
Greedy Hash: Towards Fast Optimization for
Accurate Hash Coding in CNN

Shupeng Su1 Chao Zhang1∗ Kai Han1,3 Yonghong Tian1,2

1Key Laboratory of Machine Perception (MOE), School of EECS, Peking University
2National Engineering Laboratory for Video Technology, School of EECS, Peking University

3Huawei Noah’s Ark Lab
{sushupeng, c.zhang, hankai, yhtian}@pku.edu.cn

Abstract

To convert the input into binary code, hashing algorithm has been widely used for
approximate nearest neighbor search on large-scale image sets due to its computa-
tion and storage efficiency. Deep hashing further improves the retrieval quality by
combining the hash coding with deep neural network. However, a major difficulty
in deep hashing lies in the discrete constraints imposed on the network output,
which generally makes the optimization NP hard. In this work, we adopt the greedy
principle to tackle this NP hard problem by iteratively updating the network toward
the probable optimal discrete solution in each iteration. A hash coding layer is de-
signed to implement our approach which strictly uses the sign function in forward
propagation to maintain the discrete constraints, while in back propagation the
gradients are transmitted intactly to the front layer to avoid the vanishing gradients.
In addition to the theoretical derivation, we provide a new perspective to visualize
and understand the effectiveness and efficiency of our algorithm. Experiments on
benchmark datasets show that our scheme outperforms state-of-the-art hashing
methods in both supervised and unsupervised tasks.

1 Introduction

In the era of big data, searching for the desired information has become an important topic in such a
vast ocean of data. Hashing for large-scale image set retrieval [7, 8, 21, 22] has attracted extensive
interest in Approximate Nearest Neighbor (ANN) search due to its computation and storage efficiency
with the generated binary representation. Deep hashing further promotes the performance by learning
the image representation and hash coding in the same network simultaneously [30, 15, 18, 6]. Not
only the common pairwise label based methods [17, 30, 4], but also triplet [34, 35] and point-wise
[19, 31] schemes have been exploited extensively.

Despite the considerable progress, it’s still a difficult task to realize the real end-to-end training of
deep hashing owing to the vanishing gradient problem from sign function which is appended after the
output of the network to achieve binary code. To be specific, the gradient of sign function is zero
for all nonzero input, and that is fatal to the neural network which uses gradient descent for training.
Most of the previous works choose to first solve a relaxed problem discarding the discrete constraints
(e.g., [34, 19, 31] replace sign function with tanh or sigmoid, [20, 36, 17] add a penalty term in loss
function to generate feature as discrete as possible), and later in test phase apply sign function to
obtain real binary code. Although capable of training the network, these relaxation schemes will
introduce quantization error which basically leads to suboptimal hash code. Later HashNet [4] and
Deep Supervised Discrete Hashing (DSDH) [16] made a progress on this difficulty. HashNet starts

∗Corresponding author

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

training with a smoothed activation function y = tanh(βx) and becomes more non-smooth by
increasing β until eventually almost behaves like the original sign function. DSDH solves the discrete
hashing optimization with the discrete cyclic coordinate descend (DCC) [26] algorithm, which can
keep the discrete constraint during the whole optimization process.

Although these two papers have achieved breakthroughs, there are still some problems worthy of
attention. On the one hand, they need to train a lot of iterations since DSDH updates the hash
code bit-by-bit, while HashNet requires to increase β iteratively. On the other hand, DCC which
is used to solve the discrete optimization by DSDH, can only be applied to the standard binary
quadratic program (BQP) problem with limited applications, while HashNet is still distracted by
quantization error as β cannot increase infinitely. Therefore this paper proposes a faster and more
accurate algorithm to integrate the hash coding with neural network.

