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Abstract

Optimizing task-related mathematical model is one of the most fundamental
methodologies in statistic and learning areas. However, generally designed schemat-
ic iterations may hard to investigate complex data distributions in real-world appli-
cations. Recently, training deep propagations (i.e., networks) has gained promising
performance in some particular tasks. Unfortunately, existing networks are often
built in heuristic manners, thus lack of principled interpretations and solid theoreti-
cal supports. In this work, we provide a new paradigm, named Propagation and
Optimization based Deep Model (PODM), to bridge the gaps between these differ-
ent mechanisms (i.e., model optimization and deep propagation). On the one hand,
we utilize PODM as a deeply trained solver for model optimization. Different from
these existing network based iterations, which often lack theoretical investigations,
we provide strict convergence analysis for PODM in the challenging nonconvex
and nonsmooth scenarios. On the other hand, by relaxing the model constraints
and performing end-to-end training, we also develop a PODM based strategy to
integrate domain knowledge (formulated as models) and real data distributions
(learned by networks), resulting in a generic ensemble framework for challenging
real-world applications. Extensive experiments verify our theoretical results and
demonstrate the superiority of PODM against these state-of-the-art approaches.

1 Introduction

In the last several decades, many machine learning and computer vision tasks have been formulated
as the problems of solving mathematically designed optimization models. Indeed, these models are
the workhorse of learning, vision and power in most practical algorithms. However, it is actually
hard to obtain a theoretically efficient formulation to handle these complex data distributions in
different practical problems. Moreover, generally designed optimization models [3, 5] may be lack
of flexibility and robustness leading to severe corruptions and errors, which are commonly existed in
real-world scenarios.

In recent years, a variety of deep neural networks (DNNs) have been established and trained in end-to-
end manner for different learning and vision problems. For example, AlexNet [13] first demonstrated
the advantages of DNNs in the challenge of ImageNet large scale visual recognition. With a careful
design, [29] proposed GoogleNet, which increased the depth and width of the network while keeping
the computational budget constant. However, some researchers also found that although increasing
the layers of the networks may improve the performance, it is more difficult to train a deeper network.
By introducing shortcut blocks, [10] proposed the well-known residual network. It has been verified
that the residual structure can successfully avoid gradient vanishing problems and thus significantly
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improve the practical training performance for deeper network. Besides the great success of DNNs in
supervised learning, some efforts have also been made on unsupervised learning tasks. [8] proposed
the generative adversarial network, which utilizes a pair of generator network and discriminator
network contesting with each other in a zero-sum game framework to generate the realistic samples.
Though with relatively good performance on specific applications, the interpretability issue is still a
big problem for existing DNNs. That is, it is challenging to reason about what a DNN model actually
does due to its opaque or black-box nature.

Embedding DNNs into the optimization process is recently popular and some preliminary works have
been developed from different perspectives. For example, [9] trained a feed-forward architecture
to speed up sparse coding problems. [1] introduced deep transformations to address correlation
analysis on multiple view data. Very recently, to better address the true image degradation, [7, 33, 30]
incorporated convolutional DNN as image priors into the maximum a posterior inference process
for image restoration. Another group of recent works also tried to utilize recurrent neural network
(RNN) structures [2] and/or reinforcement strategies [17] to directly learn descent iterations for
different learning tasks. It should be pointed out that the convergence issue should be the core for
optimization algorithm design. Unfortunately, even with relatively good practical performance on
some applications, till now it is still challenging to provide strict convergence analysis on these deeply
trained iterations.

