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Abstract

We propose a novel class of network models for temporal dyadic interaction
data. Our objective is to capture important features often observed in social
interactions: sparsity, degree heterogeneity, community structure and reciprocity.
We use mutually-exciting Hawkes processes to model the interactions between
each (directed) pair of individuals. The intensity of each process allows interactions
to arise as responses to opposite interactions (reciprocity), or due to shared interests
between individuals (community structure). For sparsity and degree heterogeneity,
we build the non time dependent part of the intensity function on compound random
measures following (Todeschini et al., 2016). We conduct experiments on real-
world temporal interaction data and show that the proposed model outperforms
competing approaches for link prediction, and leads to interpretable parameters.

1 Introduction

There is a growing interest in modelling and understanding temporal dyadic interaction data. Temporal
interaction data take the form of time-stamped triples (t, i, j) indicating that an interaction occurred
between individuals i and j at time t. Interactions may be directed or undirected. Examples of such
interaction data include commenting a post on an online social network, exchanging an email, or
meeting in a coffee shop. An important challenge is to understand the underlying structure that
underpins these interactions. To do so, it is important to develop statistical network models with
interpretable parameters, that capture the properties which are observed in real social interaction data.

One important aspect to capture is the community structure of the interactions. Individuals are often
affiliated to some latent communities (e.g. work, sport, etc.), and their affiliations determine their
interactions: they are more likely to interact with individuals sharing the same interests than to
individuals affiliated with different communities. An other important aspect is reciprocity. Many
events are responses to recent events of the opposite direction. For example, if Helen sends an email
to Mary, then Mary is more likely to send an email to Helen shortly afterwards. A number of papers
have proposed statistical models to capture both community structure and reciprocity in temporal
interaction data (Blundell et al., 2012; Dubois et al., 2013; Linderman and Adams, 2014). They use
models based on Hawkes processes for capturing reciprocity and stochastic block-models or latent
feature models for capturing community structure.

In addition to the above two properties, it is important to capture the global properties of the interaction
data. Interaction data are often sparse: only a small fraction of the pairs of nodes actually interact.
Additionally, they typically exhibit high degree (number of interactions per node) heterogeneity:
some individuals have a large number of interactions, whereas most individuals have very few,
therefore resulting in empirical degree distributions being heavy-tailed. As shown by Karrer and
Newman (2011), Gopalan et al. (2013) and Todeschini et al. (2016), failing to account explicitly for
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degree heterogeneity in the model can have devastating consequences on the estimation of the latent
structure.

Recently, two classes of statistical models, based on random measures, have been proposed to capture
sparsity and power-law degree distribution in network data. The first one is the class of models
based on exchangeable random measures (Caron and Fox, 2017; Veitch and Roy, 2015; Herlau et al.,
2016; Borgs et al., 2018; Todeschini et al., 2016; Palla et al., 2016; Janson, 2017a). The second
one is the class of edge-exchangeable models (Crane and Dempsey, 2015; 2018; Cai et al., 2016;
Williamson, 2016; Janson, 2017b; Ng and Silva, 2017). Both classes of models can handle both
sparse and dense networks and, although the two constructions are different, connections have been
highlighted between the two approaches (Cai et al., 2016; Janson, 2017b).

The objective of this paper is to propose a class of statistical models for temporal dyadic interaction
data that can capture all the desired properties mentioned above, which are often found in real
world interactions. These are sparsity, degree heterogeneity, community structure and reciprocity.
Combining all the properties in a single model is non trivial and there is no such construction to our
knowledge. The proposed model generalises existing reciprocating relationships models (Blundell
et al., 2012) to the sparse and power-law regime. Our model can also be seen as a natural extension
of the classes of models based on exchangeable random measures and edge-exchangeable models
and it shares properties of both families. The approach is shown to outperform alternative models for
link prediction on a variety of temporal network datasets.