Our main contributions are as follows. (1) We propose to adopt greedy algorithm for fast processing of
hashing discrete optimization, and a new coding layer is designed, in which the sign function is strictly
used in forward propagation against the quantization error, and later the gradients are transmitted
intactly to the front layer which effectively prevents the vanishing gradients and updates all bits
together. Benefitting from the high efficiency to integrate hashing with neural network, the proposed
hash layer can be applied to various occasions that need binary coding. (2) We not only provide
theoretical derivation, but also propose a visual perspective to understand the rationality and validity
of our method based on the aggregation effect of sign function. (3) Extensive experiments show that
our scheme outperforms state-of-the-art hashing methods for image retrieval in both supervised and
unsupervised tasks.

2 Greedy hash in CNN

In this section we will detailedly introduce our method and first of all we would like to indicate
some notations that would be used later. We denote the output of the last hidden layer in the original
neural network with H, which also serves as the input to our hash coding layer. B would be used to
represent the hash code, which is exactly the output of the hash layer. In addition, sgn() is the sign
function which outputs +1 for positive numbers and -1 otherwise.

2.1 Optimizing discrete hashing with greedy principle

Firstly we put the neural network aside and focus on approaching the discrete optimization problem,
which is defined as follows:

min
B

L(B),

s.t. B ∈ {−1, +1}N×K .
(1)

N means there are N inputs, and K means using K bits to encode. Besides, L(B) can be any loss
function you need to use, e.g., Mean Square Error loss, Cross Entropy loss and so on.

If we leave out the discrete constraint B ∈ {−1, +1}N×K , aiming to obtain the optimal continuous
B, we can calculate the gradient and use gradient descent to iteratively update B as follows until
convergence:

Bt+1 = Bt − lr ∗ ∂L

∂Bt
, (2)

where t stands for the t-th iteration, and lr denotes the learning rate.

However, it is almost impossible for B calculated by Equation (2) to satisfy the requirement B ∈
{−1, +1}N×K , and after considering the discrete constraint, the optimization (1) will become NP
hard. One of the fast and effective methods to tackle NP hard problems is the greedy algorithm,
which iteratively selects the best option in each iteration and ultimately reaches a nice point that is
sufficiently close to the global optimal solution. If Bt+1 calculated by Equation (2) is the optimal
continuous solution without the discrete requirement, then applying the greedy principle, the closest
discrete point to the continuous Bt+1, that is sgn(Bt+1), is probable to be the optimal discrete
solution in each iteration thus we update B toward it greedily. Concretely we use the following
equation to solve the optimization (1) iteratively:

Bt+1 = sgn(Bt − lr ∗ ∂L

∂Bt
). (3)

2

Conceptual convergence of Equation (3) is shown on Figure 1, from which we can see that each
update of our method is able to reach a lower loss point (−1, 1)→ (−1,−1)→ (1,−1) and finally
reach the optimal discrete solution (1,−1) of the loss contour map in Figure 1.

b2

b1

1

1-1

-1

Figure 1: Suppose we only use two bits, b1 and b2, to encode the input. The circles represent the
contour map of the loss function and the red line represents the update trajectory of the hash code, in
which the full line denotes the Equation (2) while the dotted line denotes the Equation (3).

It is worth noting that our solution (3) is consistent with the conclusion of [27], in which the author has
carried out a rigorous mathematical proof on the convergence of (3) (using theory from non-convex
and non-smooth optimization [1, 3]). Different from their paper, we would pay more attention to the
distinct meaning behind Equation (3) (the greedy choice), as well as the remarkable characters we
will demonstrate below when combining (3) with neural network (notice that [27] has not used any
deep learning method).

We believe that although (3) may not be the most effective method for solving discrete optimization
problems, it is one of the best selections to combine with the neural network when confronting the
discrete constraint. Reasons are listed as follows:

1) As is widely known that, neural network is updated by gradient descent which is also a greedy
strategy as it updates the network toward the steepest descent direction of the loss function in
each iteration, which demonstrates the high feasibility of using the greedy principle to handle
optimization problem in neural network.

2) The similar update mode (calculate the gradient and then update the parameter) shared by Equation
(3) and neural network has laid a solid foundation for combining them into an end-to-end training
framework (see Section 2.2).