1.1 Our Contributions

As discussed above, the interpretability and guarantees are the most important missing footstones
for the previous experience based networks. Some preliminary investigations have been proposed
to combine numerical iterations and learnable architectures for deep propagations design. However,
due to these naive combination strategies (e.g., directly replace iterations by architectures), it is still
challenging to provide strict convergence analysis on their resulted deep models. To partially break
through these limitations, this paper proposes a theoretically guaranteed paradigm, named Propagation
and Optimization based Deep Model (PODM), to incorporate knowledge-driven schematic iterations
and data-dependent network architectures to address both model optimization and learning tasks.
On the one hand, PODM actually provides a learnable (i.e., data-dependent) numerical solver (See
Fig. 1). Compared with these naive unrolling based methods (e.g., [7, 33, 30, 17, 2, 20]), the main
advantage of PODM is that we can generate iterations, which strictly converge to the critical point of
the given optimization model, even in the complex nonconvex and nonsmooth scenarios. On the other
hand, by slightly relaxing the exact optimality constraints during propagations, we can also obtain
an interpretable framework to integrate mathematical principles (i.e., formulated by model based
building-block) and experience of the tasks (i.e., network structures designed in heuristic manners)
for collaborative end-to-end learning.

In summary, the contributions of this paper mainly include:

• We provided a model-inspired paradigm to establish building-block modules for deep model
design. Different from existing trainable iteration methods, in which the architectures are
built either from specific prior formulations (e.g., Markov random fields [24]) or completely
in heuristic manners (e.g., replace original priors by experience based networks [7, 33]),
we develop a flexible framework to integrate both data (investigated from training set) and
knowledge (incorporated into principled priors) for deep propagations construction.

• By introducing an optimality error checking condition together with a proximal feedback
mechanism, we prove in theory that the propagation generated by PODM is globally2

convergent to the critical point of the given optimization model. Such strict convergent
guarantee is just the main advantage against these existing deep iterations designed in
heuristic manner (e.g., [7, 33, 30, 17, 2])

• As a nontrivial byproduct, the relaxed PODM actually provides a plug-and-play, collabora-
tive, interpretable, and end-to-end deep learning framework for real-world complex tasks.
Extensive experimental results on real-world image restoration applications demonstrate the
effectiveness of our PODM and its relaxed extension.

2Here “globally” indicates that we generate a Cauchy sequence, thus the whole sequence is convergent.
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Figure 1: Illustrating the mechanism of PODM for nonconvex model optimization.

2 Existing Trainable Iterations: Lack Generalizations and Guarantees

We review existing training based iterative methods for model optimization. Specifically, most
learning and vision tasks can be formulated as the following regularized optimization model:

min
x

Φ(x) := f(x) + g(x), (1)

where f denotes the loss term and g is related to the regularization term. Different from classical
numerical solvers, which design their iterations purely based on mathematical derivations. Recent
studies try to establish their optimization process based on training iterative architectures on collected
training data. These existing works can be roughly divided into two categories: trainable priors and
network based iterations.

The first category of methods aim to introduce hyper parameters for specific prior formulations
(e.g., `1-norm and RTF) and then unroll the resulted updating schemes to obtain trainable iterations
for Eq (1). For example, the works in [9, 27] parameterize the `1 regularizer and adopt classical
first-order methods to derivate their final iterations. The main limitation of these approaches is that
their schemes are established based on specific forms of priors, thus cannot be applied for general
learning/vision problems. Even worse, the hyper parameters in these approaches (e.g., trade-off or
combination weights) are too simple to extract complex data distributions.

On the other hand, the works in [7, 33] try to directly replace prior-related numerical computations
at each iteration by experientially designed network architectures. In this way, these approaches
actually completely discard the explicit regularization g in their updating schemes. Very recently, the
recurrent [2], unrolling [19] and reinforcement [17] learning strategies have also been introduced to
train network based iterations for model optimization. Since these approaches completely discard
the original regularizations (i.e., g), no prior knowledges can be enforced in their iterations. More
importantly, we must emphasize that due to these embedded inexact computations, it is challenging
to provide strict convergence analysis on most of above mentioned trainable iterations.

3 Our Model Inspired Building-Blocks

In this section, we establish two fundamental iterative modules as our trainable architectures for both
model optimization and deep propagation. Specifically, the deep propagation module is designed
as our generic architecture to incorporate domain knowledge into trainable propagations. While
the optimization module actually enforces feedback control to guide the iterations to satisfy our
optimality errors. The mechanism of PODM is briefly illustrated in Fig. 1.

