower dimensional space by keeping the first k components.
The short-and-sparse blind deconvolution problem exhibits a scaled-shift ambiguity, which
derives from the basic properties of a convolution operator. Namely, for any observation
signal y, and any nonzero scalar α and integer shift τ , the following equality always holds

y = (±αsτ [ã0]) ~
(
±α−1s−τ [x0]

)
. (2)

Here, s−τ [v] denotes the cyclic shift of the vector v by τ entries:
sτ [v](i) = v ([i− τ − 1]m + 1) , ∀ i ∈ {1, · · · ,m} . (3)

Clearly, both scaling and cyclic shifts preserve the short-and-sparse structure of (a0,x0). This
scaled-shift symmetry raises nontrivial challenges for computation, making straightforward
convexification approaches ineffective.1

Nonconvex algorithms for sparse blind deconvolution have been well developed and prac-
ticed, especially in computer vision [12, 13, 14, 15]. Despite its empirical success, little was
known about its working mechanism. Recently, [16] studies the optimization landscape of
the natural nonconvex formulation for sparse blind deconvolution, assuming the kernel
a ∈ Rk to have unit Frobenius norm (denote as a ∈ Sk−1). [16] argues that under conditions,
this problem has well-structured local optima, in the sense that every local optimum is close to
some shift truncation of the ground truth (Figure 1).
The presence of these local optima can be viewed as a result of the shift symmetry associated
to the convolution operator: the shifted and truncated kernel ι∗ksτ [ã0] can be convolved with
the sparse signal s−τ [x0] (shifted in the other direction) to produce a near approximation to
the observation ι∗ksτ [ã0] ~ s−τ [x0] ≈ y.
In [16], this geometric insight about local optima is corroborated with a lot of experiments,
but rigorous proof is only available in the “dilute limit” in which the sparse coefficient signal
x0 is a single spike. In this paper, we adopt the unit Frobenius norm constraint for the short
convolution kernel a as in [16], but consider a different objective function. We formulate the
sparse blind deconvolution problem as the following optimization problem over the sphere:

min −‖y̌ ~ ry (q)‖44 s. t. ‖q‖F = 1. (4)

Here, y̌ denotes the reversal of y2 and ry (q) is a preconditioner which we will discuss in
detail later. Convolution y ~ ry (q) approximates the reversed underlying activation signal
x0, and −‖·‖44 serves as the sparsity penalty.
We demonstrate that even when x0 is relatively dense, any local minimum in certain region
of the sphere is close to a shift truncation ι∗ksτ [ã0] of the ground truth. This benign region
contains the sub-level set of small objective value. Algorithmically, if initialized at a point
with small enough objective value, then a descent algorithm always decreases the objective
value and hence stays in this region. Specifically, for a generic kernel3 a0 ∈ Sk−1, if the

1A number of works [7, 8, 9, 10, 11] have developed provable methods for blind deconvolution
under the assumption that a0 andx0 belong to random subspaces, or are sparse in random dictionaries.
These random models exhibit simpler geometry than the short-and-sparse model. Because our target
signal is sparse in the standard basis, the aforementioned results are not applicable in our setting.

2Denote y = [y1, y2, · · · , ym−1, ym]T , then its reversal y̌ = [y1, ym, ym−1, · · · , y2]T with y1 not
moved.

3In this paper, we refer a kernel sampled following a uniform distribution over the sphere as a
generic kernel on the sphere.
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sparsity rate4 θ . k−2/3 and the number of measurementm & poly(k), initializing at some
preconditioned k consecutive entries of y, and applying any descent method that converges
to a local minimizer under a strict saddle hypothesis [17, 18], produces a near shift-truncation
of the ground truth.5

Assumptions and Notations We assume that x0 ∈ Rm follows Bernoulli-Gaussian (BG)
model with sparsity level θ: x0 (i) = ωigi with ωi ∼ Ber (θ) and gi ∼ N (0, 1), where all the
different random variables are jointly independent. For simplicity, we write x0 ∼i.i.d. BG (θ).
Throughout this paper, a vector v ∈ Rk is indexed as v = [v1, v2, · · · , vk], and [·]m denotes the
modulo operator ofm. We use ‖·‖op, ‖·‖F , and ‖·‖p to denote operator norm, Frobenius norm,
and entry wise `p norm respectively. PS [·] .= ·

‖·‖F
denotes projection onto the Frobenius

sphere. (·)◦p is the entry wise p-th order exponent operator. We use C, c to denote positive
constants, and their value change across the paper.