3) As is pointed out by [9], stochastic gradient descent (SGD) is equivalent to adding noise in the
global gradient (calculated by the whole training samples), and appropriate noise in gradient not
only bring regularization effect, but also helps the network to escape from some local minimum
points and saddle points during optimization. From Figure 1 we can distinctly see that Equation
(3) is exactly introducing "noise" into the original Equation (2) by the sgn() function, thus using
Equation (3) not only helps the network to handle the discrete constraint but also to some extent
promotes the optimization process of the neural network.

Therefore, Equation (3) is a reasonable and effective way to solve the discrete hashing optimization
in neural network, which will be further demonstrated with experiments later.

2.2 Back propagating the coding message with a new hash layer

In section 2.1 we have discussed why we choose (3) to deal with the discrete optimization in neural
network, and in this section we would display how we implement (3) into the training system of the
network with a newly designed hash layer.

Firstly variable H is introduced to split Equation (3) into: Bt+1 = sgn(Ht+1), (4a)

Ht+1 = Bt − lr ∗ ∂L

∂Bt
. (4b)

3

Just recall that H denotes the output of the neural network while B denotes the hash code, and
what we’re going to do here is designing a new layer to connect H and B which should satisfy the
Equations (4a) and (4b).

Knowing this, we could immediately find that what we need to do to implement Equation (4a)
is simply using sign function in the forward propagation of the new hash layer, namely applying
B = sgn(H) forward.

As for the Equation (4b), if we add a penalty term ‖ H− sgn(H) ‖pp (entrywise matrix norm) in the
objective function to make it as close to zero as possible, then with Equation (4a) Bt = sgn(Ht), we
have:

Ht+1 = Ht − lr ∗ ∂L

∂Ht

= (Ht −Bt) + Bt − lr ∗ ∂L

∂Ht

= (Ht − sgn(Ht)) + Bt − lr ∗ ∂L

∂Ht

≈ Bt − lr ∗ ∂L

∂Ht
.

(5)

Comparing (4b) with (5), we could finally implement Equation (4b) by setting:

∂L

∂Ht
=

∂L

∂Bt
(6)

in the backward propagation of our new hash layer, which means the gradient of B is back transmitted
to H intactly. Our method has been summarized in Algorithm 1.

Algorithm 1 Greedy Hash

Prepare training set X and neural network FΘ, in which Θ denotes parameters of the network.
repeat

- H = FΘ(X).
- B = sgn(H) [forward propagation of our hash layer].
- Calculate the loss function : Loss = L(B) + α ‖ H− sgn(H) ‖pp ,

where L can be any learning function such as the Cross Entropy Loss.
- Calculate ∂Loss

∂B = ∂L
∂B .

- Set ∂L
∂H = ∂L

∂B [backward propagation of our hash layer].

- Calculate ∂Loss
∂H = ∂L

∂H + α
∂‖H−sgn(H)‖pp

∂H = ∂L
∂B + α p ‖ H− sgn(H) ‖p−1

p−1.

- Calculate ∂Loss
∂Θ = ∂Loss

∂H × ∂H
∂Θ .

- Update the whole network’s parameters.
until convergence.

2.3 Analyzing our algorithm’s validity from a visual perspective

In this section, we would provide a new perspective to visualize and understand the two most critical
parts in our algorithm:

Forward : B = sgn(H), (7)

Backward :
∂L

∂H
=
∂L

∂B
. (8)

Firstly, suppose there are two categories of input images. We set H = (h1, h2) and B = (b1, b2)
(namely we only use two bits to encode the input image). As is shown in the forward part of Figure
2(a), sign function is trying to aggregate the data of each quadrant in H coordinate system into a
single point in B coordinate system, and obviously learning to move the misclassified samples to the
correct quadrant in H coordinate system is our ultimate training goal.

4

B = sgn(H)
h2

h1

b2

b1!"
!#
= !"

!%

(a)

B = sgn(H)
h2

h1

b2

b1

train test

(b)

Figure 2: A visual perspective to observe (a) the aggregation effect of sgn() and the back propagation
from B to H in our algorithm (b) the quantization error generated by relaxation methods.

