
Appendix

A Dual Norms of Coupled Nuclear Norms

In this section, we describe dual norms of coupled nuclear norms. Dual norms help us in developing
optimization procedures and theoretical analysis.

The dual norm of the tensor nuclear norm for T ∈ Rn1×···×nK (Yang et al., 2015; Yuan and Zhang,
2016) is defined as

∥T ∥2 = max
∥yi∥2=1,1≤i≤K

⟨T , y1 ⊗ y2 ⊗ · · · ⊗ yK⟩. (9)

Below, we provide dual norms for the two coupled nuclear norms (2) and (3) with a K-mode tensor
W ∈ Rn1×···×nK and a K ′-mode tensor V ∈ Rn′

1×···×n′
K′ . These dual norms can be easily de-

rived by taking spectral norms with respect to each tensor while considering the common factors on
coupled modes.
Theorem 3. The dual norm of ∥W,V∥ccp,(λ1,F)(λ2,F) is

∥W,V∥accp,(λ1,F)(λ2,F)
⋆ =

{
λ1 max

∥xl∥2=1,l=1,...,K
⟨W, x1 ⊗ · · · ⊗ xa ⊗ · · ·xK⟩,

λ2 max
∥yl′∥2=1,l′=1,...,K′\a

⟨V, y1 ⊗ · · · ⊗ xa ⊗ · · · yK′⟩
}
. (10)

Proof. By the (3), we have

W =

R∑
i=1

γix1i ⊗ · · · ⊗ xai ⊗ · · ·xKi,

and

V =

R∑
i=1

βiy1i ⊗ · · · ⊗ xai ⊗ · · · yK′i,

with xai, i = 1, . . . , R in common.

Taking the dual norms (spectral norms) (9) of them lead to

∥W∥2 = max
∥pi∥2=1,1≤i≤K

⟨W, p1 ⊗ p2 ⊗ · · · ⊗ pK⟩,

and
∥V∥2 = max

∥qi∥2=1,1≤i≤K′
⟨V, q1 ⊗ q2 ⊗ · · · ⊗ qK′⟩,

However, since by definition, each xai is common to both tensors, pa = qa.

Further, due to ∥W∥∗ ≤ λ1 and ∥V∥∗ ≤ λ2 spectral norms of the coupled tensors also need to be
scaled accordingly. This completes the proof. □
We give following dual norm of (3) without proofs.

inf
W(1)+W(2)=W

∥W,V∥accp,(λ1,λ2,L),(λ3,F)
⋆

=

{
λ1 max

∥x(1)
l ∥2=1,l=1,...,K;∥xa∥2=1

⟨W(1), x
(1)
1 ⊗ · · · ⊗ xa ⊗ · · ·x(1)

K ⟩,

λ2 max
∥x(2)

l ∥2=1,l=1,...,K

⟨W(2), x
(2)
1 ⊗ · · · ⊗ x

(2)
K ⟩,

λ3 max
∥yl′∥2=1,l′=1,...,K′\a

⟨V, y1 ⊗ · · · ⊗ xa ⊗ · · · yK′⟩
}
. (11)

Dual norms for other coupled nuclear norms can be developed in a similar manner.
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B Optimization

In this section, we describe our extensions to the Frank-Wolfe optimization method to solve the
proposed completion models specified in Section 3.1.

First, we point out that any coupled completion models (4) and (5) for partially observed tensors X
and Y can be expressed as

min
W,V∈W

fW(X ) + fV(Y), (12)

where W is hypothesis class based on the coupled nuclear norm, and fW(·) and fV(·) are loss
functions for X and Y , respectively. We can convert (4) into (12) by taking fW(X ) = 1

2∥Ω1(W)−
Ω1(X )∥2F, fV(Y) = 1

2∥Ω2(V) − Ω2(Y)∥2F, and W = {W,V | ∥W,V∥ccp,(λ1,F)(λ2,F)}. Similarly,
we can convert (5) and other completion models regularized using coupled nuclear norms into the
format of (12). An optimization problem with the formulation of (12) is solvable using the Frank-
Wolfe method (Jaggi, 2013; Yang et al., 2015).

B.1 Approximating the Coupled Spectral Norm

With the Frank-Wolfe optimization (Jaggi, 2013; Yang et al., 2015), learning models regularized by
the nuclear norms only require to compute the spectral norm of tensors. To compute the spectral
norm of a tensor, Yang et al. (2015) proposed an approximation method that recursively computes
the largest singular vector of each mode. Their approximation method is listed in Algorithm 1. We
use the build-in MATLAB functions: [u, s, v] = svd(U, 1) to find the largest singular vectors u and
v and singular value s of a matrix U , and reshape(u, [n1, . . . , nl]) to reshape a vector u ∈ Rn1n2···nl

to a tensor of dimensions n1 × n2 × · · · × nl.

Lines 4-9 in ApproxSpectral() compute the topmost orthogonal vectors of a 4-mode tensor. This
is based on the subroutine 1 of (Yang et al., 2015). In lines 11-16, it considers a 2K-mode tensor
and recursively call itself to compute the topmost orthogonal vectors for the modes 1, · · · , 2K−1

and using them computes the topmost orthogonal vectors of remaining modes. This is based on the
subroutine 2 of (Yang et al., 2015).

