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Abstract

Variational inference with a-divergences has been widely used in modern proba-
bilistic machine learning. Compared to Kullback-Leibler (KL) divergence, a major
advantage of using a-divergences (with positive « values) is their mass-covering
property. However, estimating and optimizing a-divergences require to use im-
portance sampling, which may have large or infinite variance due to heavy tails
of importance weights. In this paper, we propose a new class of tail-adaptive f-
divergences that adaptively change the convex function f with the tail distribution
of the importance weights, in a way that theoretically guarantees finite moments,
while simultaneously achieving mass-covering properties. We test our method on
Bayesian neural networks, and apply it to improve a recent soft actor-critic (SAC)
algorithm (Haarnoja et al.| 2018) in deep reinforcement learning. Our results show
that our approach yields significant advantages compared with existing methods
based on classical KL and a-divergences.

1 Introduction

Variational inference (VI) (e.g., Jordan et al |1999; Wainwright et al., 2008) has been established
as a powerful tool in modern probabilistic machine learning for approximating intractable posterior
distributions. The basic idea is to turn the approximation problem into an optimization problem, which
finds the best approximation of an intractable distribution from a family of tractable distributions by
minimizing a divergence objective function. Compared with Markov chain Monte Carlo (MCMC),
which is known to be consistent but suffers from slow convergence, VI provides biased results but
is often practically faster. Combined with techniques like stochastic optimization (Ranganath et al.,
2014} Hoffman et al.,|2013)) and reparameterization trick (Kingma & Welling, 2014)), VI has become
a major technical approach for advancing Bayesian deep learning, deep generative models and deep
reinforcement learning (e.g., Kingma & Welling} 2014} |Gal & Ghahramanil 2016} Levine, [2018)).

A key component of successful variational inference lies on choosing a proper divergence metric.
Typically, closeness is defined by the KL divergence KL(q || p) (e.g., Jordan et al.,[1999), where p
is the intractable distribution of interest and ¢ is a simpler distribution constructed to approximate
p. However, VI with KL divergence often under-estimates the variance and may miss important
local modes of the true posterior (e.g.,|Christopher, 2016; Blei et al., 2017). To mitigate this issue,
alternative metrics have been studied in the literature, a large portion of which are special cases of
f-divergence (e.g.,|Csiszar & Shields} 2004):

p(z)
Dy(pll q) = Ean [f()—fl}, (1)
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where f: Ry — R is any convex function. The most notable class of f-divergence that has been
exploited in VI is a-divergence, which takes f(t) = t*/(a(a — 1)) for & € R\ {0, 1}. By choosing
different «, we get a large number of well-known divergences as special cases, including the standard
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KL divergence objective KL(q || p) (o« — 0), the KL divergence with the reverse direction KL(p || ¢)
(o — 1) and the x? divergence (o = 2). In particular, the use of general a-divergence in VI has been
widely discussed (e.g.,|Minka et al.| 2005} [Hernandez-Lobato et al., 2016; |Li & Turner}, |2016); the
reverse KL divergence is used in expectation propagation (Minkal 2001; Opper & Winther, 2005)),
importance weighted auto-encoders (Burda et al.,2016)), and the cross entropy method (De Boer et al.}
2005); Xz-divergence is exploited for VI (e.g., Dieng et al.,|2017), but is more extensively studied in
the context of adaptive importance sampling (IS) (e.g.,/Cappé et al.,[2008; Ryu & Boyd, 2014} |Cotter
et al.| 2015), since it coincides with the variance of the IS estimator with ¢ as the proposal.