2 Problem Formulation
In the short-and-sparse blind deconvolution problem, any k consecutive entries in y only
depend on 2k − 1 consecutive entries in x0:

yi =
[
yi, · · · , y1+[i+k−1]m

]T
=

k−1∑
τ=−(k−1)

x1+[i+τ−1]m
· ι∗ksτ [ã0] (5)

=


ak ak−1 · · · a1 · · · 0 0
0 ak · · · a2 · · · 0 0
...

...
. . .

...
. . .

...
...

0 0 · · · ak−1 · · · a1 0
0 0 · · · ak · · · a2 a1


︸ ︷︷ ︸

A0∈Rk×(2k−1)


x1+[i−k]m

...
xi
...

x1+[i+k−2]m


︸ ︷︷ ︸

xi∈R(2k−1)×1

. (6)

Write Y = [y1,y2, . . . ,ym] ∈ Rk×m and X0 = [x1, . . . ,xm] ∈ R2k−1×m. Using the above
expression, we have that

Y = A0X0. (7)
Each column xi ofX0 only contains some 2k − 1 entries of x0. The rows ofX0 are cyclic
shifts of the reversal of x0:

X0 =

[
s0[x̌0]

...
s2k−2[x̌0]

]
. (8)

The shifts of x̌0 are sparse vectors in the linear subspace row(X0). Note that if we could
recover some shift sτ [x0], we could subsequently determine s−τ [a0] by solving a linear
system of equations, and hence solve the deconvolution problem, up to the shift ambiguity.6

2.1 Finding a Shifted Sparse Signal
In light of the above observations, a natural computational approach to sparse blind de-
convolution is to attempt to find x0 by searching for a sparse vector in the linear subspace
row(X0), e.g., by solving an optimization problem

min ‖v‖? s. t. v ∈ row (X0) , ‖v‖2 = 1, (9)
4This equivalently says there could be as many asO(k1/3) shifts of the kernel in a k-length window

of the observation.
5[16] proposes to solve the short-and-sparse blind deconvolution problem with a two phase al-

gorithm which first recovers a shift truncation, and then recovers the ground truth kernel with an
annealing algorithm. We present additional experimental results on the recovery of the ground truth
in the supplementary material.

6[19] considers the multi-channel blind deconvolution problem, where many independent observa-
tions yp = a0 ∗ xp are available. [19] shows how to formulate this problem as searching for a sparse
vector in a linear subspace. Our approach is also inspired by the idea of looking for a sparse/spiky
vector in a subspace. However, it pertains to a different problem, in which only a single observation is
available. The short and sparse problem exhibits a more complicated optimization landscape, due to
the signed shift ambiguity.
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where ‖·‖? is chosen to encourage sparsity of the target signal [20, 21, 22, 23].
In sparse blind deconvolution, we do not have access to the row space ofX0. Instead, we only
observe the subspace row(Y ) ⊂ row(X0). The subspace row(Y ) does not necessarily contain
the desired sparse vector eTi X0, but it does contain some approximately sparse vectors. In
particular, consider following vector in row(Y ),

v = Y Ta0 = x̌0
sparse

+
∑
i 6=0

〈a0, si[a0]〉 si[x̌0]︸ ︷︷ ︸
“noise” z

. (10)

The vector v is a superposition of a sparse signal x̌0 and its scaled shifts 〈a0, si[a0]〉 si[x̌0].
If the shift-coherence | 〈a0, sτ [a0]〉 | is small7 and x0 is sparse enough, z can be viewed as
small noise.8 The vector v is not sparse, but it is spiky: a few of its entries are much larger
than the rest. We deploy a milder sparsity penalty −‖·‖44 to recover such a spiky vector, as
‖·‖44 is very flat around 0 and insensitive to small noise in the signal.9 This gives

min − 1
4 ‖v‖

4
4 s. t. v ∈ row (Y ) , ‖v‖2 = 1. (11)

We can express a generic unit vector v ∈ row(Y ) as v = Y T
(
Y Y T

)−1/2
q, with ‖v‖2 = ‖q‖2.