1: Input:A ∈ Rn1×n2···×nK

2: Output: x1, . . . , xK

3: if K == 4 then
4: M = reshape(A, [n1n2, n3n4])
5: (u, s, v) = svd(M, 1)
6: Mleft = reshape(u, [n1, n2])
7: (x1, s, x2) = svd(Mleft, 1)
8: Mright = M ×1 x

⊤
1 ×2 x

⊤
2

9: (x3, s, x4) = svd(Mright, 1)
10: else
11: A′ = reshape(A, [n1 · · ·n2K−1 , n2K−1+1 · · ·n2K ])
12: u, s, v = svd(A′, 1)
13: Aleft = reshape(u, [n1, . . . , n2K−1 ])
14: (x1, · · · , x2K−1) = ApproxSpectral(Aleft)
15: Aright = A×1 x

⊤
1 ×2 · · · ×2K−1 x⊤

2K−1

16: (x2K−1+1, · · · , x2K ) = ApproxSpectral(Aright)
17: end if

Algorithm 1: ApproxSpectral(A) based on (Yang et al., 2015)

We use the algorithm ArppoxSpectral(.) to approximate spectral norms of coupled nuclear norms
(derived in the previous section) as given in Algorithm 2. In this algorithm, for simplicity, we
consider only two tensors A and B that are coupled on the first mode. The line 4 in the Algorithm
2 computes the top left singular vector, uc, of the concatenated matrix of unfolded A and B on
the mode 1 which is common to both tensors. Lines 5 and 6, remove the first mode from the A
and B using the common singular vector uc, and in lines 7 and 8, singular vectors with respect to
other modes are computed. Alternatively, we can use the Lanczos method instead of svd(·, ·) in
Algorithms 1 and 2.
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1: Input: Tensor A ∈ Rn1×n2×···×nK and B ∈ Rn′
1×n′

2×···×n′
K′ coupled on mode-1

2: Output: uc, w2, . . . , wK , v2, . . . , vK′

3: Y = [A(1);B(1)]
4: uc, s, v = svd(Y, 1)
5: Ā = A×1 uc

6: B̄ = B ×1 uc

7: w2, . . . , wK = ApproxSpectral(Ā)
8: v2, . . . , vK′ = ApproxSpectral(B̄)

Algorithm 2: ApproxCoupledSpectral(A, B)

The proposed approximation method is convex, leading to a global solution for the proposed comple-
tion models (4) and (5). The approximation method can be further extended for multiple couplings of
tensors by first computing singular vectors along all the coupled modes and then finding the largest
singular vectors with respect to uncoupled modes. A limitation with the approximation method is
the high computational cost in computing SVD for high dimensional coupled tensors.

B.2 Optimization Procedure

In order to solve the proposed completion models, we extend the Frank-Wolfe optimization method
proposed in (Yang et al., 2015). In Algorithm 3, we give procedures for solving the coupled model
(4) regularized by ∥W,V∥ccp,(λ1,F)(λ2,F). The most important step we want to highlight is the line
8, where the coupled factorization of the dual formulation of ∇fW(X ) and ∇fV(Y) are obtained by
using the Algorithm 1. Here, we use the coupled spectral norm (10) to update the gradient steps after
factorizing the largest singular vectors including the common top most singular vector on mode 1.
In lines 9 and 10, we compute projections of spectral norms of each tensor and update the learning
models in lines 14 and 15.

1: Input: X ∈ Rn1×n2×···×nK with the mapping to the observed element by Ω1,
Y ∈ Rn′

1×n′
2×···×n′

K′ with the mapping to the observed element by Ω2. Regularization
parameters λ1 and λ2. Initial W0 and V0. Maximum number of iterations T .

2: Output: WT , VT

3: t = 0
4: repeat
5: t = t+ 1
6: fW(X t) = 1

2∥Ω1(Wt)− Ω1(X )∥2F
7: fV(Yt) = 1

2∥Ω2(Vt)− Ω2(Y)∥2F
8: uc, w2, . . . , wK , v2, . . . , vK′ = ApproxCoupledSpectral(∇WfW(X t),∇VfV(Yt))
9: Wt

descent = −λ1uc ⊗ w2, · · · ⊗ wK

10: Vt
descent = −λ2uc ⊗ v2, · · · ⊗ vK′

11: if linesearch == True then
12: Using an appropriate line search method (e.g.Yang et al., (2015))
13: else
14: Wt+1 = Wt + 2

t+2W
t
descent

15: Vt+1 = Vt + 2
t+2V

t
descent

16: end if
17: until t = T

Algorithm 3: A Frank-Wolfe optimization method for coupled tensors

We can extend the Algorithm 3 to optimize completion models that are regularized using other
coupled nuclear norms.
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C Proofs of Theoretical Analysis

In this section, we present the proofs of the theoretical results given in Section 4. To prove excess
risk bounds, we need to know the expectation of the sum of spectral norms for coupled tensors,
which we derive in the next subsection.

C.1 Expectation of Coupled Spectral Norms

We recall that the spectral norm of a K-mode tensor X ∈ Rn×···×n is
∥X∥2 = max

∥yi∥2=1,1≤i≤K
⟨X , y1 ⊗ y2 ⊗ · · · ⊗ yK⟩,

and from (Nguyen et al., 2015) we know that it is equivalent to
∥X∥2 = sup

y1,y2,...,yK−1∈Sn
∥X ×1 y1 ×2 . . .×K−1 yK−1∥2. (13)

We use the definition of spectral norm in (13) to bound the summation of spectral norms of two
coupled tensors. Though we can use tensor of any dimensions for our proof, it is often difficult to
write with indexes for high dimensional tensors. For convenience, throughout our proofs, we use
two tensors 3-mode tensors, T ∈ Rn×n×n and U ∈ Rn×n×n, and describe them as K-mode and
K ′-modes tensors, respectively.

The next theorem gives the expectation of two coupled tensors.