As is introduced earlier, most previous hashing methods relax sgn() with tanh function or penalty
term, whereas these relaxation schemes would produce a mass of continuous value violating the
discrete constraint. The samples will not be imposed to aggregate strictly in the training stage (the
left part of Figure 2(b)), while in the test phase the sign function is used to generate real binary code
resulting in a different distribution from the training phase (the right part of Figure 2(b)). Certainly
it will produce what we often call, the quantization error. In our proposed hash layer, sign function
(Equation (7)) is directly applied in the training stage without any relaxation. The training samples
will be strictly integrated in each quadrant, which enables our loss function foresee the error before
the test phase and pay timely action on moving them.

Equation (8) that used in the back propagation of our hash layer, is the most significant part to settle
the vanishing gradient problem of sign function. In order to propagate the moving information (update
direction of each sample) from ∂L

∂B to ∂L
∂H , we directly transmitted the gradient of B to H intactly,

based on the principle that the aggregation effect of sign function does not change the quadrant of the
input sample from H to B. As a consequence, direction that the misclassified samples need to move
toward in the H coordinate system is exactly the direction learned by B in the B coordinate system
(e.g., the red part in Figure 2(a)). Therefore Equation (8) enables H timely obtain the direction that
the loss function expect B move toward, and it is (8) that helps our network to realize a fast and
effective convergence.

By the way, it is noteworthy that even though the earlier researches on stochastic neurons [2, 24]
have roughly mentioned about the straight through strategy (Equation (8)), our paper carefully study
its derivation and demonstrate its performance in deep hashing coding domain. Moreover, we use
(8) with the assistance of the penalty term ‖ H − sgn(H) ‖pp (has not seen in [2, 24]), which is
nonnegligible to reduce the gradient bias through making H closer to B and improve the optimization
property.

3 Experiments

We evaluate the efficacy of our proposed Greedy Hash in this section and the source code is available
at: https://github.com/ssppp/GreedyHash.

3.1 Datasets

CIFAR-10 The CIFAR-10 dataset [14] consists of 60,000 32×32 color images in 10 classes.
Following most deep hashing methods like [16] and [17], we have conducted two experiment settings
for CIFAR-10. In the first one (denoted as CIFAR-10 (I)), 1000 images (100 images per class) are
selected as the query set, and the remaining 59,000 images are used as database. Besides, 5,000
images (500 images per class) are randomly sampled from the database as the training set. As for the
second one (denoted as CIFAR-10 (II)), 1,000 images per class (10,000 images in total) are selected
as the test query set, and the remaining 50,000 images are used as the training set.

ImageNet ImageNet [25] that consists of 1,000 classes is a benchmark image set for object category
classification and detection in Large Scale Visual Recognition Challenge (ILSVRC). It contains over
1.2M images in the training set and 50K images in the validation set. Following the experiment
setting in [4], we randomly select 100 categories, use all the images of these categories in the training
set as the database, and use all the images in the validation set as the queries. Furthermore, 130
images per category are randomly selected from the database as the training points.

5

https://github.com/ssppp/GreedyHash

3.2 Implementation details

Basic setting Our model is implemented with Pytorch [23] framework. We set the batch size
as 32 and use SGD as the optimizer with a weight decay of 0.0005 and a momentum of 0.9. For
supervised experiments we use 0.001 as the initial learning rate while for unsupervised experiments
we use 0.0001, and we divide both of them by 10 when the loss stop decreasing. In addition, we
cross-validate the hyper-parameters α and p in the penalty term α ‖ H − sgn(H) ‖pp, which are
finally fixed with p = 3, α = 0.1 × 1

N ·K (using 1
N ·K term to remove the impacts of the various

encoding length and input size) for CIFAR-10, while for ImageNet α = 1× 1
N ·K .