A major motivation of using a-divergence contributes to its mass-covering property: when o > 0,
the optimal approximation ¢ tends to cover more modes of p, and hence better accounts for the
uncertainty in p. Typically, larger values of « enforce stronger mass-covering properties. In practice,
however, a divergence and its gradient need to be estimated empirically using samples from g. Using
large «v values may cause high or infinite variance in the estimation because it involves estimating the
a-th power of the density ratio p(x)/q(x), which is likely distributed with a heavy or fat tail (e.g.,
Resnickl, [2007). In fact, when ¢ is very different from p, the expectation of ratio (p(x)/q(z))® can be
infinite (that is, a-divergence does not exist). This makes it problematic to use large « values, despite
the mass-covering property it promises. In addition, it is reasonable to expect that the optimal setting
of a should vary across training processes and learning tasks. Therefore, it is desirable to design
an approach to choose « adaptively and automatically as q changes during the training iterations,
according to the distribution of the ratio p(z)/q(x).

Based on theoretical observations on f-divergence and fat-tailed distributions, we design a new
class of f-divergence which is tail-adaptive in that it uses different f functions according to the tail
distribution of the density ratio p(x)/q(x) to simultaneously obtain stable empirical estimation and
a strongest possible mass-covering property. This allows us to derive a new adaptive f-divergence-
based variational inference by combining it with stochastic optimization and reparameterization
gradient estimates. Our main method (Algorithm [I)) has a simple form, which replaces the f function
in (1)) with a rank-based function of the empirical density ratio w = p(z)/q(x) at each gradient
descent step of ¢, whose variation depends on the distribution of w and does not explode regardless
the tail of w.

Empirically, we show that our method can better recover multiple modes for variational inference. In
addition, we apply our method to improve a recent soft actor-critic (SAC) algorithm (Haarnoja et al.|
2018)) in reinforcement learning (RL), showing that our method can be used to optimize multi-modal
loss functions in RL more efficiently.

2 f-Divergence and Friends

Given a distribution p(x) of interest, we want to approximate it with a simpler distribution from a
family {gg(x): 0 € ©}, where 0 is the variational parameter that we want to optimize. We approach
this problem by minimizing the f-divergence between gy and p:

min {Dstp 1) = Eav, [1 (220) — g00)] @

€0 qo()

where f: Ry — Ris any twice differentiable convex function. It can be shown by Jensen’s inequality
that D (p || ¢) > 0 for any p and ¢. Further, if f(¢) is strictly convex at ¢t = 1, then Ds(p || ¢) =0
implies p = g. The optimization in (2) can be solved approximately using stochastic optimization in
practice by approximating the expectation E,..4, [-] using samples drawing from gy at each iteration.

The f-divergence includes a large spectrum of important divergence measures. It includes KL
divergence in both directions,

q(w)} {p(w) p(fﬂ)}
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which correspond to f(t) = —logt and f(t) = tlogt, respectively. KL(q || p) is the typical

objective function used in variational inference; the reversed direction KL(p || ¢) is also used in
various settings (e.g., Minka, 2001} Opper & Winther, 2005; [De Boer et al.,2005; Burda et al., [2016).



More generally, f-divergence includes the class of «-divergence, which takes f, (t) = t*/(a(a—1)),
a € R\ {0, 1} and hence

Dy.(plla) = ﬁ]&wq Kp(x)f - 1} : (4)

q(x)
One can show that KL(q || p) and KL(p || ¢) are the limits of Dy_(q || p) when & — 0 and o« — 1,
respectively. Further, one obtain Helinger distance and x2-divergence as o = 1/2 and o = 2,
respectively. In particular, y2-divergence (ov = 2) plays an important role in adaptive importance
sampling, because it equals the variance of the importance weight w = p(x)/q(z) and minimizing
x2-divergence corresponds to finding an optimal importance sampling proposal.

3 «a-Divergence and Fat Tails

A major motivation of using « divergences as the objective function for approximate inference is their
mass-covering property (also known as the zero-avoiding behavior). This is because a-divergence is
proportional to the a-th moment of the density ratio p(x)/q(x). When « is positive and large, large
values of p(x)/q(x) are strongly penalized, preventing the case of ¢(x) < p(«x). In fact, whenever
Dy (p|| g) < oo, we have p(z) > 0 imply g(z) > 0. This means that the probability mass and local
modes of p are taken into account in g properly.

