
Bayesian Inference of Temporal Task Specifications
from Demonstrations

Ankit Shah
CSAIL, MIT

ajshah@mit.edu

Pritish Kamath
CSAIL, MIT

pritish@mit.edu

Shen Li
CSAIL, MIT

shenli@mit.edu

Julie Shah
CSAIL, MIT

julie_a_shah@mit.edu

Abstract

When observing task demonstrations, human apprentices are able to identify
whether a given task is executed correctly long before they gain expertise in actually
performing that task. Prior research into learning from demonstrations (LfD) has
failed to capture this notion of the acceptability of an execution; meanwhile, tem-
poral logics provide a flexible language for expressing task specifications. Inspired
by this, we present Bayesian specification inference, a probabilistic model for infer-
ring task specification as a temporal logic formula. We incorporate methods from
probabilistic programming to define our priors, along with a domain-independent
likelihood function to enable sampling-based inference. We demonstrate the effi-
cacy of our model for inferring specifications with over 90% similarity between
the inferred specification and the ground truth, both within a synthetic domain and
a real-world table setting task.

1 Introduction

Imagine showing a friend how to play your favorite quest-based video game. A mission within such
a game might be composed of multiple sub-quests that must be completed in order to complete that
level. In this scenario, it is likely that your friend would comprehend what needs to be done in order
to complete the mission well before he or she was actually able to play the game effectively. While
learning from demonstrations, human apprentices can identify whether a task is executed correctly
well before gaining expertise in that task. Most current approaches to learning from demonstration
frame this problem as one of learning a reward function or policy within a Markov decision process
setting; however, user specification of acceptable behaviors through reward functions and policies
remains an open problem [1]. Temporal logics have been used in prior research as a language
for expressing desirable system behaviors, and can improve the interpretability of specifications if
expressed as compositions of simpler templates (akin to those described by Dwyer et al. [2]). In
this work, we propose a probabilistic model for inferring the temporal structure of a task as a linear
temporal logic (LTL) specification.

A specification inferred from demonstrations is valuable in conjunction with synthesis algorithms for
verifiable controllers ([3] and [4]), as a reward signal during reinforcement learning ([5], [6]), and as
a system model for execution monitoring. In our work, we frame specification learning as a Bayesian
inference problem.

The flexibility of LTL for specifying behaviors also represents a key challenge with regard to inference
due to a large hypothesis space. We define prior and likelihood distributions over a smaller but relevant
part of the LTL formulas, using templates based on work by Dwyer et al [2]. Ideas from universal
probabilistic programming languages formalized by Freer et al [7] and Goodman et al [8], [9] are
key to our modeling approach. Indeed, probabilistic programming languages enabled Ellis et al
[10], [11] to perform inference over complex, recursively defined hypothesis spaces of graphics
programs and pronunciation rules. We demonstrate the capability of our model to achieve greater

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

than 90% similarity between the ground truth specification and the inferred specification, both within
a synthetic domain and a real-world task of setting a dinner table.

2 Linear Temporal Logic

Linear temporal logic (LTL), introduced by Pnueli [12], provides an expressive grammar for describ-
ing temporal behaviors. A LTL formula is composed of atomic propositions (discrete time sequences
of Boolean literals) and both logical and temporal operators, and is interpreted over traces [α] of the
set of propositions α. The notation [α], t |= ϕ indicates that ϕ holds at time t. The trace [α] satisfies
ϕ (denoted as [α] |= ϕ) iff [α], 0 |= ϕ. The minimal syntax of LTL can be described as follows:

ϕ ::= p | ¬ϕ1 | ϕ1 ∨ ϕ2 | Xϕ1 | ϕ1Uϕ2 (1)

p is an atomic proposition; ϕ1 and ϕ2 are valid LTL formulas. The operator X is read as ‘next’ and
Xϕ1 evaluates as true at time t if ϕ1 evaluates to true at t+ 1. The operator U is read as ‘until’ and
the formula ϕ1Uϕ2 evaluates as true at a time t1 if ϕ2 evaluates as true at some time t2 > t1 and ϕ1

evaluates as true for all time steps t such that t1 ≤ t ≤ t2. In addition to the minimal syntax, we also
use the additional first order logic operators ∧ (and) and→ (implies), as well as other higher-order
temporal operators, F (eventually) and G (globally). Fϕ1 evaluates to true at t1 if ϕ1 evaluates as
true for some t ≥ t1. Gϕ1 evaluates to true at t1 if ϕ1 evaluates as true for all t ≥ t1.