Theorem 4. Let K-mode tensor T ∈ Rn×n×···×n and K ′-mode tensor U ∈ Rn×n×···×n are
coupled on their first modes. We assume that entries of T and U are independent and zero mean.
Given two positive values a and b, we have

Ea∥T ×1 x×2 y∥2 + b∥U ×1 x×2 z∥2

≤ c1
√
2π

[
a23K+K′

ET α1

(
log2 1/η

)K−1

+ b2K+3K′
EUα2

(
log2 1/η

)K′−1

+ a2K−1ET β1
√
ηn+ b2K

′−1EUβ2
√
ηn

]√
8(K +K ′ − 3) ln(5e/η), (14)

where

α2
1 = max

j

(
max

i1,...,ij−1,ij+1,...,iK

(
n∑
ij

T 2
i1,...,ij−1,ij+1,...,iK

))
,

α2
2 = max

j′

(
max

i1,...,ij′−1,ij′+1,...,iK′

(
n∑
ij′

U2
i1,...,ij′−1,ij′+1,...,iK′

))
,

β1 = max
i1,...,iK

|Ti1,...,iK |,

β2 = max
i1,...,iK′

|Ui1,...,iK′ |,

and η is selected such that
√

(K +K ′ − 3)ηn ln(5e/η) ≥ 1.

More importantly, we prove the next theorem which consider random tensors with elements from
{0,−1, 1}, which is essential to prove excess risk bounds in Section 4.

Theorem 5. Let K-mode tensor T ∈ Rn×n×···×n and K ′-mode tensor U ∈ Rn×n×···×n are
coupled on their first modes. We assume that entries of T and U are randomly sampled from the set
{0,−1, 1}. By taking η = (lnn)2(max(K,K′)−1)/n, we have

Ea∥T ×1 x×2 y∥2 + b∥U ×1 x×2 z∥2

≤ c3

[
a23K+K′

K
√
n(lnn)K−1/2 + b23K+K′

K ′√n(lnn)K
′−1/2

]
,

where a, b and c3 are constants.

To prove the above theorems, we use a similar approach as in (Nguyen et al., 2015), and use the
entropy-concentration tradeoff analysis technique (Vershynin, 2011). The resulting proof is long,
and to improve the readability we present our proof in several steps in the following subsections.
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C.1.1 Bounding by Gaussian Symmetrization

We use the well known Gaussian symmetrization results (Vershynin, 2011). Since T is a tensor with
independent and zero mean entries, we have

ET ∥T ∥2 = ET ∥T − T ′∥2,

where T ′ consists of independent random variables. Now from Jensen’s inequality and introducing
ϵi,j,k ∈ {−1, 1}, we have

ET ∥T − T ′∥2 ≤ ET Eϵ

∥∥∥∥∥∑
i,j,k

ϵi,j,k(Ti,j,k − T ′
ij,k)ei ⊗ ej ⊗ ek

∥∥∥∥∥
2

≤ 2ET Eϵ

∥∥∥∥∥∑
i,j,k

ϵi,j,kTij,kei ⊗ ej ⊗ ek

∥∥∥∥∥
2

Given that gi,j,k is sampled from a Gaussian distribution, we have

ET Eg

∥∥∥∥∥gi,j,kTi,j,kei ⊗ ej ⊗ ek

∥∥∥∥
2

= ET EgEϵ

∥∥∥∥∑
i,l,k

ϵi,j,k|gi,j,k|Ti,j,kei ⊗ ej ⊗ ek

∥∥∥∥∥
2

≥ ET Eϵ

∥∥∥∥∥∑
i,j,k

Eg|gi,j,k|ϵi,j,kTi,j,kei ⊗ ej ⊗ ek

∥∥∥∥∥
2

≥
(
2

π

)1/2

ET Eϵ

∥∥∥∥∥∑
i,j,k

ϵi,j,kTi,j,kei ⊗ ej ⊗ ek

∥∥∥∥∥
2

,

where we have used the fact that E|gi,j,k| =
√
2/π, and thus

ET ∥T ∥2 ≤
√
2πET Eg

∥∥∥∥∥∑
i,j,k

gi,j,kTi,j,kei ⊗ ej ⊗ ek

∥∥∥∥∥
2

. (15)

Similarly, for the we have

EU∥U∥2 ≤
√
2πEUEg′

∥∥∥∥∥∑
i,j,k

g′i,j,kUi,j,kei ⊗ ej ⊗ ek

∥∥∥∥∥
2

, (16)

where g′i,j,k is sampled from a Gaussian distribution.

In order to prove Theorem 1, we use following random tensors

H =
∑
i,j,k

gi,j,kTi,j,kei ⊗ ej ⊗ ek, (17)

and
G =

∑
i,j′,k′

g′i,j′,k′Ui,j′,k′ei ⊗ ej′ ⊗ ek′ . (18)

Again we want to mention that we represent H and G as K-mode and K ′-mode tensors, respectively,
though they are 3-mode tensors.

C.1.2 Bounding by Concentration Inequality

We now develop a concentration inequality to analyze the sum spectral norms of two coupled tensors.

Given a Lipschitz function f : Rn 7→ R, the Lipschitz norm is defined (Nguyen et al., 2015) as

∥f∥L = sup
x,y∈Rn

|f(x)− f(y)|
∥x− y∥2

.

Additionally, we give the following well known results (Ledoux, 2001).
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Lemma 1. Let f : Rn 7→ R be a Lipschitz function and ∥f∥L be its Lipschitz norm. Given a vector
g ∈ Rn whose entries are a independent standard Gaussian random variables, then for all t > 0

P(f(g) ≥ Ef(g) + t
√
2∥f∥L) ≤ e−t2 . (19)

We use the following result from (Nguyen et al., 2015) for (17) and (18) throughout our proof.

Lemma 2. Given a pair of unit vectors x and y

Eg∥H ×1 x×2 y∥2 ≤
√
max
i,j

A2
i,j,k. (20)

Using the above results we obtain the following lemma.