Note that the case when o < 0 exhibits the opposite property, that is, p(z) = 0 must imply g(z) = 0
to make Dy, (g||p) finite when o < 0; this includes the typical KL divergence KL(q || p) (o = 0),
which is often criticized for its tendency to under-estimate the uncertainty.

Typically, using larger values of o enforces stronger mass-covering properties. In practice, however,
larger values of « also increase the variance of the empirical estimators, making it highly challenging
to optimize. In fact, the expectation in (@) may not even exist when « is too large. This is because the
density ratio w := p(z)/q(zx) often has a fat-tailed distribution.

A non-negative random variable w is called fat—taile(ﬂ (e.g., Resnick, 2007) if its tail probability
Fy(t) = Pr(w > t) is asymptotically equivalent to t~* as ¢ — oo for some finite positive
number o, (denoted by F,(t) ~ t~“*), which means that
Fu(t) =17 (1),

where L is a slowly varying function that satisfies lim;_, ; o, L(ct)/L(t) = 1 for any ¢ > 0. Here
o, determines the fatness of the tail and is called the tail index of w. For a fat-tailed distribution
with index a, its a-th moment exists only if & < a, that is, E[w®] < oo iff & < a. It turns out
the density ratio w := p(z)/q(x), when = ~ g, tends to have a fat-tailed distribution when ¢ is more
peaked than p. The example below illustrates this with simple Gaussian distributions.

Example 3.1. Assume p(z) = N (2;0,07) and q(x) = N'(;0,07). Let x ~ q and w = p(x)/q(x)

the density ratio. If o, > o4, then w has a fat-tailed distribution with index v, = o2 /(02 — 02).

On the other hand, if 0, < 04, then w is bounded and not fat-tailed (effectively, a, = —+00).

By the definition above, if the importance weight w = p(x)/q(x) has a tail index ., the a-divergence
Dy, (p || q) exists only if & < cv,.. Although it is desirable to use a-divergence with large values of o
as VI objective function, it is important to keep o smaller than «, to ensure that the objective and
gradient are well defined. The problem, however, is that the tail index v, is unknown in practice, and
may change dramatically (e.g., even from finite to infinite) as g is updated during the optimization
process. This makes it suboptimal to use a pre-fixed « value. One potential way to address this
problem is to estimate the tail index o* empirically at each iteration using a tail index estimator (e.g.,
Hill et al., [1975; | Vehtari et al.||2015). Unfortunately, tail index estimation is often challenging and
requires a large number of samples. The algorithm may become unstable if «v, is over-estimated.

4 Hessian-based Representation of f-Divergence

In this work, we address the aforementioned problem by designing a generalization of f-divergence
in which f adaptively changes with p and ¢, in a way that always guarantees the existence of the

Fat-tailed distributions is a sub-class of heavy-tailed distributions, which are distributions whose tail
probabilities decay slower than exponential functions, that is, lim;—, 4 o exp(At) Fy (t) = oo forall A > 0.



expectation, while simultaneous achieving (theoretically) strong mass-covering equivalent to that of
the a-divergence with a = a*.

One challenge of designing such adaptive f is that the convex constraint over function f is difficult
to express computationally. Our first key observation is that it is easier to specify a convex function
f through its second order derivative f”, which can be any non-negative function. It turns out
f-divergence, as well as its gradient, can be conveniently expressed using f”/, without explicitly
defining the original f.

Proposition 4.1. 1) Any twice differentiable convex function f: Ry U {0} — R with finite f(0) can
be decomposed into linear and nonlinear components as follows

fO = (at )+ [ (= p)hudn )

where h is a non-negative function, (t); = max(0,t), and a,b € R. In this case, h = f"(t),
a = f'(0) and b = f(0). Conversely, any non-negative function h and a,b € R specifies a convex
function.