Suppose A is the given network architecture (may built in heuristic manner) and denote its output as
xA = A(x;θA). We would like to design our propagation module based on both A and Φ defined in
Eq. (1). Specifically, rather than parameterizing g or completely replace it by networks in existing
works, we integrate these two parts by the following quadratic penalized energy:

min
x

Φ(x) + d(x,xA)− 〈x, ε〉 = min
x

Knowledge︷ ︸︸ ︷
f(x)︸︷︷︸

Fidelity

+ g(x)︸︷︷︸
Designed prior

+

Data︷ ︸︸ ︷
d(x,xA)︸ ︷︷ ︸

Learned prior

−〈x, ε〉︸ ︷︷ ︸
Error

. (2)
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Here, d(x,xA) is the distance function which intents to introduce the output of network into the
propagation module. It can be defined as d(x,xA) = h(x)− h(xA)− 〈∇h(xA),x− xA〉, where
h(x) = ‖ · ‖2H and H denotes a symmetric matrix3. ε denotes the error corresponding to Eq. (1) since
introducing the network. Both the designed prior g(x) and learned prior d(x,xA) are merged to
compose our hybrid priors. Please notice that Eq. (2) can also be understood as a hybrid prior based
inexact approximation of Eq. (1), in which we establish an ensemble of both domain knowledge (i.e.,
g) and training data (i.e., A). Indeed, we can control the inexact solution by calculating the specific
function about ε.

Propagation Module: We first investigate the following sub-model of Eq. (2) (i.e., only with fidelity
and learned priors)

xF = F(xA;θH) := arg min
x
{f(x) + d(x,xA)} , (3)

where θH denotes the parameter in distance d(x,xA). Eq. (3) actually integrates the principled
model fidelity (i.e., f ) and network based priors (A). Following this formulation, we can define our
data-dependent propagation module (P) as the cascade of A and F in the l-th stage, i.e.,

x̃l = P(xl−1;ϑl) := F
(
A
(
xl−1;θlA

)
;θlH

)
,

where ϑl = {θlA,θlH} is the set of trainable parameters.

Optimality Module: Due to the inexactness of these learning based architectures, the propagation
module definitely brings errors when optimizing Eq. (1). To provide effective control for these
iterative errors and generate strictly convergent propagations, we recall the designed prior g and
assume xlG is one solution of Eq. (2) in the l-th stage, i.e.,

xlG ∈ G(x̃l) := arg min
x
f(x) + g(x) + d(x,xlA)− 〈x, εl〉. (4)

The error εl has a specific form as εl = ∇f(xlG) +∇d(xlG ,x
l
A) +uxl

G
by considering the first-order

optimality condition of Eq. (4). Here uxl
G
∈ ∂g(xlG) is a limiting Ferchet subdifferential of g. Intu-

itively, it is necessary to introduce some criteria about εl to illustrate the current propagation whether
satisfied the desired convergence behavior. Fortunately, we can demonstrate that the convergence of
our deep propagations can be successfully guaranteed by the following optimality error:

‖ψ(εl)‖ ≤ cl‖xlG − xl−1‖. (5)

Here ψ(εl) = εl +µl(xlG −xl−1)/2−H(xl−1 +xlG − 2xlA) is the error function and cl is a positive
constant to reveal our tolerance of the inexactness at the l-th stage.

Therefore, as stated in the following Eq. (6), we adopt xlG as the output of our optimality module in
the l-th stage if the criterion in Eq. (5) is satisfied. Otherwise, we return to the previous stage and
adopt a standard proximal gradient updating (i.e., feedback) to correct the propagation.

O(x̃l,xl−1; γl) :=

{
G(x̃l) if Eq. (5) is satisfied,
proxγlg(x

l−1 − γl(∇f(xl−1))) otherwise. (6)

In this way, our optimality module actually provides a mechanism with proximal operator to guide
the propagations toward convergence.