3 Bayesian Specification Inference

A large number of tasks comprised of multiple subtasks can be represented by a combination of
three temporal behaviors among those defined by Dwyer et al [2] — namely, global satisfaction of a
proposition, eventual completion of a subtask, and temporal ordering between subtasks. With ϕglobal,
ϕeventual, and ϕorder representing LTL formulas for these behaviors, the task specification is written
as follows:

ϕ = ϕglobal ∧ ϕeventual ∧ ϕorder (2)

We represent the task demonstrations as an observed sequence of state variables, x. Let α ∈ {0, 1}n
represent a vector of a finite dimension formed by Boolean propositions. α = f(x) (i.e., the
propositions) are a function of the state variables of the system at a given time instant. The output of
specification learning is a formula, ϕ ∈ ϕ, that best explains the demonstrations, where ϕ is the set
of all formulas satisfying the template described in Equation 2.

3.1 Formula Template

Global satisfaction: Let τ be the set of candidate propositions to be globally satisfied, and let T ⊆ τ
be the actual subset of propositions globally satisfied. The LTL formula that specifies this behavior is
written as follows:

ϕglobal =

(∧
τ∈T

(G(τ))

)
(3)

Such formulas are useful for specifying that some constraints must always be met — for example, a
robot avoiding collisions during motion, or an aircraft avoiding no-fly zones.

Eventual completion: Let Ω be the set of all candidate subtasks, and let W1 ⊆ Ω be the set of
subtasks that must be completed if the conditions represented by πw;w ∈ W1 are met. ωw are
propositions representing the completion of a subtask. The LTL formula that specifies this behavior
is written as follows:

ϕeventual =

(∧
w∈W1

(πw → Fωw)

)
(4)

Temporal ordering: Every set of feasible ordering constraints over a set of subtasks is mapped
to a directed acyclic graph (DAG) over nodes representing these subtasks. Each edge in the DAG

2

corresponds to a binary precedence constraint. LetW2 be the set of binary temporal orders defined
byW2 = {(w1, w2) : w1 ∈ V , w2 ∈ Descendants(w1)}, where V is the set of all nodes in the task
graph. Thus, the ordering constraints include an enumeration of not just the edges in the task-graph,
but all descendants of a given node. For subtasks w1 and w2, the ordering constraint is written as
follows:

ϕorder =

 ∧
(w1,w2)∈W2

(πw1
→ (¬ωw2

Uωw1
))

 (5)

This formula states that if conditions for the execution of w1 i.e. πw1
are satisfied, w2 must not be

completed until w1 has been completed.

For the purposes of this paper, we assume that all required propositions α = [T ,π,ω]T and labeling
functions f(x) are known, along with the sets τ and Ω, and the mapping of the condition propositions
πw to their subtasks. Under these assumptions, the problem of inferring the correct formula for a
task is equivalent to identifying the correct subsets T , W1, and W2, which explain the observed
demonstrations well.

3.2 Specification Learning as Bayesian Inference

The Bayes theorem is fundamental to the problem of inference, and is stated as follows:

P (h | D) =
P (h)P (D | h)∑
h∈H P (h)P (D | h)

(6)

P (h) is the prior distribution over the hypothesis space, and P (D | h) is the likelihood of observing
the data given a hypothesis. Our hypothesis space is defined by H = ϕ, where ϕ is the set of all
formulas that can be generated by the production rule defined by the template in Equation 2. The
observed data comprises the set of demonstrations provided to the system by expert demonstrators
(note that we assume all these demonstrations are acceptable). D represents a set of sequences of the
propositions, defined byD = {[α]}.

3.2.1 Prior specification

While sampling candidate formulas as per the template depicted in Equation 2, we treat the sub-
formulas in Equations 3, 4, and 5 as independent to each other. As generating the actual formula,
given the selected subsets, is deterministic, sampling ϕglobal and ϕeventual is equivalent to selecting
a subset of a given finite universal set. Given a set A, we define SampleSubset(A,p) as the process
of applying a Bernoulli trial with success probability p to each element of A and returning the
subset of elements for which the trial was successful. Thus, sampling ϕglobal and ϕeventual is
accomplished by performing SampleSubset(τ , pG) and SampleSubset(Ω, pE). Sampling ϕorder
is equivalent to sampling a DAG, with the nodes of the graph representing subtasks. Based on domain
knowledge, appropriately constraining the DAG topologies would result in better inference with
fewer demonstrations. Here, we present three possible methods of sampling a DAG, with different
restrictions on the graph topology.