2) This allows us to derive an alternative representation of f-divergence:

(523 - u) J dp — ¢, (6)

where ¢ := fol ()1 = p)ydp = f(1) — £(0) — f/(0) is a constant.

Dy(pllg) = / Py

Proof. If f(t) = (at +b) + [;°(t — 1)+ h(u)dp, calculation shows

t
£y =a+ [ dn 10 = h).
0
Therefore, f is convex iff h is non-negative. See Appendix for the complete proof. O

Eq (6) suggests that all f-divergences are conical combinations of a set of special f-divergences of
form E,q[(p(z)/q(x) — n)+ — f(1)] with f(¢) = (¢t — ) +. Also, every f-divergence is completely
specified by the Hessian f”, meaning that adding f with any linear function at + b does not change
Dy (p || ¢). Such integral representation of f-divergence is not new; see e.g.,|[Feldman & Osterreicher
(1989); |Osterreicher] (2003); ILiese & Vajdal (2006); |[Reid & Williamson| (2011); [Sason| (2018).

For the purpose of minimizing Ds(p || gg) (6 € ©) in variational inference, we are more concerned
with calculating the gradient, rather than the f-divergence itself. It turns out the gradient of D (p || gs)
is also directly related to Hessian f” in a simple way.

Proposition 4.2. 1) Assume log qo(x) is differentiable w.r.t. 0, and f is a differentiable convex
function. For f-divergence defined in (2), we have

rlz)

VoDs(p |l a0) = —Eang, {pf <Qe)($)

where py(t) = f'(t)t — f(t) (equivalently, p’s(t) = f"(t)t if [ is twice differentiable).

) Y, log q9<x>} , @

2) Assume x ~ qq is generated by x = gg(§) where £ ~ qq is a random seed and gy is a function that
is differentiable w.r.t. 0. Assume f is twice differentiable and V ;. log(p(x)/qo(x)) exists. We have

p(x
Vo010l 0) = ~Bamguicnm |15 (0 ) Vs (7 borlp()/aa(a) |, ®
where v (t) = pp(t)t = f" (t)t>.
The result above shows that the gradient of f-divergence depends on f through ps or «y;. Taking
a-divergence (« ¢ {0,1}) as example, we have

f(t) =1%/(ala = 1)), pr(t) =1%/a, V5 (t) =17,



all of which are proportional to the power function t*. For KL(q || p), we have f(t) = —logt,
yielding p;(t) = logt — 1 and v4(¢t) = 1; for KL(p || ¢), we have f(t) = tlogt, yielding ps(t) =t
and v (t) = t.

The formulas in and (8) are called the score-function gradient and reparameterization gra-
dient (Kingma & Welling, [2014), respectively. Both equal the gradient in expectation, but are
computationally different and yield empirical estimators with different variances. In particular, the
score-function gradient in (7)) is “gradient-free” in that it does not require calculating the gradient of
the distribution p(x) of interest, while (8] is “gradient-based” in that it involves V, log p(x). It has
been shown that optimizing with reparameterization gradients tend to give better empirical results
because it leverages the gradient information V, log p(z), and yields a lower variance estimator for
the gradient (e.g., Kingma & Welling} 2014).

Our key observation is that we can directly specify f through any increasing function p¢, or non-
negative function s in the gradient estimators, without explicitly defining f.

Proposition 4.3. Assume f: R, — R is convex and twice differentiable, then

1) py in @) is a monotonically increasing function on R.. In addition, for any differentiable
increasing function p, there exists a convex function f such that py = p;

2) vy in [8) is non-negative on Ry, that is, y;(t) > 0, ¥t € Ry. In addition, for any non-negative
function -y, there exists a convex function f such that vy = ~y;

3) if py (1) is strictly increasing at t = 1 (i.e., ps(1) > 0), or v¢(t) is strictly positive at t = 1 (i.e.,
v¢(1) > 0), then D¢(p || q) = 0 implies p = q.