The construction is based on Hawkes processes and the (static) model of Todeschini et al. (2016)
for sparse and modular graphs with overlapping community structure. In Section 2, we present
Hawkes processes and compound completely random measures which form the basis of our model’s
construction. The statistical model for temporal dyadic data is presented in Section 3 and its properties
derived in Section 4. The inference algorithm is described in Section 5. Section 6 presents experiments
on four real-world temporal interaction datasets.

2 Background material

2.1 Hawkes processes

Let (tk)k≥1 be a sequence of event times with tk ≥ 0, and letHt = (tk|tk ≤ t) the subset of event
times between time 0 and time t. Let N(t) =

∑
k≥1 1tk≤t denote the number of events between time

0 and time t, where 1A = 1 if A is true, and 0 otherwise. Assume that N(t) is a counting process
with conditional intensity function λ(t), that is for any t ≥ 0 and any infinitesimal interval dt

Pr(N(t+ dt)−N(t) = 1|Ht) = λ(t)dt. (1)

Consider another counting process Ñ(t) with the corresponding (t̃k)k≥1, H̃t, λ̃(t). Then, N(t), Ñ(t)
are mutually-exciting Hawkes processes (Hawkes, 1971) if the conditional intensity functions λ(t)

and λ̃(t) take the form

λ(t) = µ+

∫ t

0

gφ(t− u) dÑ(u) λ̃(t) = µ̃+

∫ t

0

gφ̃(t− u) dN(u)

where µ = λ(0) > 0, µ̃ = λ̃(0) > 0 are the base intensities and gφ, gφ̃ non-negative kernels
parameterised by φ and φ̃. This defines a pair of processes in which the current rate of events of each
process depends on the occurrence of past events of the opposite process.

Assume that µ = µ̃, φ = φ̃ and gφ(t) ≥ 0 for t > 0, gφ(t) = 0 for t < 0. If gφ admits a form of fast
decay then this results in strong local effects. However, if it prescribes a peak away from the origin
then longer term effects are likely to occur. We consider here an exponential kernel

gφ(t− u) = ηe−δ(t−u), t > u (2)

where φ = (η, δ). η ≥ 0 determines the sizes of the self-excited jumps and δ > 0 is the constant
rate of exponential decay. The stationarity condition for the processes is η < δ. Figure 1 gives an
illustration of two mutually-exciting Hawkes processes with exponential kernel and their conditional
intensities.
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(a) (b) (c) (d)

Figure 1: Illustration of mutually-exciting Hawkes processes with exponential kernel with parameters
µ = 0.25, η = 1 and δ = 2. (a) Counting process N(t) and (b) its conditional intensity λ(t). (c)
Counting process Ñ(t) and its conditional intensity λ̃(t).

2.2 Compound completely random measures

A homogeneous completely random measure (CRM) (Kingman, 1967; 1993) on R+ without fixed
atoms nor deterministic component takes the form

W =
∑
i≥1

wiδθi (3)

where (wi, θi)i≥1 are the points of a Poisson process on (0,∞)×R+ with mean measure ρ(dw)H(dθ)
where ρ is a Lévy measure, H is a locally bounded measure and δx is the dirac delta mass at x. The
homogeneous CRM is completely characterized by ρ and H , and we write W ∼ CRM(ρ,H), or
simply W ∼ CRM(ρ) when H is taken to be the Lebesgue measure. Griffin and Leisen (2017)
proposed a multivariate generalisation of CRMs, called compound CRM (CCRM). A compound
CRM (W1, . . . ,Wp) with independent scores is defined as

Wk =
∑
i≥1

wikδθi , k = 1, . . . , p (4)

where wik = βikwi0 and the scores βik ≥ 0 are independently distributed from some probability
distribution Fk and W0 =

∑
i≥1 wi0δθi is a CRM with mean measure ρ0(dw0)H0(dθ). In the rest

of this paper, we assume that Fk is a gamma distribution with parameters (ak, bk), H0(dθ) = dθ is
the Lebesgue measure and ρ0 is the Lévy measure of a generalized gamma process

ρ0(dw) =
1

Γ(1− σ)
w−1−σe−τwdw (5)

where σ ∈ (−∞, 1) and τ > 0.