Lemma 3. Given a unit vectors x, y, and z and two positive values a and b, we have

P
(
a∥H ×1 x×2 y∥2 + b∥G ×1 x×2 z∥2 ≥ a

√
max
i,j

∑
k

Ti,j,k + b

√
max
i,j′

∑
k′

Ui,j′,k′

+ t23/2 max

(
amax

k

(
T 2
i,j,kx

2
i y

2
j

)1/2

+ bmax
k′

(
U2
i,j′,k′x2

i z
2
j′

)1/2))
≤ e−t2 (21)

Proof. Given that s1 = H×1 x×2 y, where H is defined as (17), we know that

s1 =
∑
i,j,k

(
Hijkxiyj

)
ek

=
∑
k

(∑
i,j

Hijkxiyj

)
ek

=
∑
k

(∑
i,j

gijkTijkxiyj

)
ek,

(22)

since gijk is a Gaussian variable, gijkTijkxiyj also a random variable with zero mean and variance
of
∑

i,j T 2
ijkx

2
i y

2
j . Similarly, by considering s2 = G ×1 x×2 z with G as defined in (17), we obtain

s2 =
∑
k′

(∑
i,j′

g′ij′k′Uij′k′xizj′

)
ek′ , (23)

with random variables g′ij′k′Uij′k′xizj′ having zero mean and a variance of U2
ij′k′x2

i z
2
j′ .

Let us consider
p2k =

∑
i,j

T 2
i,j,kx

2
i y

2
j for all k ∈ [n],

and
q2k′ =

∑
i,j′

U2
i,j′,k′x2

i z
2
j′ for all k′ ∈ [n].

Given u ∈ Rn and v ∈ Rn, whose elements are standard Gaussian variables, we rewrite s1 and s2
as

s1 = a
∑
k

ukpkek,

and
s2 = b

∑
k′

vk′qk′ek′ .

Further, let us consider a concatenation of s1 and s2 as

s = [s⊤1 ; s
⊤
2 ] = [a(u1p1, . . . , unpn); b(v1q1, . . . , vnqn)].
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Now let us consider function f as

f([u, v]) := a

∥∥∥∥∑
k

ukpkek

∥∥∥∥
2

+ b

∥∥∥∥∑
k′

vk′qk′ek′

∥∥∥∥
2

,

then we have

f2([u, v]) = a2
∑
k

u2
kp

2
k + b2

∑
k′

v2k′q2k′ + 2ab

∥∥∥∥∑
k

ukpkek

∥∥∥∥
2

∥∥∥∥∑
k′

vk′qk′ek′

∥∥∥∥
2

.

We use the inequality 2xy ≤ x2 + y2 to obtain

f2([u, v]) ≤ 2
(
a2
∑
k

u2
kp

2
k + b2

∑
k′

v2k′q2k′

)
= 2∥s∥22,

and

f2([u, v]) ≤ 2∥[u; v]∥22 max(a2 max
k

p2k, b
2 max

k′
q2k′).

Thus

f([u, v]) ≤ 2max
(
amax

k
pk, bmax

k′
qk′
)
≤ 2(amax

k
pk + bmax

k′
qk′).

This leads to the Lipschitz norm of f as

∥f∥L = 2

(
amax

k

(
T 2
i,j,kx

2
i y

2
j

)1/2

+ bmax
k′

(
U2
i,j′,k′x2

i z
2
j′

)1/2)
(24)

Finally, using the (24) and lemmas 1 and 2 we obtain the final bound. □
Our goal is to bound the

E sup
x,y,z∈Sn−1

a∥H ×1 x×2 y∥2 + b∥G ×1 x×2 z∥2 (25)

with the assistance of Lemma 3. Notice that x is common both the spectral norms, which we know
from Section A. Further, to use the entropy-concentration tradeoff method, we consider that each
vector x, y, and z have sparse components and spread components. Given x = u+ v, where u is the
sparse component and v is the spread component, and η ∈ (0, 1], we have

ui =

{
xi if |xi| ≥ 1√

ηn ,

0 , otherwise
(26)

vi =

{
xi if |xi| < 1√

ηn

0 , otherwise.
(27)

Using the above we can obtain following two sets as in (Nguyen et al., 2015)

B2,0 =

{
x ∈ Rn : ∥x∥2 ≤ 1, |xi| ≥

1
√
ηn

or xi = 0

}
,

and

B2,∞ =

{
x ∈ Rn : ∥x∥2 ≤ 1, ∥x∥∞ <

1
√
ηn

}
.

16



Using the fact E(p+ q) = Ep+ Eq, we can expand (25) as

E sup
x,y,z∈Sn−1

a∥H ×1 x×2 y∥2 + b∥G ×1 x×2 z∥2 ≤ E sup
x,y,z∈B2,0

a∥H ×1 x×2 y∥2

+ b∥G ×1 x×2 z∥2
+ E sup

x,y,z∈B2,∞

a∥H ×1 x×2 y∥2

+ b∥G ×1 x×2 z∥2
+ E sup

x∈B2,0

sup
y,z∈B2,∞

a∥H ×1 x×2 y∥2

+ b∥G ×1 x×2 z∥2
+ E sup

y∈B2,0

sup
x,z∈B2,∞

a∥H ×1 x×2 y∥2

+ b∥G ×1 x×2 z∥2
...

+ E sup
x,y∈B2,0

sup
z∈B2,∞

a∥H ×1 x×2 y∥2

+ b∥G ×1 x×2 z∥2

.

(28)

In the subsequent sections we bound each of the right hand terms. We use following theorems from
(Nguyen et al., 2015) to assist our proofs.

Lemma 4. Let X be a random variable assuming non-negative values. For all t ≥ 0 and non-
negative h1, h2, and h3 if P(X ≥ h1 + th2) ≤ e−t2+h3 , then, for all q ≥ 1,

EXq ≤ 3
√
q(h1 + h2

√
h3 + h2

√
q/2)q.