Proof. Because f is convex (f”(t) > 0), we have v¢(t) = f”(¢)t* > 0 and py(t) = f"(t)t > 0on
t € Ry, thatis, vy is non-negative and py is increasing on R . If p; is strictly increasing (or «yy is
strictly positive) at ¢ = 1, we have f is strictly convex at ¢ = 1, which guarantees D¢(p || ¢) = 0
imply p = g.

For non-negative function ~(¢) (or increasing function p(¢)) on R, any convex function f whose
second-order derivative equals y(t) /t? (or Py (t) /1) satisfies vy = v (resp. py = p). O

5 Safe f-Divergence with Inverse Tail Probability

The results above show that it is sufficient to find an increasing function p ¢, or a non-negative function
s to obtain adaptive f-divergence with computable gradients. In order to make the f-divergence
“safe”, we need to find py or ¢ that adaptively depends on p and ¢ such that the expectation in (7)
and (8) always exists. Because the magnitude of Vg log gg(x), V, log(p(x)/qe(x)) and Vege(§) are
relatively small compared with the ratio p(x)/q(z), we can mainly consider designing function p (or
«) such that they yield finite expectation E,4[p(p(x)/q(x))] < oo; meanwhile, we should also keep
the function large, preferably with the same magnitude as ¢+, to provide a strong mode-covering
property. As it turns out, the inverse of the tail probability naturally achieves all these goals.

Proposition 5.1. For any random variable w with tail distribution F,,(t) := Pr(w > t) and tail
index o, we have -
E[F,(w)?] < co,  forany B> —1.

Also, we have F,(t)? ~ t=8% and F,,(t)? is always non-negative and monotonically increasing
when 3 < 0.

Proof. Simply note that E[F,,(w)?] = [ F,(t)PdFs(t) = fol tBdt, which is finite only when
$ > —1. The non-negativity and monotonicity of F,(¢)? are obvious. F,(t)? ~ t=5* directly
follows the definition of the tail index. O

This motivates us to use F,,(¢)? to define p ¢ or vy, yielding two versions of “safe” tail-adaptive f
divergences. Note that here f is defined implicitly through p¢ or v¢. Although it is possible to derive
the corresponding f and D (p || ¢), there is no computational need to do so, since optimizing the
objective function only requires calculating the gradient, which is defined by p; or ;.



Algorithm 1 Variational Inference with Tail-adaptive f-Divergence (with Reparameterization Gradi-
ent)

Goal: Find the best approximation of p(x) from {gp: # € ©}. Assume x ~ ¢ is generated by
x = gp(&) where ¢ is a random sample from noise distribution ¢q.
Initialize 0, set an index 53 (e.g., B = —1).
for iteration do
Draw {x;}I_ | ~ qg, generated by x; = go(&;).
Letw; = p(xi)/qo(2:), Fu(t) = 37— Iw; > t)/n, and sety; = Foy (w;)?.
Update 6 < 0 + eA6, with € is step size, and

n

AO = Zi Z [viVoge(&i) Ve log(p(xs)/qe(xi))], where 2z, = Z%

7 =1

end for

In practice, the explicit form of F,(¢)? is unknown. We can approximate it based on empirical data
drawn from q. Let {«;} be drawn from ¢ and w; = p(z;)/q(z;), then we can approximate the tail

probability with Fy,(t) = % S I(w; > t). Intuitively, this corresponds to assigning each data
point a weight according to the rank of its density ratio in the population. Substituting the empirical
tail probability into the reparametrization gradient formula in (8)) and running a gradient descent with
stochastic approximation yields our main algorithm shown in Algorithm[I] The version with the
score-function gradient is similar and is shown in Algorithm 2 in the Appendix. Both algorithms can
be viewed as minimizing the implicitly constructed adaptive f-divergences, but correspond to using

different f.