Algorithm 1 SampleSetsOfLinearChains
1: function SAMPLESETSOFLINEARCHAIN(Ω,ppart)
2: i← 1;Ci ← []
3: P ← random permutation(Ω)
4: for a ∈ P do
5: Ci.append(a)
6: k ← Bernoulli(ppart)
7: if k = 1 then
8: i = i+ 1;Ci ← []

9: returnCj ∀ j

Linear chains: A linear chain is a DAG such that all subtasks must occur in a single, unique sequence
out of all permutations. Sampling a linear chain is equivalent to selecting a permutation from a
uniform distribution and is achieved via the following probabilistic program: for a set of size n,
sample n− 1 elements from that set without replacement, with uniform probability.

3

Table 1: Prior definitions and hyperparameters.
Prior ϕorder Hyperparameters

Prior 1 RandomPermutation(Ω) pG, pE
Prior 2 SampleSetsOfLinearChains(Ω, ppart) pG, pE , ppart
Prior 3 SampleForestofSubTasks(Ω, Nnew) pG, pE , Nnew

Sets of linear chains: This graph topology includes graphs formed by a set of disjoint sub-graphs,
each of which is either a linear chain or a solitary node. The execution of subtasks within a particular
linear chain must be completed in the specified order; however, no temporal constraints exist between
the chains. Algorithm 1 depicts a probabilistic program for constructing these sets of chains. In line
2, the first active linear chain is initialized as an empty sequence. In line 3, a random permutation
of the nodes is produced. For each element a ∈ P , line 5 adds the element to the last active chain.
Lines 6 and 8 ensure that after each element, either a new active chain is initiated (with probability
ppart) or the old active chain continues (with probability 1− ppart).
Forest of sub-tasks: This graph topology includes forests (i.e., sets of disjoint trees). A given node
has no temporal constraints with respect to its siblings, but must precede all its descendants. Algorithm
2 depicts a probabilistic program for sampling a forest. Line 2 creates a random permutation of the
subtasks, P . Line 3 initializes an empty forest. In order to support a recursive sampling algorithm, the
data structure representing forests is defined as an array of trees, F . The ith tree has two attributes:
a root node, F [i].root, and a ‘descendant Forest’, F [i].descendant, in which the root node of each
tree is a child of the root node defined as the first attribute. The length of the forest, F .length, is the
number of trees included in that forest. The size of a tree, F [i].size, is the number of nodes within
the tree (i.e., the root node and all of its descendants). For each subtask in the random permutation
P , line 5 inserts the given subtask into the forest as per the recursive function InsertIntoForest
defined in lines 7 through 13. In line 8, an integer i is sampled from a categorical distribution, with
{1, 2, . . . ,F .length + 1} as the possible outcomes. The probability of each outcome is proportional
to the size of the trees in the forest, while the probability of F .length + 1 being the outcome is
proportional to Nnew, a user-defined parameter. This sampling process is similar in spirit to the
Chinese restaurant process [13]. If the outcome of the draw is F .length + 1, then a new tree with
root node a is created in line 10; otherwise, InsertIntoForest is called recursively to add a to the
forest F [i].descendants, as per line 12.

Algorithm 2 SampleForestofSubtasks
1: function SAMPLEFORESTOFSUBTASKS(Ω,Nnew)
2: P ← random permutation(Ω)
3: F ← []
4: for a ∈ P do
5: F =InsertIntoForest(F ,a)
6: returnF
7: function INSERTINTOFOREST(F , a)
8: i← Categorical([F [1].size,F [2].size, . . . ,F [F .length].size, Nnew])
9: if i = F .length + 1 then
10: Create new treeF [F .length + 1].root = a
11: else
12: F [i].descendants = InsertIntoForest(F [i].descendants, a)
13: returnF

Three prior distributions based on the four probabilistic programs are described in Table 1. In all the
priors, ϕglobal and ϕeventual are sampled using SampleSubset(τ , pG) and SampleSubset(Ω, pE),
respectively.

3.2.2 Likelihood function

The likelihood distribution, P ({[α]} | ϕ), is the probability of observing the trajectories within the
data set given the candidate specification. It is reasonable to assume that the demonstrations are inde-
pendent of each other; thus, the total likelihood can be factored as P ({[α]} | ϕ) =

∏
{[α]} P ([α] | ϕ).