Supervised setting We choose the Cross Entropy loss as our supervised loss function L, which
means we just apply softmax to classify the hash code B ∈ {−1, +1}N×K without adding any
retrieval loss (e.g., contrastive loss or triplet loss), and later we would display its outstanding retrieval
performance despite merely using single softmax. Moreover, for fair comparison with the previous
works, we use the pre-trained AlexNet [13] as our neural network, in which we append a new fc
layer after fc7 to generate feature of desired length and then append our hash layer to produce binary
code. We have compared our method with DSDH [16], HashNet [4], DPSH [17], DTSH [29], DHN
[36], NINH [15], CNNH [30], VDSH [33], DRSCH [32], DSCH [32], DSRH [34], DPLM [27],
SDH [26], KSH [21] under this supervised setup. It is worth noting that some of aforementioned
methods such as DSDH have used the VGG-F [5] convolutional neural network, which composes
of five convolutional layers and two fully connected layers the same as AlexNet (other methods
including ours have selected), thus we consider the comparison among them is fair even though
VGG-F performs slightly better on the classification of the original 1,000 classes ImageNet.

Unsupervised setting Inspired by [12], we choose to minimize the difference on the cosine distance
relationships when the features are encoded from Euclidean space to Hamming space. Concretely
we use L =‖ cos(h1, h2)− cos(b1, b2) ‖22, in which cos means the cosine distance, and h means the
feature in Euclidean space while b means binary code in Hamming space. We use the pre-trained
VGG16 [28] network following the setting in [6, 18], and we append a new fc layer as well as our
hash layer to generate the binary code. We have compared with SAH [6], DeepBit [18], ITQ [8],
KMH [10] and SPH [11] under this unsupervised setting.

3.3 Comparison on fast optimization

Firstly we compare our method with DSDH which can keep the discrete constraint during the whole
optimization process just like ours. For fair comparison, we rerun the code released by the DSDH
author and we follow the experiment setting in their program: using pre-trained CNN and encoding
the images with maximum 48 bits as well as minimum 12 bits on supervised CIFAR-10 (I). The
Mean Average Precision (MAP) during the training stage is shown on Figure 3(a).

We can see from Figure 3(a) that our method have achieved faster and better MAP promotion with
both short and long bits (especially using the shorter one). In DSDH, the coding message from B is
back propagated to the front network only by the loss term ‖ B−H ‖22, which will be deficient and
unstable when the value is small, while our method uses ∂L

∂H = ∂L
∂B , capable of receiving the coding

message rapidly and accurately as is analyzed in Section 2.3.

0 10 20 30 40 50
epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
A

P

ours 12

DSDH 12

ours 48

DSDH 48

(a)

0 20 40 60 80 100 120
epoch

0.0

0.5

1.0

1.5

2.0

2.5

 C
ro

ss
 E

n
tr

o
p
y
 l
o
ss

ours

tanh

penalty

original

(b)

0 20 40 60 80 100 120
epoch

0.1

0.2

0.3

0.4

0.5

M
A

P

ours

tanh

penalty

original_euclidean

original_cosine

(c)

Figure 3: Fast optimization comparison with (a) DSDH and (b)(c) relaxation methods.

6

Next we compare our algorithm with the relaxation methods. We use 16 bits to encode the images
and we train the AlexNet from scratch here to further demonstrate the learning ability. The dynamic
classification loss and MAP are shown on Figure 3(b) and 3(c), in which label tanh means using tanh
function as relaxation, penalty denotes method adding penalty term to generate features as discrete
as possible, and original represents training without hash coding (the same length 16 but no longer
limited to binary). We use two schemes to retrieve these original features, the Euclidean distance and
the cosine distance.

As shown on Figure 3(b) and 3(c), our algorithm is one of the fastest methods to decrease the
classification loss and simultaneously is the fastest and greatest one to promote the MAP owing to
the better protection against quantization error. Among the results the tanh method is the slowest
one probably due to the existence of saturation in tanh activation function. Moreover, it is interesting
to discover that retrieval with hash binary code is better than the retrieval with original unrestricted
features, probably because the softmax function generally needs adding retrieval loss to further
constrain the image feature (for smaller intra-class distance and larger inter-class distance), which
is exactly the merit of hashing that owns the nature of aggregating the inputs in each quadrant as is
demonstrated in Section 2.3.