Compared with typical VI with reparameterized gradients, our method assigns a weight p; =

F,,(w;)?, which is proportional #w? where #w; denotes the rank of data w; in the population {w; }.
When taking —1 < § < 0, this allows us to penalize places with high ratio p(z)/q(x), but avoid
to be overly aggressive. In practice, we find that simply taking 5 = —1 almost always yields the
best empirical performance (despite needing 8 > —1 theoretically). By comparison, minimizing the
classical a-divergence would have a weight of wg*; if « is too large, the weight of a single data point
becomes dominant, making gradient estimate unstable.

6 Experiments

In this section, we evaluate our adaptive f-divergence with different models. We use reparam-
eterization gradients as default since they have smaller variances (Kingma & Welling, [2014)
and normally yield better performance than score function gradients. Our code is available at
https://github.com/dilinwang820/adaptive-f-divergence.

6.1 Gaussian Mixture Toy Example

We first illustrate the approximation quality of our proposed adaptive f-divergence on Gaus-
sian mixture models. In this case, we set our target distribution to be a Gaussian mixture

p(r) = Zf:l TN (z; v;,1), for 2 € R?, where the elements of each mean vector v; is drawn
from uniform([—s, s]). Here s can be viewed as controlling the Gaussianity of the target distribution:
p reduces to standard Gaussian distribution when s = 0 and is increasingly multi-modal when s
increases. We fix the number of components to be k¥ = 10, and initialize the proposal distribution

using ¢(z) = 27221 wN(z; i, J?), where 27221 w; = 1.

We evaluate the mode-seeking ability of how ¢ covers the modes of p using a “mode-shift distance”

dist(p,q) = 27121 min; ||v; — p5]]2/10, which is the average distance of each mode in p to its

nearest mode in distribution q. The model is optimized using Adagrad with a constant learning rate
0.05. We use a minibatch of size 256 to approximate the gradient in each iteration. We train the
model for 10, 000 iterations. To learn the component weights, we apply the Gumble-Softmax trick
(Jang et al.,[2017; Maddison et al.,[2017) with a temperature of 0.1. Figureﬂ] shows the result when
we obtain random mixtures p using s = 5, when the dimension d of = equals 2 and 10, respectively.
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Figure 1: (a) plots the mode-shift distance between p and g; (b-c) show the MSE of mean and variance between
the true posterior p and our approximation g, respectively. All results are averaged over 10 random trials.
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Figure 2: Results on randomly generated Gaussian mixture models. (a) plots the average mode-shift distance;
(b-c) show the MSE of mean and variance. All results are averaged over 10 random trials.

We can see that when the dimension is low (= 2), all algorithms perform similarly well. However,
as we increase the dimension to 10, our approach with tail-adaptive f-divergence achieves the best
performance.

To examine the performance of variational approximation more closely, we show in Figure [2] the
average mode-shift distance and the MSE of the estimated mean and variance as we gradually increase
the non-Gaussianality of p(x) by changing s. We fix the dimension to 10. We can see from Figure
that when p is close to Gaussian (small s), all algorithms perform well; when p is highly non-Gaussian
(large s), we find that our approach with adaptive weights significantly outperform other baselines.

6.2 Bayesian Neural Network

We evaluate our approach on Bayesian neural network regression tasks. The datasets are collected
from the UCI dataset repositoryé Similarly to |[Li & Turner| (2016), we use a single-layer neural
network with 50 hidden units and ReLU activation, except that we take 100 hidden units for the
Protein and Year dataset which are relatively large. We use a fully factorized Gaussian approximation
to the true posterior and Gaussian prior for neural network weights. All datasets are randomly
partitioned into 90% for training and 10% for testing. We use Adam optimizer (Kingma & Ba, [2015)
with a constant learning rate of 0.001. The gradient is approximated by n = 100 draws of x; ~ gg
and a minibatch of size 32 from the training data points. All results are averaged over 20 random
partitions, except for Protein and Year, on which 5 trials are repeated.