The probability of observing a given trajectory demonstration is dependent upon the underlying
dynamics of the domain and the characteristics of the agents producing the demonstrations. In
the absence of this knowledge, our aim is to develop an informative, domain-independent proxy

4

for the true likelihood function based only on the properties of the candidate formula; we call
this the ‘Complexity-based’ (CB) likelihood function. Our approach is founded upon the classical
interpretation of probability championed by Laplace [14], which involves computing probabilities in
terms of a set of equally likely outcomes. Let there be Nconj conjunctive clauses in ϕ; there are then
2Nconj possible outcomes in terms of the truth values of the conjunctive clauses. In the absence of
any additional information, we assign equal probabilities to each of the potential outcomes. Then,
according to the classical interpretation of probability, for candidate formula ϕ1, defined by subsets
T1,W

1
1 andW 1

2 ; and ϕ2, defined by subsets T2,W
2
1 , andW 2

2 , the likelihood odds ratio is defined
as follows:

P ([α] | ϕ1)

P ([α] | ϕ2)
=

 2
Nconj1

2
Nconj2

= 2|T1|+|W1
1 |+|W1

2 |

2|T2|+|W2
1 |+|W2

2 | , [α] |= ϕ2

2
Nconj1

ε = 2|T1|+|W1
1 |+|W1

2 |

ε , [α] 2 ϕ2

(7)

Here, a finite probability proportional to ε is assigned to a demonstration that does not satisfy the
given candidate formula. With this likelihood distribution, a more restrictive formula with a low prior
probability can gain favor over a simpler formula with higher prior probability given a large number
of observations that would satisfy it. However, if the candidate formula is not the true specification, a
larger set of demonstrations is more likely to include non-satisfying examples, thereby substantially
decreasing the posterior probability of the candidate formula. The design of this likelihood function
is inspired by the size principle described by Tenenbaum [15].

A second choice for a likelihood function, inspired by Shepard [16], is defined as the SIM model
by Tenenbaum [15]. We call this the ‘Complexity-independent’ (CI) likelihood function, and it is
defined as follows:

P ([α] | ϕ) =
{
1− ε, if [α] |= ϕ

ε, Otherwise
(8)

3.2.3 Inference

We implemented our probabilistic model in webppl [9], a Turing-complete probabilistic programming
language. The hyperparameters, including those defined in Table 1 and ε, were set as follows:
pE , pG = 0.8; ppart = 0.3; Nnew = 5; ε = 4× log(2)× (|τ + |Ω|+0.5|Ω|(|Ω|−1)). These values
were held constant for all evaluation scenarios. The equation for ε was defined such that evidence of a
single non-satisfying demonstration would negate the contribution of four satisfying demonstrations
to the posterior probability. The posterior distribution of candidate formulas is constructed using
webppl’s Markov chain Monte Carlo (MCMC) sampling algorithm from 10,000 samples, with 100
samples used as burn-in. The posterior distribution is stored as a categorical distribution, with each
possibility representing a unique formula. The maximum a posteriori (MAP) candidate represents the
best estimate for the specification as per the model. The inference was run on a desktop with an Intel
i7-7700 processor.

4 Evaluations

We evaluated the performance of our model within two different domains: a synthetic domain in which
we could easily vary the complexity of the ground truth specifications, and a domain representing the
real-world task of setting a dinner table — a task often incorporated into studies of learning from
demonstration ([17]).

If the ground truth formula is defined using subsets T ∗,W ∗1 , and W ∗2 (as per Equations 3, 4, and 5),
and a candidate formula ϕ is defined by subsets T ,W1, andW2, we define the degree of similarity
using the Jaccard index [18] as follows:

L(ϕ) =
| {T ∗ ∪W ∗1 ∪W ∗2 } ∩ {T ∪W1 ∪W2} |
| {T ∗ ∪W ∗1 ∪W ∗2 } ∪ {T ∪W1 ∪W2} |

(9)

The maximum possible value of L(ϕ) is one wherein both formulas are equivalent. One key benefit
of our approach is that we compute a posterior distribution over candidate formulas; thus, we report
the expected value of E(L(ϕ)) as a measure of the deviation of the inferred distribution from the

5

Figure 1: Example trajectories from Scenario 1. Green circles denote the POIs and the red circles
denote the avoidance zones of threats.