Notice that both xlG and εl are abstracted in above optimality module. Actually, temporarily ignoring
the learned prior and error in Eq (2), we can provide a practical calculative form of xlG by calculating
the traditionally designed prior appeared in Eq. (2) (i.e., Eq. (1), only with fidelity and designed
priors) with a momentum proximal mechanism as follows,

xlG ∈ proxγlg

(
x̃l − γl

(
∇f(x̃l) + µl(x̃l − xl−1)

))
, (7)

where µl is the trade-off parameter, and γl denotes the step size. On the other hand, the updating of
xlG can also be reformulated4 as xlG ∈ proxγlg

(
xlG − γl

(
∇f(xlG) + µl(xlG − xlA)

)
+ γlεl

)
. Thus,

Combining it with Eq. (7), we can obtain a practical computable formulation of error function ψ(εl)
appeared in optimality error as

ψ(εl) =
1

γl
(x̃l − xlG)− µl

2
(2x̃l − xlG − xl−1) + H(xlG − xl−1) +∇f(xlG)−∇f(x̃l).

3d(x,xA) actually is a special Bregman distance. H can be an assigned or learnable matrix. The distance
d(x,xA) = µ‖x− xA‖2 if H = µI. We will detailed illustrate it on specific applications in experiments.

4The detained deductions on this equality reformulation can be found in the supplementary materials.
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4 Propagation and Optimization based Deep Model

Based on the above building-block modules, it is ready to introduce Propagation and Optimization
based Deep Model (PODM). We first show how to apply PODM to perform fast and accurate model
optimization and analyze its convergence behaviors in nonconvex and nonsmooth scenarios. Then we
discuss how to establish end-to-end type PODM with relaxed optimality error to perform practical
ensemble learning for challenging real-world applications.

4.1 PODM: A Deeply Trained Nonconvex Solver with Strict Convergence Guarantee

We demonstrate how to apply PODM for fast and accurate nonconvex optimization. It should be
emphasized that different from most existing trainable iteration methods, which either incorporate
networks into the iterations in heuristic manner (e.g., [33, 7]) or directly estimate data-dependent
descent directions using networks (e.g., [17, 2]), PODM provides a nice mechanism with optimality
error to control the training based propagations. It will be stated in the following that the main
advantage of our PODM is that the convergence of our iterations can be strictly guaranteed, while no
theoretical guarantees are provided for the above mentioned experientially trained iterations.

PODM for Nonconvex and Nonsmooth Optimization: We first illustrate the mechanism of PODM
in Fig. 1. It can be seen that PODM consists of two fundamental modules, i.e., experientially designed
(trainable) propagation module P and theoretically designed optimality module O. It should be
pointed out that to guarantee the theoretical convergence, only the parameters θlA are learned when
considering PODM as an accurate numerical solver5.

Convergence Behaviors Analysis: Before providing our main theory, we give some statements
about functions appeared in our optimization model. Specifically, we assume that f is Lipschitz
smooth, g is proper and lower semi-continuous, d is differential, and Φ is coercive6. All of these
assumptions are fairly loose in most model optimization tasks.

Proposition 1. Suppose that the optimality error in Eq.(5) (i.e., ‖ψ(εl)‖ ≤ cl‖xlG−xl−1‖) is satisfied,
then we have Φ(xlG) ≤ Φ(xl−1)−

(
µl/4− cl2/µl

)
‖xlG − xl−1‖2. In contrast, if the inequality in

Eq. (5) is not satisfied and thus the variable is updated by xl = proxγlg(x
l−1 − γl(∇f(xl−1))).

Then we have Φ(xl) ≤ Φ(xl−1) −
(
1/(2γl)− Lf/2

)
‖xl − xl−1‖2, where Lf is the Lipschitz

modulus of∇f(x).