We summarize the average RMSE and test log-likelihood with standard error in Table[I] We compare
our algorithm with oo = 0 (KL divergence) and o = 0.5, which are reported as the best for this task
in|Li & Turner| (2016). More comparisons with different choices of « are provided in the appendix.
We can see from Table [T]that our approach takes advantage of an adaptive choice of f-divergence
and achieves the best performance for both test RMSE and test log-likelihood in most of the cases.

*https://archive.ics.uci.edu/ml/datasets.html
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Average Test RMSE Average Test Log-likelihood
dataset B8=-1.0 a=10.0 a=0.5 B=-1.0 a=0.0 a=0.5
Boston |2.828 £0.177 2.956 £ 0.171 2.990 + 0.173|—2.476 £ 0.177 —2.547 £ 0.171 —2.506 £ 0.173
Concrete |5.371 £0.115 5.592 + 0.124 5.381 £ 0.111|—3.099 £+ 0.115 —3.149 £ 0.124 —3.103 £ 0.111
Energy (1.377 ££0.034 1.431 £ 0.029 1.531 £ 0.047|—1.758 £ 0.034 —1.795 4+ 0.029 —1.854 4 0.047
Kin8nm [0.085 + 0.001 0.088 £ 0.001 0.083 £0.001| 1.055+0.001 1.012+0.001 1.080 = 0.001
Naval [0.001 £ 0.000 0.001 £ 0.000 0.004 £ 0.000| 5.468 £0.000 5.269 4+ 0.000 4.086 4 0.000
Combined|4.116 £ 0.032 4.161 + 0.034 4.154 + 0.042|—2.835 + 0.032 —2.845 £ 0.034 —2.843 4+ 0.042
Wine [0.636 = 0.008 0.634 £ 0.007 0.634 + 0.008| —0.962 4+ 0.008 —0.959 £ 0.007 —0.971 4+ 0.008
Yacht [0.849 % 0.059 0.861 £ 0.056 1.146 + 0.092|—1.711 £ 0.059 —1.751 4+ 0.056 —1.875 £ 0.092
Protein |4.487 £ 0.019 4.565 £ 0.026 4.564 £ 0.040{—2.921 £ 0.019 —2.938 4+ 0.026 —2.928 4+ 0.040
Year |8.831 £ 0.037 8.859 + 0.036 8.985 + 0.042|—3.570 &+ 0.037 —3.600 £ 0.036 —3.518 £ 0.042

Table 1: Average test RMSE and log-likelihood for Bayesian neural regression.

6.3 Application in Reinforcement Learning

We now demonstrate an application of our method in reinforcement learning, applying it as an inner
loop to improve a recent soft actor-critic(SAC) algorithm (Haarnoja et al. |2018). We start with a
brief introduction of the background of SAC and then test our method in MuJoCo E] environments.

Reinforcement Learning Background Reinforcement learning considers the problem of finding
optimal policies for agents that interact with uncertain environments to maximize the long-term
cumulative reward. This is formally framed as a Markov decision process in which agents iteratively
take actions a based on observable states s, and receive a reward signal (s, a) immediately following
the action a performed at state s. The change of the states is governed by an unknown environmental
dynamic defined by a transition probability T'(s'|s, a). The agent’s action a is selected by a conditional
probability distribution m(a|s) called policy. In policy gradient methods, we consider a set of
candidate policies mg(a|s) parameterized by 6 and obtain the optimal policy by maximizing the
expected cumulative reward
J(o) = IEs~d,r,a~‘n'(a|s) [T(Sv CL)] )

where d(s) = Y, 7'~ 'Pr(s; = s) is the unnormalized discounted state visitation distribution
with discount factor v € (0, 1).