3 Statistical model for temporal interaction data

Consider temporal interaction data of the form D = (tk, ik, jk)k≥1 where (tk, ik, jk) ∈ R+ × N2
∗

represents a directed interaction at time tk from node/individual ik to node/individual jk. For example,
the data may correspond to the exchange of messages between students on an online social network.

We use a point process (tk, Uk, Vk)k≥1 on R3
+, and consider that each node i is assigned some

continuous label θi ≥ 0. the labels are only used for the model construction, similarly to (Caron
and Fox, 2017; Todeschini et al., 2016), and are not observed nor inferred from the data. A point
at location (tk, Uk, Vk) indicates that there is a directed interaction between the nodes Uk and Vk at
time tk. See Figure 2 for an illustration.

For a pair of nodes i and j, with labels θi and θj , let Nij(t) be the counting process

Nij(t) =
∑

k|(Uk,Vk)=(θi,θj)

1tk≤t (6)

for the number of interactions between i and j in the time interval [0, t]. For each pair i, j, the
counting processes Nij , Nji are mutually-exciting Hawkes processes with conditional intensities

λij(t) = µij +

∫ t

0

gφ(t− u) dNji(u), λji(t) = µji +

∫ t

0

gφ(t− u) dNij(u) (7)

3



α

t

α

wi1
wi2
wi3
wj1

wj2
wj3
wk1

wk2
wk3

θi

θj

θk

θi θj θk
wi1 wi3wi2 wj1 wj3wj2 wk1 wk3

wk2

0

×

×

××

×
×
××
××
×××
××
×
××
×
××
×

×

×

Nij

Nji Nki

Nkj

Figure 2: (Left) Representation of the temporal dyadic interaction data as a point process on R3
+. A

point at location (τ, θi, θj) indicates a directed interaction from node i to node j at time τ , where
θi > 0 and θj > 0 are labels of nodes i and j. Interactions between nodes i and j, arise from a
Hawkes process Nij with conditional intensity λij given by Equation (7). Processes Nik and Njk are
not shown for readability. (Right) Conditional intensities of processes Nik(t), Nij(t) and Njk(t).

where gφ is the exponential kernel defined in Equation (2). Interactions from individual i to individual
j may arise as a response to past interactions from j to i through the kernel gφ, or via the base
intensity µij . We also model assortativity so that individuals with similar interests are more likely
to interact than individuals with different interests. For this, assume that each node i has a set of
positive latent parameters (wi1, . . . , wip) ∈ Rp+, where wik is the level of its affiliation to each latent
community k = 1, . . . , p. The number of communities p is assumed known. We model the base rate

µij = µji =

p∑
k=1

wikwjk. (8)

Two nodes with high levels of affiliation to the same communities will be more likely to interact than
nodes with affiliation to different communities, favouring assortativity.

In order to capture sparsity and power-law properties and as in Todeschini et al. (2016), the set of
affiliation parameters (wi1, . . . , wip) and node labels θi is modelled via a compound CRM with
gamma scores, that is W0 =

∑∞
i=1 wi0δθi ∼ CRM(ρ0) where the Lévy measure ρ0 is defined by

Equation (5), and for each node i ≥ 1 and community k = 1, . . . , p

wik = wi0βik, where βik
ind∼ Gamma(ak, bk). (9)

The parameter wi0 ≥ 0 is a degree correction for node i and can be interpreted as measuring the
overall popularity/sociability of a given node i irrespective of its level of affiliation to the different
communities. An individual i with a high sociability parameter wi0 will be more likely to have
interactions overall than individuals with low sociability parameters. The scores βik tune the level
of affiliation of individual i to the community k. The model is defined on R3

+. We assume that we
observe interactions over a subset [0, T ] × [0, α]2 ⊆ R3

+ where α and T tune both the number of
nodes and number of interactions. The whole model is illustrated in Figure 2.