0 5 10 15 20 25 30 35

Number of Training Demonstrations

0

0.2

0.4

0.6

0.8

1

1.2

(a) Scenario 1

0 10 20 30

Number of Demonstrations

0

100

200

300

400

N
um

be
r

of
 F

or
m

ul
as

CB
CI

(b) Scenario 1

0 10 20 30 40 50

Number of Training Demonstrations

0

0.2

0.4

0.6

0.8

1

1.2

(c) Scenario 2 L(ϕ)

0 10 20 30 40 50

Number of Demonstrations

0

1

2

3

4

5

6

N
um

be
r

E[#Correct Orders]: Prior 2
E[#Extra Orders]: Prior 2
E[#Correct Orders]: Prior 3
E[#Extra Orders]: Prior 3

(d) Scenario 2 orders

Figure 2: Figure 2a depicts the results from Scenario 1, with the dotted line representing the maximum
possible value of L(ϕ). Figure 2b shows the number of unique formulas in the posterior distribution,
Figure 2c indicates the L(ϕ) values for Scenario 2, and Figure 2d depicts the correct and extra
orderings inferred in Scenario 2. The dotted lines represent the number of orderings in the true
specification.

ground truth. We also report the maximum value of L(ϕ) among the top 5 candidates in the posterior
distribution. We also classify the inferred orders inW2 as correct if they are included in the ground
truth, incorrect if they reverse any constraint within the ground truth, and “extra” otherwise. (Extra
orders over-constrain the problem, but do not induce incorrect behaviors.)

We evaluated our approach against the temporal logic inference (TempLogIn) algorithm proposed by
Kong et al [19]. TempLogIn mines parametric STL (PSTL) specifications, by conducting a breadth
first search through a DAG induced by a partial ordering relation between PSTL formulas. Note that
while our approach requires only positive examples, temporal logic inference must be trained on both
positive and negative examples.

4.1 Synthetic Domain

In our synthetic domain, an agent navigates within a two-dimensional space that includes points
of interest (POIs) to visit and threats to avoid. A predicate, ωi, is associated with each POI and
evaluates as true if the agent is within a tolerance region of the given POI. Each threat has a predicate,
τi, associated with it, which evaluates as true if the agent enters an avoidance region for that threat.

6

(a) (b)

Figure 3: Figure 3a depicts all the final configurations. Figure 3b depicts the demonstration setup.

Finally, propositions πi are associated with the accessibility of ith POI, and evaluate as true if the
given POI is not within the avoidance region of any threat. The agent is programmed to visit the
accessible POIs and avoid threats, as per the ground truth specification. In Scenario 1, we generated
example trajectories in which the agent visits four POIs in a specific order [1, 2, 3, 4]. During each
demonstration, five threat locations were sampled from a uniform distribution in the task space.
Figure 1 depicts some of the demonstrated trajectories. In Scenario 2, we incorporated five POIs:
[1, 3, 5] must be visited in that specific order, while {2, 4} can be visited in any order if accessible.

For Scenario 1, the posterior distribution was computed by using prior 1 (defined in Table 1) and
both CB (Equation 7) and CI (Equation 8) likelihood functions for different training set sizes. The
expected value and maximum value among the top 5 formula candidates of L(ϕ) is depicted in
Figure 2a.

We observed that the CB likelihood function performed better than the CI likelihood function at
inferring the complete specification. Using the CI likelihood resulted in a higher posterior probability
assigned to formulas with high prior probability that were satisfied by all demonstrations. (These
tended to be simple, non-informative formulas; the CB likelihood function assigned higher probability
mass to more complex formulas that explained the demonstrations correctly.) Figure 2b depicts the
number of unique formulas in the posterior distributions. The CB likelihood function resulted in
posteriors being more peaky, with fewer unique formulas as the training set size increased; this effect
was not observed with the CI likelihood function.

For Scenario 2, the posterior distribution was computed using priors 2 and 3, as the ground truth
specification did not lie in the support of prior 1. The expected value and maximum value among the
top 5 formula candidates of L(ϕ) are depicted in Figure 2c. Given a sufficient number of training
examples, both priors were able to infer the complete formula; with 10 or more training examples,
both priors returned the ground truth formula among the top 5 candidates with regard to posterior
probabilities. Figure 2d depicts the correct and extra orders inferred in Scenario 2. Prior 3 assigns a
larger prior probability to longer task chains compared with prior 2, but the two priors converge to
the correct specification given enough training examples.