Actually, Proposition 1 provides us a nice descent property for PODM on the variational energy Φ(x)
during iterations. That is, it is easy to obtain a non-increase sequence {Φ(xl)}l∈N, which results
in a limited value Φ∗ so that liml→∞ Φ(xl) = Φ∗ < ∞. Moreover, if {xl}l∈N is bounded, there
exists a convergence subsequence such that limj→∞ xlj = x∗, where {lj} ⊂ {l} ⊂ N. Then from
the conclusions in Proposition 1, we also have the sum of ‖xl − xl−1‖2 from l = 1 to l → ∞ is
bounded. Thus we can further prove the following proposition.

Proposition 2. Suppose x∗ is any accumulation point of sequence {xl}l∈N generalized by PODM,
then there exists a subsequence {xlj}j∈N such that lim

j→∞
xlj = x∗, and lim

j→∞
Φ(xlj ) = Φ(x∗).

Based on the above results, it is ready to establish the convergence results for our PODM when
considering it as a numerical solver for nonconvex model optimization.

Theorem 1. (Converge to the Critical Point of Eq. (1)) Suppose f is proper and Lipschitz smooth, g
is proper and lower semi-continuous, and Φ is coercive. Then the output of PODM (i.e., {xl}l∈N)
satisfies: 1. The limit points of {xl}l∈N (denoted as Ω) is a compact set; 2. All elements of Ω are the
critical points of Φ; 3. If Φ is a semi-algebraic function, {xl}l∈N converges to a critical point of Φ.

In summary, we actually prove that PODM provides a novel strategy to iteratively guide the propaga-
tions of deep networks toward the critical point of the given nonconvex optimization model, leading
to a fast and accurate numerical solver.

5Notice that both θl
A and θl

H are learnable in the Relaxed PODM, which will be introduced in Section 4.2.
The algorithms of PODM and Relaxed PODM are presented in the supplementary materials.

6Due to the space limit, we omit the details of these definitions, all proofs of the following propositions and
theorem. The detailed version is presented in the supplementary materials.
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4.2 Relaxed PODM: An End-to-end Collaborative Learning Framework

It is shown in the above subsection that by enforcing a carefully designed optimality error and greedily
train the networks, we can obtain a theoretically convergent solver for nonconvex optimization.
However, it is indeed challenging to utilize strict mathematical models to exactly formulate the
complex data distributions in real-world applications. Therefore, in this subsection, we would like
to relax the theoretical constraint and develop a novel end-to-end learning framework to address
real-world tasks. In particular, rather than only training the parameters θlA in given network A, we
also introduce flexible networks to learn parameters θlH in F at each layer. Therefore, at the l-th
layer, we actually have two groups of learnable parameters, including θlA for A and θlH for F . The
forward propagation of the so-called Relaxed PODM (RPODM) at each stage can be summarized as
xl = G

(
F
(
A
(
xl−1;θlA

)
;θlH

))
. We would like to argue that RPODM actually provides a way to

train the network structure using both domain knowledges and training data, thus results in a nice
collaborative learning framework.

5 Experimental Results

We first analyze the convergence behaviors of PODM by applying it to solve the widely used
nonconvex `p-regularized sparse coding problem. Then, we evaluate the performance of our Relaxed
PODM on the practical image restoration applications. All the experiments are conducted on a PC
with Intel Core i7 CPU @ 3.6 GHz, 32 GB RAM and an NVIDIA GeForce GTX 1060 GPU.

5.1 PODM for `p-regularized Sparse Coding

Now we consider the nonconvex `p-regularized (0 < p < 1) sparse coding model: minα ‖Dα−o‖2+
λ‖α‖pp, which has been widely used for synthetic image modeling [18, 22], subspace clustering [21]
and motion segmentation [31], etc. Here λ is the regularization parameter, o, D and α denote
the observed signal, a given dictionary, and the corresponding sparse codes, respectively. In our
experiments, we formulate D as the multiplication of the down-sampling operator and the inverse
of a three-stage Haar wavelet transform [3], which results in a sparse coding based single image
super-resolution formulation. We consider `0.8-norm to enforce the sparsity constraint. As for PODM,
we define H = µI/2 with µ = 1e− 2 in the distance function d (i.e., d(x,xA) = µ‖x− xA‖2/2)
to establish the propagation and optimality modules. For fair comparison, we just adopt the network
architecture used in existing works (i.e., IRCNN [33]) as A for PODM.