This leads to the following equivalent optimization problem over the sphere

min ψ (q)
.
= − 1

4m

∥∥∥Y T
(
Y Y T

)−1/2
q
∥∥∥4

4
s. t. ‖q‖2 = 1. (12)

Interpretation: preconditioned shifts. This objective ψ (q) can be rewritten as

ψ (q) = − 1

4m

∥∥∥y̌ ~
(
Y Y T

)−1/2
q
∥∥∥4

4
= − 1

4m

∥∥∥x̌0 ~A
T
0

(
Y Y T

)−1/2
q
∥∥∥4

4
∼ ‖x̌0 ~ ζ‖44 , (13)

where ζ = AT
0 (A0A

T
0 )−1/2q. This approximation becomes accurate as m grows.10 This

objective encourages the convolution of x̌0 and ζ to be as spiky as possible. Reasoning
analogous to (10) suggests that x̌0 ~ ζ will be spiky if

ζ = AT
0

(
A0A

T
0

)−1/2
q ≈ el, l ∈ {1, · · · , 2k − 1} . (14)

For simplicity, we define the preconditioned convolution matrix
A

.
=
(
A0A

T
0

)−1/2
A0 = [a1 a2 · · · a2k−1] , (15)

with column coherence (preconditioned shift coherence) µ .
= maxi6=j |〈ai,aj〉|. Then ζ can

also be interpreted as measuring the inner products of q with columns ofA. Making this
intuition rigorous, we will show that minimizing this objective over a certain region of the
sphere yields a preconditioned shift truncate al, from which we can recover a shift truncate
of the original signal a0.
2.2 Structured Local Minima

ι
∗sj [a0]

ϕ(a)

ι
∗si[a0]−

π

8

0
π

8
Figure 2: Saddles points
are approximately super-
positions of local minima.

We will show that in a certain region RC?
⊂ Sk−1, the precondi-

tioned shift truncations al are the only local minimizers. Moreover,
the other critical points inRC? can be interpreted as resulting from
competition between several of these local minima (Figure 2). At
any saddle point, there exists strict negative curvature in the direc-
tion of a nearby local minimizer which breaks the balance in favor
of some particular al. The regionRC?

is defined as follows:
Definition 2.1. For fixed C? > 0, letting κ denote the condition number
ofA0, and µ

.
= maxi 6=j |〈ai,aj〉| the column coherence ofA, we define

two regionsRC?
, R̂C?

⊂ Sk−1, as

RC?

.
=
{
q ∈ Sk−1 |

∥∥ATq
∥∥6

4
≥ C?µκ2

∥∥ATq
∥∥3

3

}
. (16)

R̂C?

.
=
{
q ∈ Sk−1 |

∥∥ATq
∥∥6

4
≥ C?µκ2

}
⊆ RC? . (17)

7For a generic kernel a0, the shift-coherence is bounded by | 〈a0, sτ [a0]〉 | ≈ 1/
√
k for any shift τ .

8In particular, under a Bernoulli-Gaussian model, for each j, E[z2
j ] = θ

∑
i6=0 〈a0, si[a0]〉2.

9In comparison, the classical choice ‖·‖? = ‖·‖1 is a strict sparsity penalty that essentially encourages
all small entries to be 0.

10As Ex0∼i.i.d.BG(θ)[Y Y
T ] = Ex0∼i.i.d.BG(θ)[A0X0X

T
0 A

T
0 ] = θmA0A

T
0 .
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A simpler and smaller region R̂C? is also introduced in Definition (2.1). This region R̂C?

can be viewed as a sub-level set for −
∥∥ATq

∥∥4

4
, which is proportional to the objective value

ψ (q) assumingm is sufficiently large11. Therefore, once initialized within R̂C?
, the iterates

produced by a descent algorithm will stay in R̂C? .
In particular, at any stationary point q ∈ R10, the local optimization landscape can be
characterized in terms of the number of spikes (entries with nontrivial magnitude12) in ζ. If
there is only one spike in ζ, then such stationary point q is a local minimum that is close to
one local minimizer; if there are more than two spikes in ζ, then such stationary point q is
saddle point. Based on the above characterizations of stationary points inRC?