The runtime for MCMC inference is a function of the number of samples generated, the number of
demonstrations in the training set, and the length of demonstrations. Scenarios 1 and 2 required an
average runtime of 10 and 90 minutes for training set sizes of 5 and 50, respectively.

TempLogIn [19] required 33 minutes to terminate with three PSTL clauses. For both Scenarios 1 and
2, the mined formulas did not capture any of the temporal behaviors in Section 3.1, indicating that
more PSTL clauses were required. With five and 10 PSTL clauses, the algorithm did not terminate
within the 24 hours runtime cutoff. Scaling TempLogIn to larger formula lengths is difficult as the
size of the search graph increases exponentially with number of PSTL clauses, and the algorithm
must evaluate all formula candidates of length n before candidates of length n+ 1.

4.2 Dinner Table Domain

We also tested our model on a real-world task: setting a dinner table. The task featured eight dining
set pieces that had to be organized on a table while avoiding contact with a centerpiece. Figure 3a
depicts each of the final configurations of the dining set pieces. The pieces were varied in each
configuration, but the position of a given piece on the table was constant across configurations, with
positions marked on the table in order to guide the demonstrator. A predicate τ was associated with
the centerpiece, encoding whether the demonstrators’ wrists got too close to it. πi was associated

7

30 40 50 60 70

Number of Training Demonstrations

0

0.2

0.4

0.6

0.8

1

1.2

(a) Dinner table L(ϕ)

30 40 50 60 70

Number of Demonstrations

0

1

2

3

4

5

6

N
um

be
r

E[#Correct Orders]: Prior 2
E[#Extra Orders]: Prior 2
E[#Correct Orders]: Prior 3
E[#Extra Orders]: Prior 3

(b) Dinner Table orders

Figure 4: Figure 4a depicts the L(ϕ) values for the dinner table domain, with the dotted line
representing the maximum possible value. Figure 4b depicts the correct and extra orderings inferred
within this domain. The dotted lines represent the number of orderings in the true specification.

with the ith dinner piece, and encoded whether that piece needed to be placed on the table. ωi was
associated with the ith dinner piece, and encoded whether it was at its correct and final position.
In some of the configurations, the dinner plate, small plate and bowl were stacked on top of each
other; in this case, the true specification would be to eventually position all the required dinner pieces
by placing the dinner plate, small plate, and bowl, in that order. The state space x consisted of the
positions of each of the dinner pieces and the wrists of the demonstrator, all of which were tracked
via a motion capture system. The truth values of ωi and τ were evaluated using task-space region
constraints defined by Berenson et al [20]. A total of 71 demonstrations were collected, and randomly
sampled subsets of different sizes were used to learn the specifications. The expected value of L(ϕ)
and its maximum value among the top 5 candidates are depicted in Figure 4a; the number of correct
and extra orders are depicted in Figure 1. With prior 2, our model correctly identified the ground truth
in all cases. With prior 3, the inferred formula contained additional ordering constraints compared
with the ground truth. Using all 71 demonstrations, the MAP candidate had one additional ordering
constraint: that the fork be placed before the spoon. Upon review, this constraint was satisfied in all
but four of the demonstrations.

5 Related Work

One common approach in prior research frames learning from demonstration as an inverse reinforce-
ment learning (IRL) problem. Ng et al [21] and Abbeel et al [22] first formalized the problem of
inverse reinforcement learning as one of optimization in order to identify the reward function that best
explains observed demonstrations. Ziebart et al [23] introduced algorithms to compute optimal policy
for imitation using the maximum entropy criterion. Konidaris et al [24] and Niekum et al [25] framed
IRL in a semi-Markov setting, allowing for an implicit representation of the temporal structure of
the task. Surveys by Argall et al [26] and Chernova et al [27] provided a comprehensive review of
techniques built upon these works as applied to robotics. However, according to Arnold et al [1], one
drawback of inverse reinforcement learning is that it is non-trivial to extract task specifications from a
learned reward function or policy. Our method bridges this gap by directly learning the specifications
for acceptable execution of the given task.

Temporal logics, introduced by Pnueli [12], are an expressive grammar used to describe the desirable
temporal properties of task execution. Temporal logics have previously been used as a language for
goal definitions in reinforcement learning algorithms ([5], [6]), reactive controller synthesis ([3], [4]),
and domain independent planning [28].