To verify the convergence properties of our framework, we plotted the iteration behaviors of PODM
on example images from the commonly used “Set5” super-resolution benchmark [4] and compared it
with the most popular numerical solvers (e.g., FISTA [3]) and the recently proposed representative
network based iteration methods (e.g., IRCNN [33]). Fig. 2 showed the curves of relative error (i.e.,
log10(‖xl+1 − xl‖/‖xl‖)), reconstruction error (i.e., ‖xl − xgt‖/‖xgt‖), structural similarity (SSIM)
and our optimality error defined in Eq. (5). It can be observed that the curves of relative error (i.e.
subfigure (a)) for IRCNN is always oscillating and cannot converge even after 200 stages. This
is mainly due to its naive network embedding strategy. Although with a little bit smooth relative
errors, FISTA is much slower than our PODM. Meanwhile, we observed that PODM also has better
performance than other two schemes in terms of the restoration error (in subfigure (b), lower is better)
and SSIM (in subfigure (c), higher is better). Furthermore, we also explored the optimality error of
our PODM. It can be seen from subfigure (d) that the optimality error is always satisfied. This means
that the learnable architectures can always be used to improve the iteration process of PODM.

We then reported the average quantitative scores (i.e., PSNR and SSIM) on two benchmark datasets [4,
32]. As shown in Table 1, the quantitative performance of PODM are much better than all the
compared methods on all up-sampling scales (i.e., ×2,×3,×4).

5.2 Relaxed PODM for Image Restoration

Image restoration is one of the most challenging low-level vision problems, which aims to recov-
er a latent clear image u from the blurred and noised observation o. To evaluate the Relaxed
PODM (RPODM) paradigm, we would like to formulate the image restoration task as u by solv-
ing minu ‖k ⊗ u − o‖2 + χΩ(u), where k and n are respectively the blur kernel and the noises,
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(a) (b) (c) (d)

Figure 2: Convergence curves of FISTA, IRCNN, and our PODM. Subfigures (a)-(c) are the relative error,
reconstruction error and SSIM, respectively. Subfigure (d) plots the “Optimality Error” appeared in PODM.

Table 1: Averaged quantitative performance on super-resolution with different up-sampling scales.

Scale Metric [4] [32]

FISTA IRCNN Ours FISTA IRCNN Ours

×2
PSNR 35.14 37.43 37.46 31.41 32.88 33.06
SSIM 0.94 0.96 0.98 0.90 0.91 0.95

×3
PSNR 31.35 33.39 33.44 28.39 29.61 29.77
SSIM 0.88 0.92 0.96 0.81 0.83 0.90

×4
PSNR 29.26 31.02 31.05 26.93 27.72 27.86
SSIM 0.83 0.88 0.93 0.76 0.76 0.85

Table 2: Averaged quantitative performance on image restoration.

Metric TV HL EPLL CSF RTF MLP IRCNN Ours

[15]
PSNR 29.38 30.12 31.65 32.74 33.26 31.32 32.51 34.06
SSIM 0.88 0.90 0.93 0.93 0.94 0.90 0.92 0.97
TIME 1.22 0.10 70.32 0.12 26.63 0.49 2.85 1.46

[28]
PSNR 30.67 31.03 32.44 31.55 32.45 31.47 32.61 32.62
SSIM 0.85 0.85 0.88 0.87 0.89 0.86 0.89 0.89
TIME 6.38 0.49 721.98 0.50 240.98 4.59 16.67 1.95

and χΩ is the indicator function of the set Ω. Here we define Ω = {u|‖u‖0 ≤ s, a ≤ [u]i ≤
b, with s > 0, a = mini{[o]i}, b = maxi{[o]i}, i = 1, · · · , n.} to enforce our fundamen-
tal constraints on u. It is easy to check that the proximal operator corresponding to χΩ can be
written as proxχΩ

(u) := HardThre(Proj[a,b](u)), where HardThre(·) and Proj[a,b](·) are the
hard thresholding and projection operators, respectively. Then we would like to introduce learn-
able architectures to build RPODM. Specifically, by considering the distance measure d(x,xA)

in filtered space, we define H = µ
∑N
n=1 f

>
n fn/2, where {fn} denote the filtering operations.