Lemma 5. Let N be an ϵ-net for a B associated with a norm ∥ · ∥2. Then, the spectral norm of a
d-mode tensor A is bounded by,

sup
x1···xd−1∈B

∥A ×1 x1 · · · ×d−1 xd−1∥2 ≤
(

1

1− ϵ

)d−1

sup
x1···xd−1∈N

∥A ×1 x1 · · · ×d−1 xd−1∥2.

C.1.3 Control of Sparse Vectors

We prove following lemma in this section.

Lemma 6. Let us consider a K-mode tensor T ∈ Rn×···×n with its Gaussian symmetrization H
defined in (17) and a K ′-mode tensor U ∈ Rn×···×n with its Gaussian symmetrization G defined in
(18). Let us define the following

α2
1 = max

{
max
i,j

n∑
k=1

T 2
ijk,max

i,k

n∑
j=1

T 2
ijk,max

j,k

n∑
i=1

T 2
ijk

}
, (29)

β1 = max
ijk

|Tijk|, (30)

α2
2 = max

{
max
i,j′

n∑
k′=1

U2
ij′k′ ,max

i,k′

n∑
j′=1

U2
ij′k′ ,max

j′,k′

n∑
i=1

U2
ij′k′

}
, (31)

β2 = max
ij′k′

|Uij′k′ |, (32)
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then

E
(

sup
x,y,z∈B2,0

a∥H ×1 x×2 y∥2 + b∥G ×1 x×2 z∥2 ≥ 2K−1α1 + 2K
′−1α2

+ 23/2t

(
a2K−1β1 + b2K

′−1β2

))
≤ 3
(
2K−1

(
α1 + 23/2β1

(√
(K +K ′ − 3)ηn ln(5e/η) + 1

))
+ 2K

′−1
(
α2 + 23/2β2

(√
(K +K ′ − 3)ηn ln(5e/η) + 1

)))
Proof. Let D = ηn and B2,0,D be a D-dimensional set defined as

B2,0,D = {x ∈ RD : ∥x∥2 ≤ 1}. (33)
The set B2,0 represent the set of vectors with at most D non-zero entries such that B2,0 = ∪B2,0,D

(Nguyen et al., 2015). We also know from (Nguyen et al., 2015) that there are at most
(

n
D

)
≤(

en
D

)D
sets of B2,0,D. Further, we know that the 1/2-net of a subset B2,0,D, NB2,0,D

, has a cardi-
nality that is bounded by 5D (Nguyen et al., 2015).

Using Lemma 5 with ϵ = 1/2, we obtain

sup
x,y∈B2,0,D

∥H ×1 x×2 y∥2 ≤ 2K−1 sup
x,y∈NB2,0,D

∥H ×1 x×2 y∥2,

and similarly

sup
x,z∈B2,0,D

∥G ×1 x×2 z∥2 ≤ 2K
′−1 sup

x,z∈NB2,0,D

∥G ×1 x×2 z∥2.

We also can bound the following

max

(∑
i,j

T 2
i,j,kx

2
i y

2
j

)1/2

≤ max
i,j,k

|T 2
i,j,k|

(∑
i,j

x2
i y

2
j

)1/2

≤ max
i,j,k

|T 2
i,j,k| = β1,

and

max

(∑
i,j′

U2
i,j′,k′x2

i z
2
j′

)1/2

≤ max
i,j′,k′

|U2
i,j′,k′ |

(∑
i,j′

x2
i z

2
j′

)1/2

≤ max
i,j′,k′

|U2
i,j′,k′ | = β2.

Applying the above bound to our concentration inequality in Lemma 3 and taking the union bound
on all possible combination over vectors x, y, and z we obtain

P
(

sup
x,y,z∈B2,0,D

a∥H ×1 x×2 y∥2 + b∥G ×1 x×2 z∥2 ≥ a2K−1α1 + b2K
′−1α2

+ 23/2t

(
a2K−1β1 + b2K

′−1β2

))
≤ (5D)(K−1)(5D)(K

′−2)e−t2 = (5D)(K+K′−3)e−t2 ,

where α1, α2, β1, and β1 are defined as in (29), (31), (30), and (32), respectively.

In the above bound, we emphasize that x is common to both H and G and it leads to a bounding by
(5D)(K+K′−3) from the union bound. Taking union bound with respect to all possible B2,0,D sets
of B2,0, we have

P
(

sup
x,y,z∈B2,0

a∥H ×1 x×2 y∥2 + b∥G ×1 x×2 z∥2 ≥ a2K−1α1 + b2K
′−1α2

+ 23/2t

(
a2K−1β1 + b2K

′−1β2

))
≤
((

en

D

)D)(K+K′−3)

(5D)(K+K′−3)e−t2 =

(
5e

η

)ηn(K+K′−3)

e−t2 .
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Finally, we apply the Lemma 4 with q = 1, h1 = a2K−1α1 + b2K
′−1α2, h2 = 23/2(a2K−1β1 +

b2K
′−1β2), and h3 = (K +K ′ − 3)ηn ln(5e/η) to obtain the final bound

E
(

sup
x,y,z∈B2,0

a∥H ×1 x×2 y∥2 + b∥G ×1 x×2 z∥2 ≥ 2K−1α1 + 2K
′−1α2

+ 23/2t

(
a2K−1β1 + b2K

′−1β2

))
≤ 3
(
2K−1

(
α1 + 23/2β1

(√
(K +K ′ − 3)ηn ln(5e/η) + 1

))
+ 2K

′−1
(
α2 + 23/2β2

(√
(K +K ′ − 3)ηn ln(5e/η) + 1

)))
□

C.1.4 Control of Spread Vectors

Now we bound the spread vectors with respect to the set B2,∞.