The model admits the following set of hyperparameters, with the following interpretation:
• The hyperparameters φ = (η, δ) where η ≥ 0 and δ ≥ 0 of the kernel gφ tune the reciprocity.
• The hyperparameters (ak, bk) tune the community structure of the interactions. ak/bk = E[βik]
tunes the size of community k while ak/b2k = var(βik) tunes the variability of the level of affiliation
to this community; larger values imply more separated communities.
• The hyperparameter σ tunes the sparsity and the degree heterogeneity: larger values imply higher
sparsity and heterogeneity. It also tunes the slope of the degree distribution. Parameter τ tunes the
exponential cut-off in the degree distribution. This is illustrated in Figure 3.
• Finally, the hyperparameters α and T tune the overall number of interactions and nodes.

We follow (Rasmussen, 2013) and use vague Exponential(0.01) priors on η and δ. Following
Todeschini et al. (2016) we set vague Gamma(0.01, 0.01) priors on α, 1− σ, τ , ak and bk. The right
limit for time window, T is considered known.

4



Figure 3: Degree distribution for a Hawkes graph with different values of σ (left) and τ (right). The
degree of a node i is defined as the number of nodes with whom it has at least one interaction. The
value σ tunes the slope of the degree distribution, larger values corresponding to a higher slope. The
parameter τ tunes the exponential cut-off in the degree distribution.

4 Properties

4.1 Connection to sparse vertex-exchangeable and edge-exchangeable models

The model is a natural extension of sparse vertex-exchangeable and edge-exchangeable graph models.
Let zij(t) = 1Nij(t)+Nji(t)>0 be a binary variable indicating if there is at least one interaction in
[0, t] between nodes i and j in either direction. We assume

Pr(zij(t) = 1|(wik, wjk)k=1,...,p) = 1− e−2t
∑p
k=1 wikwjk

which corresponds to the probability of a connection in the static simple graph model proposed by
Todeschini et al. (2016). Additionally, for fixed α > 0 and η = 0 (no reciprocal relationships), the
model corresponds to a rank-p extension of the rank-1 Poissonized version of edge-exchangeable
models considered by Cai et al. (2016) and Janson (2017a). The sparsity properties of our model
follow from the sparsity properties of these two classes of models.

4.2 Sparsity

The size of the dataset is tuned by both α and T . Given these quantities, both the number of
interactions and the number of nodes with at least one interaction are random variables. We now study
the behaviour of these quantities, showing that the model exhibits sparsity. Let Iα,T , Eα,T , Vα,T be
the overall number of interactions between nodes with label θi ≤ α until time T , the total number of
pairs of nodes with label θi ≤ α who had at least one interaction before time T , and the number of
nodes with label θi ≤ α who had at least one interaction before time T respectively.

Vα,T =
∑
i

1∑
j 6=iNij(T )1θj≤α>01θi≤α Iα,T =

∑
i6=j

Nij(T )1θi≤α1θj≤α

Eα,T =
∑
i<j

1Nij(T )+Nji(T )>01θi≤α1θj≤α

We provide in the supplementary material a theorem for the exact expectations of Iα,T , Eα,T Vα,T .
Now consider the asymptotic behaviour of the expectations of Vα,T , Eα,T and Iα,T , as α and T go
to infinity.1 Consider fixed T > 0 and α that tends to infinity. Then,

E[Vα,T ] =

{
Θ(α) if σ < 0
ω(α) if σ ≥ 0

, E[Eα,T ] = Θ(α2), E[Iα,T ] = Θ(α2)

as α tends to infinity. For σ < 0, the number of edges and interactions grows quadratically with the
number of nodes, and we are in the dense regime. When σ ≥ 0, the number of edges and interaction
grows subquadratically, and we are in the sparse regime. Higher values of σ lead to higher sparsity.
For fixed α,