Kasenberg and Scheutz [29] explored mining globally persistent specifications from optimal traces of
a finite state Markov decision process (MDP). Jin et al [30] proposed algorithms for mining temporal
specifications similar to rise time and setting time for closed-loop control systems. Works by Kong et
al [31], [19], Yoo and Belta [32], and Lemieux et al [33] are most closely related to our own, as our
work incorporates only the observed state variable (and not the actions of the demonstrators) as input
to the model. Lemieux et al [33] introduced Texada, a general specification mining tool for software

8

logs. Texada outputs all possible instances of a particular formula template that are satisfied; however,
it treats each time step as a string, with all unique strings within the log treated as unique propositions.
Texada would treat a system with n propositions as a system with 2n distinct propositions — thus,
interpreting a mined formula is non-trivial. Kong et al [31], [19] and Yoo and Belta [32] mined PSTL
specifications for given demonstrations while simultaneously inferring signal propositions akin to
our own user-defined atomic propositions by conducting breadth first search over a DAG formed by
candidate formulas. Our prior specifications allow for better connectivity between different formulas,
while using MCMC-based approximate inference allows for fixed runtimes.

We adopt a fully Bayesian approach to model the inference problem, enabling our model to maintain
a posterior distribution over candidate formulas. This distribution provides a measure of confidence
when predicting the acceptability of a new demonstration that the aforementioned approaches do not.

6 Conclusion

In conclusion we presented a probabilistic model to infer task specifications in terms of three behaviors
encoded as LTL templates. We presented three prior distributions that allow for efficient sampling of
candidate formulas as per the templates. We also presented a likelihood function that depends only
on the number of conjunctive clauses in the candidate formula and is transferable across domains
as it requires no information about the domain itself. Finally, we demonstrated that with our model
inferred specifications with over 90% similarity to the ground truth, both within a synthetic domain
and a real-world task of setting a dinner table.

Acknowledgements

This research was funded in part by Lockheed Martin Corporation and the Air Force Research
Laboratory. Approved for Public Release: distribution unlimited, 88ABW-2018-2502, 16 May 2018

References
[1] T. Arnold, D. Kasenberg, and M. Scheutz, “Value alignment or misalignment–what will keep systems

accountable,” in 3rd International Workshop on AI, Ethics, and Society, 2017.

[2] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property specifications for finite-state
verification,” in Proceedings of the 21st international conference on Software engineering, pp. 411–420,
ACM, 1999.

[3] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-based reactive mission and motion
planning,” IEEE transactions on robotics, vol. 25, no. 6, pp. 1370–1381, 2009.

[4] V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A. Seshia, “Reactive synthesis from signal temporal
logic specifications,” in Proceedings of the 18th International Conference on Hybrid Systems: Computation
and Control, pp. 239–248, ACM, 2015.

[5] X. Li, C.-I. Vasile, and C. Belta, “Reinforcement learning with temporal logic rewards,” in Intelligent
Robots and Systems (IROS), 2017 IEEE/RSJ International Conference on, pp. 3834–3839, IEEE, 2017.

[6] M. L. Littman, U. Topcu, J. Fu, C. Isbell, M. Wen, and J. MacGlashan, “Environment-independent task
specifications via gltl,” arXiv preprint arXiv:1704.04341, 2017.

[7] C. E. Freer, D. M. Roy, and J. B. Tenenbaum, “Towards common-sense reasoning via conditional simulation:
legacies of turing in artificial intelligence.,” in Turing’s Legacy (R. Downey, ed.), vol. 42 of Lecture Notes
in Logic, pp. 195–252, Cambridge University Press, 2014.

[8] N. Goodman, V. Mansinghka, D. M. Roy, K. Bonawitz, and J. B. Tenenbaum, “Church: a language for
generative models,” arXiv preprint arXiv:1206.3255, 2012.

[9] N. D. Goodman and A. Stuhlmüller, “The Design and Implementation of Probabilistic Programming
Languages.” http://dippl.org, 2014. Accessed: 2018-4-9.

[10] K. Ellis, D. Ritchie, A. Solar-Lezama, and J. B. Tenenbaum, “Learning to infer graphics programs from
hand-drawn images,” arXiv preprint arXiv:1707.09627, 2017.

9

http://dippl.org

[11] K. Ellis, A. Solar-Lezama, and J. Tenenbaum, “Unsupervised learning by program synthesis,” in Advances
in neural information processing systems, pp. 973–981, 2015.