with C? ≥ 10,
we can deduce that any local minimum is close to al for some integer l, a preconditioned
shift truncation of the ground truth a0.
Theorem 2.2 (Main Result). Assuming observation y ∈ Rm is the circulant convolution of
a0 ∈ Rk and x0 ∼i.i.d. BG (θ) ∈ Rm, where the convolutional matrixA0 has minimum singular
value σmin > 0 and condition number κ ≥ 1, and A has column incoherence 0 ≤ µ < 1. There
exists a positive constant C such that whenever the number of measurements

m ≥ C
min

{
µ−4/3, κ2k2

}
(1− θ)2

σ2
min

κ8k4 log3

(
κk

(1− θ)σmin

)
(18)

and θ ≥ log k/k, then with high probability, any local optima q̄ ∈ R̂2C?
satisfies

|〈q̄,PS [al]〉| ≥ 1− c?κ−2 (19)

for some integer 1 ≤ l ≤ 2k − 1. Here, C? ≥ 10 and c? = 1/C?.

This theorem says that any local minimum in R̂2C?
is close to some normalized column of

A given polynomially many observation. The parameters σmin, κ and µ effectively measure
the spectrum flatness of the ground truth kernel a0 and characterize how broad the results
hold. A random like kernel usually has big σmin, small κ and µ, which equivalently implies
the result holds in a large sub-level set R̂2C?

even with fewer observations.

Hence, once assuring the algorithm finds a local minimum in R̂2C?
, then some shifted

truncation of the ground truth kernel a0 can be recovered. In other words, if we can find
an initialization point with small objective value then a descent algorithm minimizing the
objective function guarantees that q always stays in R̂2C? in proceeding iterations. Therefore,
any descent algorithm that escapes a strict saddle point can be applied to find some al, or
some shift truncation of a0.

2.3 Initialization with a Random Sample
Recall thatyi = A0xi, which is a sparse superposition of about 2θk columns ofA0. Intuitively
speaking, such qinit already encodes certain preferences towards a few preconditioned shift
truncations of the ground truth. Therefore, we randomly choose an index i and set the
initialization point as

qinit = PS

[(
Y Y T

)−1/2
yi

]
, ζinit = ATqinit ≈ PS

[
ATAxi

]
.13 (20)

For a generic kernel a0 ∈ Sk−1, ATA is close to a diagonal matrix, as the magnitudes of
off-diagonal entries are bounded by column incoherence µ. Hence, the sparse property of
xi can be approximately preserved, that PS

[
ATAxi

]
is spiky vector with small −‖·‖44. By

leveraging the sparsity level θ, one can make sure such initialization point qinit falls in R̂2C?
.

Therefore, we propose Algorithm 1 for solving sparse blind deconvolution with its working
conditions stated in Corollary 2.3. For the choice of descent algorithms which escape strict
saddle points, there are several such algorithms specially tailored for sphere constrained
optimization problems [24, 25].

11Please refer to Section 3 for more arguments.
12We call any ζl with magnitude no smaller than 2µ ‖ζ‖33 / ‖ζ‖

4
4 to be nontrivial and defer technical

reasonings to later sections.
13As Ex0∼i.i.d.BG(θ)[Y Y

T ] = θmA0A
T
0 .
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Algorithm 1 Short and Sparse Blind Deconvolution
Input: Observations y ∈ Rm and kernel size k.
Output: Recovered Kernel ā.
1: Generate random index i ∈ [1,m] and set qinit = PS

[(
Y Y T

)−1/2
yi

]
.

2: Solve following nonconvex optimization problem with a descent algorithm that escapes
saddle point and find a local minimizer q̄ = arg minq∈Sk−1 ϕ (q)

3: Set ā = PS

[(
Y Y T

)1/2
q̄
]
.

Corollary 2.3. Suppose the ground truth a0 kernel has preconditioned shift coherence 0 ≤ µ ≤
1

8×48 log−3/2 (k) and sparse coefficient x0 ∼i.i.d. BG (θ) ∈ Rm. There exist positive constants
C ≥ 25604 and C ′ such that whenever the sparsity level

64k−1 log k ≤ θ ≤ min
{

1
482µ

−2k−1 log−2 k,
(

1
4 −

640
C1/4

) (
3C?µκ

2
)−2/3

k−1
(
1 + 36µ2k log k

)−2
}

and signal length

m ≥C ′max

{
θ2κ6

σ2
min

k3
(
1 + 36µ2k log k

)4
log

(
κk

σmin

)
,

min
{
µ−4/3, κ2k2

}
(1− θ)2

σ2
min

κ8k4 log3

(
κk

(1− θ)σmin

)}
,

then with high probability, Algorithm 1 recovers ā such that

‖ā± PS [ιksτ [ã0]]‖2 ≤ 2
√

2c? (21)

for some integer shift − (k − 1) ≤ τ ≤ k − 1.