E[Vα,T ] =

{
Θ(1) if σ < 0
Θ(log T ) if σ = 0
Θ(Tσ) if σ > 0

, E[Eα,T ] =


Θ(1) if σ < 0
O(log T ) if σ = 0
O(T 3σ/2) if σ ∈ (0, 1/2]
O(T (1+σ)/2) if σ ∈ (1/2, 1)

1 We use the following asymptotic notations. Xα = O(Yα) if limXα/Yα < ∞, Xα = ω(Yα) if
limYα/Xα = 0 and Xα = Θ(Yα) if both Xα = O(Yα) and Yα = O(Xα).
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and E[Iα,T ] = Θ(T ) as T tends to infinity. Sparsity in T arises when σ ≥ 0 for the number of
edges and when σ > 1/2 for the number of interactions. The derivation of the asymptotic behaviour
of expectations of Vα,T , Eα,T and Iα,T follows the lines of the proofs of Theorems 3 and 5.3 in
(Todeschini et al., 2016) (α → ∞) and Lemma D.6 in the supplementary material of (Cai et al.,
2016) (T →∞), and is omitted here.

5 Approximate Posterior Inference

Assume a set of observed interactions D = (tk, ik, jk)k≥1 between V individuals over a period
of time T . The objective is to approximate the posterior distribution π(φ, ξ|D) where φ are the
kernel parameters and ξ = ((wik)i=1,...,V,k=1,...,p, (ak, bk)k=1,...,p, α, σ, τ), the parameters and
hyperparameters of the compound CRM. One possible approach is to follow a similar approach to
that taken in (Rasmussen, 2013); derive a Gibbs sampler using a data augmentation scheme which
associates a latent variable to each interaction. However, such an algorithm is unlikely to scale
well with the number of interactions. Additionally, we can make use of existing code for posterior
inference with Hawkes processes and graphs based on compound CRMs, and therefore propose a
two-step approximate inference procedure, motivated by modular Bayesian inference (Jacob et al.,
2017).

Let Z = (zij(T ))1≤i,j≤V be the adjacency matrix defined by zij(T ) = 1 if there is at least one
interaction between i and j in the interval [0, T ], and 0 otherwise. We have

π(φ, ξ|D) = π(φ, ξ|D,Z) = π(ξ|D,Z)π(φ|ξ,D).

The idea of the two-step procedure is to (i) Approximate π(ξ|D,Z) by π(ξ|Z) and obtain a Bayesian
point estimate ξ̂ then (ii) Approximate π(φ|ξ,D) by π(φ|ξ̂,D).

The full posterior is thus approximated by π̃(φ, ξ) = π(ξ|Z)π(φ|ξ̂,D). As mentioned in Section 4.1,
the statistical model for the binary adjacency matrix Z is the same as in (Todeschini et al., 2016). We
use the MCMC scheme of (Todeschini et al., 2016) and the accompanying software package SNetOC2

to perform inference. The MCMC sampler is a Gibbs sampler which uses a Metropolis-Hastings (MH)
step to update the hyperparameters and a Hamiltonian Monte Carlo (HMC) step for the parameters.
From the posterior samples we compute a point estimate (ŵi1, . . . , ŵip) of the weight vector for each
node. We follow the approach of Todeschini et al. (2016) and compute a minimum Bayes risk point
estimate using a permutation-invariant cost function. Given these point estimates we obtain estimates
of the base intensities µ̂ij . Posterior inference on the parameters φ of the Hawkes kernel is then
performed using Metropolis-Hastings, as in (Rasmussen, 2013). Details of the two-stage inference
procedure are given in the supplementary material.