Lemma 7. Let us consider a K-mode tensor T ∈ Rn×···×n with its Gaussian symmetrization H
defined as (17) and a K ′-mode tensor U ∈ Rn×···×n with its Gaussian symmetrization G defined as
(18). Given (29), (30) ,(31), and (32) we have

E sup
x,y,z∈B2,∞

a∥H ×1 x×2 y∥2 + b∥G ×1 x×2 z∥2

≤ 3

(
4K−1(log2 1/η)

K−1

(
aα1 + 23/2aα1

(√
(K +K ′ − 3) ln(5e/η) +

1
√
ηn

))

+ 4K
′−1(log2 1/η)

K′−1

(
bα2 + 23/2bα2

(√
(K +K ′ − 3) ln(5e/η) +

1
√
ηn

)))
.

Proof. To prove this theorem, we need to bound with respect to the ϵ-net of B2,∞. Following
(Nguyen et al., 2015), we have the set of vectors Nk for k = 0, 1, . . . , 2M − 1 where M = ⌈2 +
log2 1/

√
η⌉ as

Nk =

{
v ∈ B2,∞ : for all i ∈ [n], vi = ± 1

2k/2
√
ηn

or vi = 0

}
,

and the 1/2-net of B2,∞ (Lemma 9 of (Nguyen et al., 2015)) as

NB2,∞ =

{
v ∈ B2,∞ : ∀i ∈ [n], vi = ± 1

2k/2
√
ηn

with either k = 0, 1, . . . , 2M − 1 or vi = 0

}
.

To obtain our result, we use the concentration inequality in Lemma 3. We take ∥x∥2 ≤ 1 and
∥y∥∞ = 1

2k
√
ηn

, then we have

max
l

(∑
i,j

T 2
ijlx

2
i y

2
j

)
= max

l

(∑
i

x2
i

∑
j

T 2
ijly

2
j

)

≤ max
l

1

2kηn

(∑
j

y2j
∑
i

T 2
ijl

)
≤ max

l

1

2kηn
max
i,j

∑
i

T 2
ijl

19



Similarly, we have

max
l′

(∑
i,j′

U2
ij′l′x

2
i z

2
j′

)
= max

l′

(∑
i

x2
i

∑
j′

U2
ij′l′z

2
j′

)

≤ max
l′

1

2kηn

(∑
j′

z2j′
∑
i

U2
ij′l′

)
≤ max

l′

1

2kηn
max
i,j′

∑
i

U2
ij′l′

Now using the Lemma 3, we obtain

P
(
a∥H ×1 x×2 y∥2 + b∥G ×1 x×2 z∥2 ≥ a2K−1α1 + b2K

′−1α2

+ t
23/2

2k/2
√
ηn

(
a2K−1α1 + b2K

′−1α2

))
≤ e−t2 .

From Lemma 12 of (Nguyen et al., 2015), we know that |Nk| ≤ e2
kηn ln(2e/η) and using this bounds

we apply union bound on all possible combination of Nk, Nk′ , and Nk′′ which results in

P
(

sup
x∈Nk,y∈Nk′ ,z∈Nk′′

a∥H ×1 x×2 y∥2 + b∥G ×1 x×2 z∥2 ≥ a2K−1α1 + b2K
′−1α2

+ t
23/2

2k/2
√
ηn

(
a2K−1α1 + b2K

′−1α2

))
≤ e−t2+(K+K′−3)2kηn ln(5e/η)

We apply the Lemma 4 with q = 1, h1 = a2K−1α1+b2K
′−1α2, h2 = 23/2(a2K−1α1+b2K

′−1α2),
and h3 = (K +K ′ − 3)2k/2 ln(5e/η) to obtain

E sup
x∈Nk,y∈Nk′ ,z∈Nk′′

∥H ×1 x×2 y∥2 + ∥G ×1 x×2 z∥2

≤ 3

(
a2K−1α1 + b2K

′−1α2 + 23/2(a2K−1α1 + b2K
′−1α2)

√
(K +K ′ − 3) ln(5e/η)

+ 23/2(a2K−1α1 + b2K
′−1α2)

√
1

2kηn

)

Summing all the possibilities sets of Nk, Nk′ , and Nk′′ of B2,∞, we obtain

E sup
x,y,z∈B2,∞

a∥H ×1 x×2 y∥2 + b∥G ×1 x×2 z∥2

≤ 3

(
2M−1∑
k=0

2M−1∑
k′=0

(
a2K−1α1 + a2K−1α1

√
2(K +K ′ − 3) ln(5e/η)

)

+

2M−1∑
k=0

2M−1∑
k′′=0

(
b2K

′−1α2 + b2K
′−1α2

√
2(K +K ′ − 3) ln(5e/η)

)

+ 23/2
( 2M−1∑

k=0

2M−1∑
k′=0

a2K−1α1 +

2M−1∑
k=0

2M−1∑
k′′=0

b2K
′−1α2

)√
1

2kηn

)
,
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which can be simplified to

E sup
x,y,z∈B2,∞

a∥H ×1 x×2 y∥2 + b∥G ×1 x×2 z∥2

≤ 3

(
(2M)2

(
a2K−1α1 + 23/2a2K−1α1

√
2(K +K ′ − 3) ln(5e/η)

)
+ (2M)2

(
b2K

′−1α2 + 23/2b2K
′−1α2

√
(K +K ′ − 3) ln(5e/η)

)
+ 23/2

(
(2M)2a2K−1α1 + (2M)2b2K

′−1α2

)√
1

2kηn

)
,

and taking summation over K-mode and K ′-mode tensors we obtain

E sup
x,y,z∈B2,∞

a∥H ×1 x×2 y∥2 + b∥G ×1 x×2 z∥2

≤ 3

(
(2M)K−1

(
a2K−1α1 + 23/2a2K−1α1

√
(K +K ′ − 3) ln(5e/η)

)
+ (2M)K

′−1

(
b2K

′−1α2 + 23/2b2K
′−1α2

√
(K +K ′ − 3) ln(5e/η)

)
+ 23/2

(
(2M)K−1a2K−1α1 + (2M)K

′−1b2K
′−1α2

)√
1

2kηn

)
.