Thus our Greedy Hash is able to realize faster and better optimization in hash coding with CNN, and
subsequently we will further demonstrate the accuracy of our generated hash code when compared
with the state-of-the-art.

3.4 Comparison on accurate coding

Supervised experiments Table 1 shows the MAP results on the supervised CIFAR-10 (I) dataset,
in which we can explicitly see the better performance of our algorithm than both the state-of-the-art
deep hashing methods and the traditional hashing with deep learned features as input ("SDH+CNN"
denotes the SDH method with deep features). It is widely known that deep neural network needs
more training samples to perform better, thus we conduct the second experiment on CIFAR-10 (i.e.,
CIFAR-10 (II)) whose training set is ten times the number of the first training setting. The MAP
result is shown in Table 2. All the deep methods have made a big progress due to the augment of the
training set, and even though the best result obtained by the previous work is as high as 93%, our
method is capable of further improving it to 94%.

Notice that we have specially compared our method with DPLM [27] in Table 2, which distinctly
reveals that using deep learned features as input can improve the performance of DPLM while our
method can further boost the results as we better integrate hash coding with CNN and simultaneously
realize efficient end-to-end training of the network.

Table 1: MAP on supervised CIFAR-10 (I), where
"method+CNN" means traditional hashing methods
with deep features as input.

Method Supervised

12bits 24bits 32bits 48bits

Ours 0.774 0.795 0.810 0.822
DSDH 0.740 0.786 0.801 0.820
DTSH 0.710 0.750 0.765 0.774
DPSH 0.713 0.727 0.744 0.757
NINH 0.552 0.566 0.558 0.581
CNNH 0.439 0.511 0.509 0.522

SDH+CNN 0.478 0.557 0.584 0.592
KSH+CNN 0.488 0.539 0.548 0.563

Table 2: MAP on supervised CIFAR-10 (II).

Method Supervised

16bits 24bits 32bits 48bits

Ours 0.942 0.943 0.943 0.944
DSDH 0.935 0.940 0.939 0.939
DTSH 0.915 0.923 0.925 0.926
DPSH 0.763 0.781 0.795 0.807
VDSH 0.845 0.848 0.844 0.845

DRSCH 0.615 0.622 0.629 0.631
DSCH 0.609 0.613 0.617 0.620
DSRH 0.608 0.611 0.617 0.618

DPLM+CNN 0.562 0.830 0.837 0.843
DPLM 0.465 0.614 0.643 0.671

Table 3 displays the retrieval result training on the supervised ImageNet, and our algorithm still have
superior performance on this larger dataset. We should point out that the pairwise or triplet labels
based methods generally need a high storage and computation cost to construct the input images
group, which are infeasible for large-scale datasets. Our scheme learn hash code in a point-wise
manner and consequently, it would be simpler and more promising for our method to apply in the
practical retrieval system.

7

Table 3: MAP@1000 on supervised ImageNet.

Method Supervised

16bits 32bits 48bits 64bits

Ours 0.625 0.662 0.682 0.688
HashNet 0.506 0.631 0.663 0.684

DHN 0.311 0.472 0.542 0.573
NINH 0.290 0.461 0.530 0.565
CNNH 0.281 0.450 0.525 0.554

SDH+CNN 0.298 0.455 0.554 0.585
KSH+CNN 0.160 0.298 0.342 0.394

Table 4: MAP@1000 on unsupervised
CIFAR-10 (II).