Empirical investigation of posterior consistency. To validate the two-step approximation to the
posterior distribution, we study empirically the convergence of our approximate inference scheme
using synthetic data. Experiments suggest that the posterior concentrates around the true parameter
value. More details are given in the supplementary material.

6 Experiments

We perform experiments on four temporal interaction datasets from the Stanford Large Network
Dataset Collection3 (Leskovec and Krevl, 2014):
• The EMAIL dataset consists of emails sent within a large European research institution over 803
days. There are 986 nodes, 24929 edges and 332334 interactions. A separate interaction is created
for every recipient of an email.
• The COLLEGE dataset consists of private messages sent over a period of 193 days on an online
social network (Facebook-like platform) at the University of California, Irvine. There are 1899 nodes,
20296 edges and 59835 interactions. An interaction (t, i, j) corresponds to a user i sending a private
message to another user j at time t.
• The MATH overflow dataset is a temporal network of interactions on the stack exchange website
Math Overflow over 2350 days. There are 24818 nodes, 239978 edges and 506550 interactions.An

2https://github.com/misxenia/SNetOC
3https://snap.stanford.edu/data/
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interaction (t, i, j) means that a user i answered another user’s j question at time t, or commented on
another user’s j question/response.
• The UBUNTU dataset is a temporal network of interactions on the stack exchange website Ask
Ubuntu over 2613 days. There are 159316 nodes, 596933 edges and 964437 interactions. An
interaction (t, i, j) means that a user i answered another user’s j question at time t, or commented on
another user’s j question/response.

Comparison on link prediction. We compare our model (Hawkes-CCRM) to five other benchmark
methods: (i) our model, without the Hawkes component (obtained by setting η = 0), (ii) the
Hawkes-IRM model of Blundell et al. (2012) which uses an infinite relational model (IRM) to
capture the community structure together with a Hawkes process to capture reciprocity, (iii) the same
model, called Poisson-IRM, without the Hawkes component, (iv) a simple Hawkes model where the
conditional intensity given by Equation (7) is assumed to be same for each pair of individuals, with
unknown parameters δ and η, (v) a simple Poisson process model, which assumes that interactions
between two individuals arise at an unknown constant rate. Each of these competing models capture
a subset of the features we aim to capture in the data: sparsity/heterogeneity, community structure
and reciprocity, as summarized in Table 1. The models are given in the supplementary material. The
only model to account for all the features is the proposed Hawkes-CCRM model.

Table 1: (Left) Performance in link prediction. (Right) Properties captured by the different models.

email college math ubuntu

Hawkes-CCRM 10.95 1.88 20.07 29.1
CCRM 12.08 2.90 89.0 36.5
Hawkes-IRM 14.2 3.56 96.9 59.5
Poisson-IRM 31.7 15.7 204.7 79.3
Hawkes 154.8 153.29 220.10 191.39
Poisson ∼ 103 ∼ 104 ∼ 104 ∼ 104

sparsity/ community reciprocity
heterogeneity structure

X X X
X X

X X
X

X

We perform posterior inference using a Markov chain Monte Carlo algorithm. For our Hawkes-
CCRM model, we follow the two-step procedure described in Section 5. For each dataset, there is
some background information in order to guide the choice of the number p of communities. The
number of communities p is set to p = 4 for the EMAIL dataset, as there are 4 departments at the
institution, p = 2 for the COLLEGE dataset corresponding to the two genders, and p = 3 for the
MATH and UBUNTU datasets, corresponding to the three different types of possible interactions. We
follow Todeschini et al. (2016) regarding the choice of the MCMC tuning parameters and initialise
the MCMC algorithm with the estimates obtained by running a MCMC algorithm with p = 1 feature
with fewer iterations. For all experiments we run 2 chains in parallel for each stage of the inference.
We use 100000 iterations for the first stage and 10000 for the second one. For the Hawkes-IRM
model, we also use a similar two-step procedure, which first obtains a point estimate of the parameters
and hyperparameters of the IRM, then estimates the parameters of the Hawkes process given this
point estimate. This allows us to scale this approach to the large datasets considered. We use the
same number of MCMC samples as for our model for each step.