For a generic a0 ∈ Sk−1, plugging in the numerical estimation of the parameters σmin, κ and
µ (Figure 3), accurate recovery can be obtained with m & θ2k6 poly log (k) measurements
and sparsity level θ . k−2/3 poly log (k). For bandpass kernels a0, σmin is smaller and κ, µ
are larger, and so our results require x0 to be longer and sparser.

3 Optimization Function Landscape
We next briefly present the key elements in deriving the main results of this paper. We first
investigate the stationary points of the “population” objective Ex0 [ψ(q)]. We demonstrate
that any local minimizer in RC? is close to a signed column of A, a preconditioned shift
truncation of a0. We then demonstrate that whenm is sufficiently large, the “finite sample”
objective ψ(q) has similar properties.

Using E[Y Y T ] = θmA0A
T
0 again, the expectation of the objective function ψ (q) can be

approximated as follows:

E [ψ(q)] ≈ E
[
− 1

m

∥∥∥Y T
(
θmA0A

T
0

)−1/2
q
∥∥∥4

4

]
= −3 (1− θ)

θm2

∥∥ATq
∥∥4

4
− 3

m2
. (22)

This approximation can be made rigorous (see Lemma 2.1 of the supplementary material),
allowing us to study the critical points of E[ψ] by studying the simpler problem

min
q∈Rk−1

ϕ (q)
.
= −1

4

∥∥ATq
∥∥4

4
= −1

4
‖ζ‖44 . (23)

The Euclidean gradient and Riemannian gradient [26] of ϕ are
∇ϕ(q) = −Aζ◦3, grad [ϕ] (q) = −Aζ◦3 + q ‖ζ‖44 . (24)

3.1 Critical Points of the Population Objective
Wewish to argue that every local minimizer of ϕ is close to a preconditioned shift-truncation
ai. We do this by showing that at any other critical point, there is a direction of strict negative
curvature. We will show that at any critical point q ∈ R4, the correlation ζ exhibits a very
special structure:

6



(P) The entries ζi = 〈ai, q〉 are either close to zero, or have magnitude |ζi|
close to ‖ζ‖44 / ‖ai‖2.

We can demonstrate this property directly from the stationarity condition grad [ϕ] (q) = 0.
Aζ◦3 − q ‖ζ‖44 = 0 ⇒ ATAζ◦3 −ATq ‖ζ‖44 = 0. (25)

The i-th entry ζi of the correlation ζ therefore satisfies the following cubic equation

‖ai‖22 ζ
3
i +

∑
j 6=i

〈ai,aj〉 ζ3
j − ζi ‖ζ‖

4
4 = 0 ⇒ ζ3

i − ζi
‖ζ‖44
‖ai‖22︸ ︷︷ ︸
αi

+

∑
j 6=i 〈ai,aj〉 ζ3

j

‖ai‖22︸ ︷︷ ︸
βi

= 0. (26)

If αi � βi, the roots of (26) are either very close to 0, or very close to ±√αi. The condition
αi � βi obtains whenever

∥∥ATq
∥∥6

4
≥ 4µ

∥∥ATq
∥∥3

3
, and hence on R4, every critical point

satisfies property (P).

3.2 Asymptotic Function Landscape onRC?

The local optimization landscape around any stationary point q is characterized by the
Riemannian Hessian. In particular, at a stationary point q, if Hess [ϕ] (q) is positive semidef-
inite, then the function is convex and q is a local minimum; if Hess [ϕ] (q) has a negative
eigenvalue, then there exists a direction along which the objective value decreases and q is a
saddle point. Technically, onRC?

with C? ≥ 10, the minimum eigenvalue of the Riemannian
Hessian can be controlled based on the spikiness of ζ.
First, we demonstrate that once constrained inRC?

with C? ≥ 10, then any stationary point
must have cross correlation ζ with entries of nontrivial magnitude, or entries of ζ cannot
be simultaneously close to 0. Geometrically, this implies that any stationary point q ∈ RC?

should be "close" to certain preconditioned shift truncations.
Lemma 3.1. For any stationary point q ∈ RC?

with C? ≥ 10, magnitude of vector ζ = ATq

cannot be uniformly bounded by 2µ ‖ζ‖33 / ‖ζ‖
4
4.