Soft Actor-Critic (SAC) is an off-policy optimization algorithm derived based on maximizing the
expected reward with an entropy regularization. It iteratively updates a Q-function Q(a, s), which
predicts that cumulative reward of taking action a under state s, as well as a policy 7(a|s) which
selects action a to maximize the expected value of Q(s, a). The update rule of Q(s, a) is based on a
variant of Q-learning that matches the Bellman equation, whose detail can be found in|Haarnoja et al.
(2018). At each iteration of SAC, the update of policy 7 is achieved by minimizing KL divergence

T = argmin Eqvq [KL(7(-|s) || p(-[5)], ©)

pofals) = oxp ( £(Qla.5) - V(s)). (10)

where 7 is a temperature parameter, and V'(s) = 7 log [, exp(Q(a, s)/7), serving as a normalization
constant here, is a soft-version of value function and is also iteratively updated in SAC. Here, d(s) is
a visitation distribution on states s, which is taken to be the empirical distribution of the states in the
current replay buffer in SAC. We can see that (9) can be viewed as a variational inference problem on
conditional distribution pg (a|s), with the typical KL objective function (aw = 0).

SAC With Tail-adaptive f-Divergence To apply f-divergence, we first rewrite (9) to transform the
conditional distributions to joint distributions. We define joint distribution pg (a, s) = exp((Q(a, s)—
V(s))/7)d(s) and g, (a,s) = m(a|s)d(s), then we can show that E,.4[KL(7(-|s) || po(-|s))] =
KL(g¢r || pg). This motivates us to extend the objective function in (9] to more general f-divergences,

D¢ (pq || ¢x) = EsndEajsr [f<eXp((Q(a’s) — V(S))/T)) - f(l)} .

m(als)

*http://www.mujoco.org/
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Figure 3: Soft Actor Critic (SAC) with policy updated by Algorithmwith B = —1, or a-divergence VI with
different av (¢ = O corresponds to the original SAC). The reparameterization gradient estimator is used in all the
cases. In the legend, “a = max” denotes setting o = +oc0 in a-divergence.

By using our tail-adaptive f-divergence, we can readily apply our Algorithm[I](or Algorithm 2 in
the Appendix) to update 7 in SAC, allowing us to obtain 7 that counts the multi-modality of Q(a, s)
more efficiently. Note that the standard a-divergence with a fixed « also yields a new variant of SAC
that is not yet studied in the literature.

Empirical Results We follow the experimental setup of |Haarnoja et al.|(2018). The policy 7, the
value function V (s), and the Q-function Q)(s, a) are neural networks with two fully-connected layers
of 128 hidden units each. We use Adam (Kingma & Ba, 2015) with a constant learning rate of 0.0003
for optimization. The size of the replay buffer for HalfCheetah is 107, and we fix the size to 10° on
other environments in a way similar to|/Haarnoja et al.| (2018]).

We compare with the original SAC (o = 0), and also other a-divergences, such as a = 0.5 and
« = oo (the & = max suggested in [Li & Turner| (2016)). Figure 3] summarizes the total average
reward of evaluation rollouts during training on various MuJoCo environments. For non-negative o
settings, methods with larger « give higher average reward than the original KL-based SAC in most
of the cases. Overall, our adaptive f-divergence substantially outperforms all other a-divergences on
all of the benchmark tasks in terms of the final performance, and learns faster than all the baselines in
most environments. We find that our improvement is especially significant on high dimensional and
complex environments like Ant and Humanoid.

7 Conclusion

In this paper, we present a new class of tail-adaptive f-divergence and exploit its application in
variational inference and reinforcement learning. Compared to classic a-divergence, our approach
guarantees finite moments of the density ratio and provides more stable importance weights and
gradient estimates. Empirical results on Bayesian neural networks and reinforcement learning indicate
that our approach outperforms standard a-divergence, especially for high dimensional multi-modal
distribution.
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