Since M = ⌈2+ log2 1/
√
η⌉ ≤ log2 1/η (Nguyen et al., 2015) and 2k ≥ 1 for k ≥ 0, we obtain the

final bound

E sup
x,y,z∈B2,∞

a∥H ×1 x×2 y∥2 + b∥G ×1 x×2 z∥2

≤ 3

(
4K−1(log2 1/η)

K−1

(
aα1 + 23/2aα1

(√
(K +K ′ − 3) ln(5e/η) +

1
√
ηn

))

+ 4K
′−1(log2 1/η)

K′−1

(
bα2 + 23/2bα2

(√
(K +K ′ − 3) ln(5e/η) +

1
√
ηn

)))
.

□

C.1.5 Control over both Sparse and Spread Vectors

We now consider case where we have vectors from both B2,0 and B2,∞. We prove the following
lemma.

Lemma 8. Let us consider a K-mode tensor T ∈ Rn×···×n with its Gaussian symmetrization H
defined as (17) and a K ′-mode tensor U ∈ Rn×···×n with its Gaussian symmetrization G defined as
(18). Given (29), (30) ,(31) ,and (32) we have

E sup
x∈B2,0,y,z∈B2,∞

a∥H ×1 x×2 y∥2 + b∥G ×1 x×2 z∥2

≤ 3

(
4K−1(log2 1/η)

K−1

(
aα1 + 23/2aα1

(√
(K +K ′ − 3) ln(5e/η) +

1
√
ηn

))

+ 4K
′−1(log2 1/η)

K′−1

(
bα2 + 23/2bα2

(√
(K +K ′ − 3) ln(5e/η) +

1
√
ηn

)))
.

Proof. To prove this lemma, we use same arguments as used in Lemma 14 of (Nguyen et al., 2015).
Here, we want to bound the coupled spectral norm using a mixture of B2,0 and B2,∞. In the previous
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two lemmas, we defined NB2,0 and NB2,∞ as 1/2-nets for B2,0 and B2,∞, respectively. Further, we
use the fact that cardinality of upper bound of set NB2,∞ is larger than cardinality of upper bound
of set NB2,0 (Nguyen et al., 2015). This allows us to consider the worse case scenario, where one
vector from x, y, and z belongs to NB2,0

and the rest to NB2,∞ .

Without losing generality, we take x ∈ NB2,0
and y, z ∈ NB2,∞ . Then

P
(
a∥H ×1 x×2 y∥2 + b∥G ×1 x×2 z∥2 ≥ a2K−1α1 + b2K

′−1α2

+ t
23/2

2max{k,...,k′}/2√ηn

(
a2K−1α1 + b2K

′−1α2

))
≤ e−t2 ,

where used ∥x∥2 ≤ 1 and selected minimum among ∥y∥∞ ≤ 1/2k/2 and ∥z∥∞ ≤ 1/2k
′/2.

Now, taking the union bound with respect to x ∈ NB2,0
and y, z ∈ NB2,∞ , and following a similar

approach as in Lemma 14 of (Nguyen et al., 2015), we obtain

P
(

sup
x∈NB2,0

,y∈Nk,z∈Nk′

a∥H ×1 x×2 y∥2 + b∥G ×1 x×2 z∥2 ≥ a2K−1α1 + b2K
′−1α2

+ t
23/2

2max{k,...,k′}/2√ηn

(
a2K−1α1 + b2K

′−1α2

))
≤ e−t2+(K+K′−3)2max{k,...,k′}ηn ln(5e/η).

Applying Lemma 4 , with q = 1, h1 = a2K−1α1+ b2K
′−1α2, h2 = 23/2

2max{k,...,k′}/2√ηn
(a2K−1α1+

b2K
′−1α2), and h3 = 2(K +K ′ − 3)2max{k,...,k′} ln(5e/η), leads to

E sup
x∈NB2,0

,y∈Nk,z∈Nk′

a∥H ×1 x×2 y∥2 + b∥G ×1 x×2 z∥2 ≤ 3

(
a2K−1α1 + b2K

′−1α2

+ 23/2
(
a2K−1α1 + b2K

′−1α2

)√
2(K +K ′ − 3) ln(5e/η)

+
23/2
√
ηn

(
1

2max{k,··· ,k′}/2 a2
K−1α1 +

1

2max{k,··· ,k′}/2 b2
K′−1α2

))
.

Bounding over the sets x ∈ B2,0, y ∈ B2,∞, and z ∈ B2,∞, and M ≤ log2 1/η we obtain

E sup
x∈B2,0y,z∈B2,∞

a∥H ×1 x×2 y∥2 + b∥G ×1 x×2 z∥2

≤ 3

(
4K−1(log2 1/η)

K−2

(
aα1+23/2aα1

(√
(K +K ′ − 3) ln(5e/η)+

1

2max{k,··· ,k′}/2√ηn

))

+4K
′−1(log2 1/η)

K′−2

(
bα1+23/2bα1

(√
(K +K ′ − 3) ln(5e/η)+

1

2max{k,··· ,k′}/2√ηn

)))
.

Since 2max{k,··· ,k′} ≥ 1, we obtain

E sup
x∈B2,0,y,z∈B2,∞

a∥H ×1 x×2 y∥2 + b∥G ×1 x×2 z∥2

≤ 3

(
4K−1(log2 1/η)

K−2

(
aα1 + 23/2aα1

(√
(K +K ′ − 3) ln(5e/η) +

1
√
ηn

))

+ 4K
′−1(log2 1/η)

K′−2

(
bα2 + 23/2bα2

(√
(K +K ′ − 3) ln(5e/η) +

1
√
ηn

)))
.

□
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C.1.6 Final Bounds

We now prove the Theorem 4 using the above lemmas.