Method Unsupervised

16bits 32bits 64bits

Ours 0.448 0.472 0.501
SAH 0.418 0.456 0.474

DeepBit 0.194 0.249 0.277
ITQ+CNN 0.385 0.414 0.442

KMH+CNN 0.360 0.382 0.401
SPH+CNN 0.302 0.356 0.392

Unsupervised experiment The MAP@1000 result on unsupervised CIFAR-10 (II) is shown on
Table 4 (again, "ITQ+CNN" denotes the ITQ method with deep features). Our method is still able to
improve the performance as before in spite of our rough unsupervised objective function. In view of
the improvement by our algorithm in both the supervised and unsupervised tasks, we demonstrate that
with small modifications to the original network, our method can easily transfer to various occasions
that need hash coding.

3.5 Coding with shorter length

From all the retrieval results above, it is interesting to discover that the shorter encoding bits we use,
the larger margin we obtain when comparing with the other methods. It seems that our method can
maintain a decent retrieval performance even with restricted encoding length. Thus we conduct the
following experiment on supervised CIFAR-10 (I) using different encoding length shorter than the
common minimum 12 bits (but larger than 4 bits as there are 10 classes in CIFAR-10) to further seek
more outstanding character of our method.

4 5 6 7 8 9 10 11 12
encoding length

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

M
A

P

ours

DSDH

DTSH

DPSH

DHN

Figure 4: Retrieval experiments with shorter encoding length (4-12 bits).

The result is shown on Figure 4, from which it is impressive to find that our proposed scheme indeed
produce nice results with shorter hash code. With this charming nature, our method can process
the large-scale image set with higher storage efficiency and faster retrieval speed, which we think is
extremely useful in practical application.

4 Conclusion

In this paper we propose to adopt greedy algorithm to tackle the discrete hashing optimization, and we
design a new neural layer to implement our approach, which fixedly uses the sign function in forward
propagation without any relaxation to avoid the quantization error, while in backward propagation the
gradients are transmitted intactly to the front layer, preventing the vanishing gradients and helping to
achieve fast convergence. The superiority of our method is proved from a novel visual perspective as
well as abundant experiments on different retrieval tasks.

8

Acknowledgments

This work was supported in part by the National Key R&D Program of China under Grant 2017YF-
B1002400, the National Natural Science Foundation of China under Grant 61671027, U1611461 and
the National Key Basic Research Program of China under Grant 2015CB352303.

References
[1] H. Attouch, J. Bolte, and B. F. Svaiter. Convergence of descent methods for semi-algebraic and tame

problems: proximal algorithms, forward–backward splitting, and regularized gauss–seidel methods. Math-
ematical Programming, 137(1-2):91–129, 2013.

[2] Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradients through stochastic neurons
for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

[3] J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized minimization or nonconvex and
nonsmooth problems. Mathematical Programming, 146(1-2):459–494, 2014.

[4] Z. Cao, M. Long, J. Wang, and P. S. Yu. Hashnet: Deep learning to hash by continuation. In The IEEE
International Conference on Computer Vision (ICCV), Oct 2017.

[5] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving deep
into convolutional nets. arXiv preprint arXiv:1405.3531, 2014.

[6] T.-T. Do, D.-K. Le Tan, T. T. Pham, and N.-M. Cheung. Simultaneous feature aggregating and hashing
for large-scale image search. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 6618–6627, 2017.

[7] A. Gionis, P. Indyk, R. Motwani, et al. Similarity search in high dimensions via hashing. In Vldb,
volume 99, pages 518–529, 1999.

[8] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Iterative quantization: A procrustean approach to
learning binary codes for large-scale image retrieval. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(12):2916–2929, 2013.

[9] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning, volume 1. MIT press Cambridge,
2016.

[10] K. He, F. Wen, and J. Sun. K-means hashing: An affinity-preserving quantization method for learning
binary compact codes. In Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on,
pages 2938–2945. IEEE, 2013.

[11] J.-P. Heo, Y. Lee, J. He, S.-F. Chang, and S.-E. Yoon. Spherical hashing. In Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on, pages 2957–2964. IEEE, 2012.

[12] M. Hu, Y. Yang, F. Shen, N. Xie, and H. T. Shen. Hashing with angular reconstructive embeddings. IEEE
Transactions on Image Processing, 27(2):545–555, 2018.