We compare the different algorithms on link prediction. For each dataset, we make a train-test split
in time so that the training datasets contains 85% of the total temporal interactions. We use the
training data for parameter learning and then use the estimated parameters to perform link prediction
on the held out test data. We report the root mean square error between the predicted and true
number of interactions for each directed pair in the test set . The results are reported in Table 1. On
all the datasets, the proposed Hawkes-CCRM approach outperforms other methods. Interestingly,
the addition of the Hawkes component brings improvement for both the IRM-based model and the
CCRM-based model.

Community structure, degree distribution and sparsity. Our model also estimates the latent
structure in the data through the weights wik, representing the level of affiliation of a node i to a
community k. For each dataset, we order the nodes by their highest estimated feature weight, obtaining
a clustering of the nodes. We represent the ordered matrix (zij (T )) of binary interactions in Figure 4
(a)-(d). This shows that the method can uncover the latent community structure in the different datasets.
Within each community, nodes still exhibit degree heterogeneity as shown in Figure 4 (e)-(h). where
the nodes are sorted within each block according to their estimated sociability ŵi0. The ability of the
approach to uncover latent structure was illustrated by Todeschini et al. (2016), who demonstrate that
models which do not account for degree heterogeneity, cannot capture latent community estimation
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(a) EMAIL (b) COLLEGE (c) MATH (d) UBUNTU

(e) EMAIL (f) COLLEGE (g) MATH (h) UBUNTU

(i) EMAIL (j) COLLEGE (k) MATH (l) UBUNTU

Figure 4: Top: Sorted adjacency matrix for each dataset. The vertices are classified to one of the
communities based to their highest affiliation. Darker color correspond to more interactions. Middle:
Sorted adjacency matrix. The nodes are grouped according to their highest affiliation and then sorted
according to their estimated sociability parameter ŵi0. Bottom: Empirical degree distribution (red)
and posterior predictive distribution (blue).

but they rather cluster the nodes based on their degree. We also look at the posterior predictive
degree distribution based on the estimated hyperparameters, and compare it to the empirical degree
distribution in the test set. The results are reported in Figure 4 (i)-(l) showing a reasonable fit to
the degree distribution. Finally we report the 95% posterior credible intervals (PCI) for the sparsity
parameter σ for all datasets. Each PCI is (−0.69,−0.50), (−0.35,−0.20), (0.15, 0.18), (0.51, 0.57)
respectively. The range of σ is (−∞, 1). EMAIL and COLLEGE give negative values corresponding
to denser networks whereas MATH and UBUNTU datasets are sparser.

7 Conclusion

We have presented a novel statistical model for temporal interaction data which captures multiple
important features observed in such datasets, and shown that our approach outperforms competing
models in link prediction. The model could be extended in several directions. One could consider
asymmetry in the base intensities µij 6= µji and/or a bilinear form as in (Zhou, 2015). Another
important extension would be the estimation of the number of latent commmunities/features p.

Acknowledgments. The authors thank the reviewers and area chair for their constructive comments.
XM, FC and YWT acknowledge funding from the ERC under the European Union’s 7th Frame-
work programme (FP7/2007-2013) ERC grant agreement no. 617071. FC acknowledges support
from EPSRC under grant EP/P026753/1 and from the Alan Turing Institute under EPSRC grant
EP/N510129/1. XM acknowledges support from the A. G. Leventis Foundation.

8



References
C. Blundell, K. Heller, and J. Beck. Modelling reciprocating relationships with Hawkes processes.

In Advances in Neural Information Processing Systems 25, volume 15, pages 5249–5262. Curran
Associates, Inc., 2012.