In this way, the propagation module can be directly obtained by solving Eq. (3) in closed form,
i.e., xF = (K>K+µ

∑N
n=1 F

>
nFn)−1(K>o+µ

∑N
n=1 F

>
nFnxA), where K and {Fn} are block-

circulant matrices corresponding to convolutions. Inspired by [14], here we just introduce a multilayer
perceptron and the DCT basis to output the parameter µ and construct the filters {fn}, respectively.
Then we adopt a CNN architecture with 6 convolutional layers (the first 5 layers followed by ELU [6]
activations) as A for our deep propagation.

Comparisons with State-of-the-art Methods: We compared RPODM with several state-of-the-art
image restoration approaches, including traditional numerical methods (e.g. TV [16], HL [12]),
learning based methods (e.g. EPLL [34], MLP [26]), and deep unrolling methods (e.g. CSF [25],
RTF [24], IRCNN [33]). We first conducted experiments on the most widely used Levin et al.’
benchmark [15], with 32 blurry images of size 255 × 255. We also evaluated all these compared
methods on the more challenging Sun et al.’ benchmark [28], which includes 640 blurry images with
1% Gaussian noises, sizes range from 620×1024 to 928×1024. Table 2 reported the quantitative
results (i.e., PSNR, SSIM and TIME (in seconds)). It can be seen that our proposed method
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PSNR / SSIM 32.00 / 0.94 34.65 / 0.95 35.67 / 0.96 35.47 / 0.95 36.75 / 0.98

PSNR / SSIM 31.28 / 0.86 29.86 / 0.82 31.14 / 0.86 31.35 / 0.87 31.65 / 0.87
Blurred Image EPLL CSF RTF IRCNN Ours

Figure 3: Image restoration results on two example images, where the inputs on the top and bottom rows are
respectively from Levin et al.’ and Sun et al.’ benchmarks. The PSNR / SSIM are reported below each image.

Blurred Image EPLL CSF RTF IRCNN Ours

Figure 4: Image restoration results on the real blurry image.

can consistently obtain higher quantitative scores than other approaches, especially on Levin et
al.’ dataset [15]. As for the running time, we observed that RPODM is much faster than most
conventional optimization based approaches and recently proposed learning based iteration methods
(i.e., TV, EPLL, RTF, MLP and IRCNN). While the speeds of HL and CSF are slightly faster than
RPODM. Unfortunately, the performance of these two simple methods are much worse than our
approach. The qualitative comparisons in Fig. 3 also verified the effectiveness of RPODM.

Real Blurry Images: Finally, we evaluated RPODM on the real-world blurry images [11] (i.e., with
unknown blur kernel and 1% additional Gaussian noises). We adopted the method in [23] to estimate
a rough blur kernel. In Fig. 4, we compared the image restoration results of RPODM with other
competitive methods (top 4 in Table 2, i.e., EPLL, CSF, RTF, and IRCNN) based on this estimated
kernel. It can be seen that even with the roughly estimated kernel (maybe inexact), RPODM can still
obtain clear image with richer details and more plentiful textures (see zoomed in regions).

6 Conclusions

This paper proposed Propagation and Optimization based Deep Model (PODM), a new paradigm
to integrate principled domain knowledge and trainable architectures to build deep propagations for
model optimization and machine learning. As a learning based numerical solver, we proved in theory
that the sequences generated by PODM can successfully converge to the critical point of the given
nonconvex and nonsmooth optimization model. Furthermore, by relaxing the optimality error, we
actually also obtain a plug-and-play, collaborative, interpretable, and end-to-end deep model for
real-world complex tasks. Extensive experimental results verified our theoretical investigations and
demonstrated the effectiveness of the proposed framework.
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