[13] A. Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv preprint arX-
iv:1404.5997, 2014.

[14] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. 2009.
[15] H. Lai, Y. Pan, Y. Liu, and S. Yan. Simultaneous feature learning and hash coding with deep neural

networks. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[16] Q. Li, Z. Sun, R. He, and T. Tan. Deep supervised discrete hashing. In Advances in Neural Information

Processing Systems, pages 2479–2488, 2017.
[17] W.-J. Li, S. Wang, and W.-C. Kang. Feature learning based deep supervised hashing with pairwise labels. In

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, pages 1711–1717.
AAAI Press, 2016.

[18] K. Lin, J. Lu, C.-S. Chen, and J. Zhou. Learning compact binary descriptors with unsupervised deep neural
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
1183–1192, 2016.

[19] K. Lin, H.-F. Yang, J.-H. Hsiao, and C.-S. Chen. Deep learning of binary hash codes for fast image retrieval.
In Computer Vision and Pattern Recognition Workshops (CVPRW), 2015 IEEE Conference on, pages
27–35. IEEE, 2015.

[20] H. Liu, R. Wang, S. Shan, and X. Chen. Deep supervised hashing for fast image retrieval. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 2064–2072, 2016.

[21] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang. Supervised hashing with kernels. In Computer Vision
and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 2074–2081. IEEE, 2012.

[22] J. Masci, M. M. Bronstein, A. M. Bronstein, and J. Schmidhuber. Multimodal similarity-preserving
hashing. IEEE transactions on pattern analysis and machine intelligence, 36(4):824–830, 2014.

[23] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and
A. Lerer. Automatic differentiation in pytorch. 2017.

[24] T. Raiko, M. Berglund, G. Alain, and L. Dinh. Techniques for learning binary stochastic feedforward
neural networks. arXiv preprint arXiv:1406.2989, 2014.

9

[25] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, et al. Imagenet large scale visual recognition challenge. International Journal of Computer
Vision, 115(3):211–252, 2015.

[26] F. Shen, C. Shen, W. Liu, and H. T. Shen. Supervised discrete hashing. In CVPR, volume 2, page 5, 2015.
[27] F. Shen, X. Zhou, Y. Yang, J. Song, H. T. Shen, and D. Tao. A fast optimization method for general binary

code learning. IEEE Transactions on Image Processing, 25(12):5610–5621, 2016.
[28] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.

arXiv preprint arXiv:1409.1556, 2014.
[29] X. Wang, Y. Shi, and K. M. Kitani. Deep supervised hashing with triplet labels. In Asian Conference on

Computer Vision, pages 70–84. Springer, 2016.
[30] R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan. Supervised hashing for image retrieval via image representation

learning. In AAAI, volume 1, page 2, 2014.
[31] H.-F. Yang, K. Lin, and C.-S. Chen. Supervised learning of semantics-preserving hashing via deep neural

networks for large-scale image search. arXiv preprint arXiv:1507.00101, 2015.
[32] R. Zhang, L. Lin, R. Zhang, W. Zuo, and L. Zhang. Bit-scalable deep hashing with regularized similar-

ity learning for image retrieval and person re-identification. IEEE Transactions on Image Processing,
24(12):4766–4779, 2015.

[33] Z. Zhang, Y. Chen, and V. Saligrama. Efficient training of very deep neural networks for supervised
hashing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
1487–1495, 2016.

[34] F. Zhao, Y. Huang, L. Wang, and T. Tan. Deep semantic ranking based hashing for multi-label image
retrieval. In Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on, pages 1556–
1564. IEEE, 2015.

[35] Y. Zhou, S. Huang, Y. Zhang, and Y. Wang. Deep hashing with triplet quantization loss. arXiv preprint
arXiv:1710.11445, 2017.

[36] H. Zhu, M. Long, J. Wang, and Y. Cao. Deep hashing network for efficient similarity retrieval. In AAAI,
pages 2415–2421, 2016.

10