C. Borgs, J. T. Chayes, H. Cohn, and N. Holden. Sparse exchangeable graphs and their limits via
graphon processes. Journal of Machine Learning Research, 18:1–71, 2018.

D. Cai, T. Campbell, and T. Broderick. Edge-exchangeable graphs and sparsity. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information
Processing Systems 29, pages 4249–4257. Curran Associates, Inc., 2016.

F. Caron and E. B. Fox. Sparse graphs using exchangeable random measures. Journal of the Royal
Statistical Society B, 79(5), 2017.

H. Crane and W. Dempsey. A framework for statistical network modeling. arXiv preprint
arXiv:1509.08185, 2015.

H. Crane and W. Dempsey. Edge exchangeable models for interaction networks. Journal of the
American Statistical Association, 113(523):1311–1326, 2018.

C. Dubois, C. Butts, and P. Smyth. Stochastic blockmodeling of relational event dynamics. In
Artificial Intelligence and Statistics, pages 238–246, 2013.

P. K. Gopalan, C. Wang, and D. Blei. Modeling overlapping communities with node popularities. In
Advances in neural information processing systems, pages 2850–2858, 2013.

J. E. Griffin and F. Leisen. Compound random measures and their use in Bayesian non-parametrics.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(2):525–545, 2017.

A. G. Hawkes. Spectra of some self-exciting and mutually exciting point processes. Journal of the
Royal Statistical Society. Series B (Methodological), 15(7):5249–5262, 1971.

T. Herlau, M. N. Schmidt, and M. Mørup. Completely random measures for modelling block-
structured sparse networks. In Advances in Neural Information Processing Systems 29 (NIPS
2016), 2016.

P. E. Jacob, M. L. M., H. C. C., and R. C. P. Better together? statistical learning in models made of
modules. ArXiv preprint arXiv:1708.08719, 2017.

S. Janson. On convergence for graphexes. arXiv preprint arXiv:1702.06389, 2017a.

S. Janson. On edge exchangeable random graphs. To appear in Journal of Statistical Physics., 2017b.

B. Karrer and M. E. J. Newman. Stochastic blockmodels and community structure in networks.
Physical Review E, 83(1):016107, 2011.

J. Kingman. Completely random measures. Pacific Journal of Mathematics, 21(1):59–78, 1967.

J. Kingman. Poisson processes, volume 3. Oxford University Press, USA, 1993.

J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection. http:
//snap.stanford.edu/data, June 2014.

S. Linderman and R. Adams. Discovering latent network structure in point process data. In
International Conference on Machine Learning, pages 1413–1421, 2014.

Y. C. Ng and R. Silva. A dynamic edge exchangeable model for sparse temporal networks. arXiv
preprint arXiv:1710.04008, 2017.

K. Palla, F. Caron, and Y. Teh. Bayesian nonparametrics for sparse dynamic networks. arXiv preprint
arXiv:1607.01624, 2016.

J. G. Rasmussen. Bayesian inference for Hawkes processes. Methodological Computational Applied
Probability, 15:623–642, 2013.

9

http://snap.stanford.edu/data
http://snap.stanford.edu/data


A. Todeschini, X. Miscouridou, and F. Caron. Exchangeable random measure for sparse networks
with overlapping communities. arXiv:1602.02114, 2016.

V. Veitch and D. M. Roy. The class of random graphs arising from exchangeable random measures.
arXiv preprint arXiv:1512.03099, 2015.

S. Williamson. Nonparametric network models for link prediction. Journal of Machine Learning
Research, 17(202):1–21, 2016.

M. Zhou. Infinite Edge Partition Models for Overlapping Community Detection and Link Prediction.
In G. Lebanon and S. V. N. Vishwanathan, editors, Proceedings of the Eighteenth International
Conference on Artificial Intelligence and Statistics, volume 38 of Proceedings of Machine Learning
Research, pages 1135–1143, San Diego, California, USA, 09–12 May 2015. PMLR.

10