[12] A. Pnueli, “The temporal logic of programs,” in Foundations of Computer Science, 1977., 18th Annual
Symposium on, pp. 46–57, IEEE, 1977.

[13] D. J. Aldous, “Exchangeability and related topics,” in École d’Été de Probabilités de Saint-Flour XIII —
1983 (P. L. Hennequin, ed.), (Berlin, Heidelberg), p. 92, Springer Berlin Heidelberg, 1985.

[14] P. S. Laplace and P. Simon, “A philosophical essay on probabilities, translated from the 6th french edition
by frederick wilson truscott and frederick lincoln emory,” 1951.

[15] J. B. Tenenbaum, “Rules and similarity in concept learning,” in Advances in neural information processing
systems, pp. 59–65, 2000.

[16] R. Shepard, “Toward a universal law of generalization for psychological science,” Science, vol. 237,
no. 4820, pp. 1317–1323, 1987.

[17] R. Toris, D. Kent, and S. Chernova, “Unsupervised learning of multi-hypothesized pick-and-place task
templates via crowdsourcing,” in Robotics and Automation (ICRA), 2015 IEEE International Conference
on, pp. 4504–4510, IEEE, 2015.

[18] J. Paul, “The distribution of the flora in the alpine zone.1,” New Phytologist, vol. 11, no. 2, pp. 37–50.

[19] Z. Kong, A. Jones, and C. Belta, “Temporal logics for learning and detection of anomalous behavior,” IEEE
Transactions on Automatic Control, vol. 62, no. 3, pp. 1210–1222, 2017.

[20] D. Berenson, S. Srinivasa, and J. Kuffner, “Task space regions: A framework for pose-constrained
manipulation planning,” The International Journal of Robotics Research, vol. 30, no. 12, pp. 1435–1460,
2011.

[21] A. Y. Ng and S. J. Russell, “Algorithms for inverse reinforcement learning,” in Proceedings of the
Seventeenth International Conference on Machine Learning, ICML ’00, (San Francisco, CA, USA),
pp. 663–670, Morgan Kaufmann Publishers Inc., 2000.

[22] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforcement learning,” in Proceedings of
the twenty-first international conference on Machine learning, p. 1, ACM, 2004.

[23] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum entropy inverse reinforcement
learning.,” in AAAI, vol. 8, pp. 1433–1438, Chicago, IL, USA, 2008.

[24] G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto, “Robot learning from demonstration by constructing
skill trees,” The International Journal of Robotics Research, vol. 31, no. 3, pp. 360–375, 2012.

[25] S. Niekum, S. Osentoski, G. Konidaris, S. Chitta, B. Marthi, and A. G. Barto, “Learning grounded finite-
state representations from unstructured demonstrations,” The International Journal of Robotics Research,
vol. 34, no. 2, pp. 131–157, 2015.

[26] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of robot learning from demonstration,”
Robotics and autonomous systems, vol. 57, no. 5, pp. 469–483, 2009.

[27] S. Chernova and A. L. Thomaz, “Robot learning from human teachers,” Synthesis Lectures on Artificial
Intelligence and Machine Learning, vol. 8, no. 3, pp. 1–121, 2014.

[28] J. Kim, C. J. Banks, and J. A. Shah, “Collaborative planning with encoding of users’ high-level strategies.,”
in AAAI, pp. 955–962, 2017.

[29] D. Kasenberg and M. Scheutz, “Interpretable apprenticship learning with temporal logic specifications,”
arXiv preprint arXiv:1710.10532, 2017.

[30] X. Jin, A. Donzé, J. V. Deshmukh, and S. A. Seshia, “Mining requirements from closed-loop control
models,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 11,
pp. 1704–1717, 2015.

[31] Z. Kong, A. Jones, A. Medina Ayala, E. Aydin Gol, and C. Belta, “Temporal logic inference for classifica-
tion and prediction from data,” in Proceedings of the 17th international conference on Hybrid systems:
computation and control, pp. 273–282, ACM, 2014.

[32] C. Yoo and C. Belta, “Rich time series classification using temporal logic,” in Robotics: Science and
Systems, 2017.

[33] C. Lemieux, D. Park, and I. Beschastnikh, “General ltl specification mining (t),” in Automated Software
Engineering (ASE), 2015 30th IEEE/ACM International Conference on, pp. 81–92, IEEE, 2015.

10