Local Minima If q is a stationary point in RC?
with C? ≥ 10, and ζ only has one sin-

gle entry ζl with magnitude larger than 2µ ‖ζ‖33 / ‖ζ‖
4
4, then the Riemannian Hessian

Hess[ϕ] (q) is always positive definite, and the function is locally convex. In addition,
|〈q,al〉| >

(
1− 2C−1

? κ−2
)
‖al‖2, hence such q is one local minimum near al.

Lemma 3.2. Suppose q is a stationary point in RC?
with C? ≥ 10, and ζ = ATq has only one

entry ζl of magnitude no smaller than 2µ ‖ζ‖33 / ‖ζ‖
4
4, then q is a local minimum near al such that

|〈q,PS [al]〉| > 1− 2c?κ
−2 with c? = 1/C?.

Saddle Points If q is a stationary point in RC? with C? ≥ 10, and ζ has more than one
nontrivial entry, then the Riemannian Hessian Hessϕ (q) has negative eigenvalue(s) and
hence q is a saddle point. Especially, denoting any two nontrivial entries of ζ with ζl and ζl′ ,
then there exists a negative curvature in the span of al and al′ .
Lemma 3.3. Suppose q is a stationary point inRC?

with C? ≥ 10, and ζ = ATq has at least two
entries ζl and ζl′ with magnitude larger than 2µ ‖ζ‖33 / ‖ζ‖

4
4, then the Riemannian Hessian at q has

negative eigenvalue(s) and q is a saddle point.

3.3 Finite Sample Concentration
We argue that the critical points of the finite sample objective function ψ(q) are similar to
those of the asymptotic objective function ϕ(q):
Critical points are close. The Riemannian gradient concentrates, such that there is a bijection
between critical points qpop of ϕ and critical points qfs of ψ, with ‖qpop − qfs‖2 small.
Curvature is preserved. The Riemannian Hessian concentrates, such that Hess[ψ](qfs) has a
negative eigenvalue if and only if Hess[ϕ](qpop) has a negative eigenvalue, and Hess[ψ](qfs)
is positive definite if and only if Hess[ϕ](qpop) is positive definite.
This implies that every local minimizer of the finite sample objective function is close to a
preconditioned shift-truncation. While conceptually straightforward, the proofs of these
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properties are somewhat involved, due to the presence of the preconditioner (Y Y T )−1/2.
We give rigorous versions of all of the above statements, and a complete proof, in the
supplementary appendix.

4 Experiments
Properties of a Random Kernel. In our main result, the sparsity rate θ depends on the
condition number κ and induced column coherence µ. Figure 3 plots the average values
(over 100 independent simulations) of κ and µ for generic unit kernels of varying dimension
k = 10, 20, · · · , 1000.

Figure 3: Coherence of random kernels. Average of σmin (left), κ (middle), and µ (right) over 100
independent trials, for varying kernel length k.

These simulations suggest the following estimates:

σmin ∼ log−1 (k) , κ ∼ log4/3 k, µ ∼
√

log (k) /k. (27)

Hence, reliable recovery of the shift truncation of a generic kernel can be guaranteed even
when the sparse signal is relatively dense (θ ∼ k−2/3). On the other hand, if the convolution
kernel a0 is lowpass, then σmin decreases, and κ, µ increase, then more observationsm and
smaller sparsity level θ is required for the proposed algorithm to perform as desired.

Recovery Error of the Proposed Algorithm We present the performance of Algorithm 1
under varying settings. We define the recover error as err = 1 − maxτ |〈ā,PS [ι∗ksτ [ã0]]〉|,
and calculate the average error from 50 independent experiments. The left figure plots the
average error when we fix the kernel size k = 50, and vary the dimensionm and the sparsity
θ of x0.14 The right figure plots the average error when we vary the dimensions k,m of both
convolution signals, and set the sparsity as θ = k−2/3.
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Figure 4: Recovery Error of the Shift Truncated Kernel by Algorithm 1.
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14Note that the x-axis is indexed with overlapping ratio k · θ, which indicates how many copies of
a0 present in a k-length window of y on average.
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