Proof of Theorem 4. We combine results from Lemmas 6,7, and 8 with (28) to obtain

Ea∥H ×1 x×2 y∥2 + b∥G ×1 x×2 z∥2

≤ 3

(
a2K−1

(
α1 + 23/2β1

(√
(K +K ′ − 3)ηn ln(5e/η) + 1

))
+ b2K

′−1
(
α2 + 23/2β2

(√
(K +K ′ − 3)ηn ln(5e/η) + 1

))
+ a4K−1(log2 1/η)

K−1

(
α1 + 23/2α1

(√
(K +K ′ − 3) ln(5e/η) +

1
√
ηn

))
+ b4K

′−1(log2 1/η)
K′−1

(
α2 + 23/2α2

(√
(K +K ′ − 3) ln(5e/η) +

1
√
ηn

))
+ a(2K+K′−2 − 2)× 4K−1(log2 1/η)

K−2

(
α1 + 23/2α1

(√
(K +K ′ − 3) ln(5e/η) +

1
√
ηn

))
+b(2K+K′−2−2)×4K

′−1(log2 1/η)
K′−2

(
α2+23/2α2

(√
(K +K ′ − 3) ln(5e/η)+

1
√
ηn

))
,

where the last two summations are results from taking different combinations for the coupled K-
mode and K ′-mode tensors, which results in 2K+K′−2 − 2 combinations of the result in Lemma
8.

Given that
√
(K +K ′ − 3)ηn ln(5e/η) ≥ 1, we have

Ea∥T ×1 x×2 y∥2 + b∥U ×1 x×2 z∥2

≤ c1
√
2π

[
a23K+K′

ET α1

(
log2 1/η

)K−1

+ b2K+3K′
EUα2

(
log2 1/η

)K′−1

+ a2K−1ET β1
√
ηn+ b2K

′−1EUβ2
√
ηn

]√
8(K +K ′ − 3) ln(5e/η).

□
Finally, we prove the Theorem 5.

Proof of Theorem 5. Since all elements of the tensors are from {−1, 0, 1} , the definitions (30) and
(32) lead to

ET β1 = ET max
ijk

|Tijk| = 1,

and
EUβ2 = EU max

ijk
|Uijk| = 1.

Further, we find that (29) and (31) are

ET α1 = max

{
ET

(
max
i,j

n∑
k=1

T 2
ijk

)1/2

,ET

(
max
i,k

n∑
j=1

T 2
ijk

)1/2

,ET

(
max
j,k

n∑
i=1

T 2
ijk

)1/2}
,

≤ ET

(
max
i,j

n∑
k=1

T 2
ijk

)1/2

+ ET

(
max
i,k

n∑
j=1

T 2
ijk

)1/2

+ ET

(
max
j,k

n∑
i=1

T 2
ijk

)1/2}
,

≤ K
√
n

and

EUα2 = max

{
EU

(
max
i,j

n∑
k=1

U2
ijk

)1/2

,EU

(
max
i,k

n∑
j=1

U2
ijk

)1/2

,EU

(
max
j,k

n∑
i=1

U2
ijk

)1/2}
,

≤ EU

(
max
i,j

n∑
k=1

U2
ijk

)1/2

+ EU

(
max
i,k

n∑
j=1

U2
ijk

)1/2

+ EU

(
max
j,k

n∑
i=1

U2
ijk

)1/2}
,

≤ K ′√n.
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Now, we can update (14) as

Ea∥T ×1 x×2 y∥2 + b∥U ×1 x×2 z∥2

≤ c1
√
2π

[
a23K+K′

K
√
n
(
log2(1/η)

)K−1
+ b2K+3K′

K ′√n
(
log2(1/η)

)K′−1

+ a2K−1√ηn+ b2K
′−1√ηn

]√
2(K +K ′) ln(5e/η).

By selecting η = (lnn)2(max(K,K′)−1)/n, we have

Ea∥T ×1 x×2 y∥2 + b∥U ×1 x×2 z∥2

≤ c3

[
a23K+K′

K
√
n(lnn)K−1/2 + b23K+K′

K ′√n(lnn)K
′−1/2

]
.

□

C.2 Excess Risk Bounds

Next three theorems give excess risk bounds for coupled nuclear norms introduced in Section 4.

Proof of Theorem 1: We can expand (8) as

RS,P(l ◦W, l ◦ V) = 1

|S ∪ P|
Eσ

[
sup

W,V∈W

∑
i1,..,iK

Σi1,...,iK l(Xi1,...,iK ,Wi1,...,iK )

+
∑

j1,...,jK′

Σ′
j1,...,jK′ l(Yj1,...,jK′ ,Vj1,...,jK′ )

]

≤ Λ

|S ∪ P|
Eσ

[
sup

W,V∈W

∑
i1,..,iK

Σi1,..,iKWi1,..,iK

+
∑

j1,...,jK′

Σ′
j1,...,jK′Vj1,...,jK′

]
(Lipschitz continuity)

≤ Λ

|S ∪ P|
Eσ

[
sup

W,V∈W
∥W∥⋆∥Σ∥2 + ∥V ∥⋆∥Σ′∥2

]
, (Duality relationship)

where the second line is by using the contraction inequality due to Lipschitz continuity of the
loss function l(·, ·) and the last bound is obtained by applying the Holder’s inequality. We want
to point out that since W and V belongs to the hypothesis class W and they are constrained by
the ∥W,V∥accp,(λ1,F)(λ2,F)

. This indicates that ∥Σ∥2 and ∥Σ′∥2 are constrained by the dual norm
∥Σ,Σ′∥accp,(λ1,F)(λ2,F)

∗ .

By the definition of the coupled norm (2), both W and V have rank r. Further, by taking upper
bounds on γ1 and µ1 as γ1 ≤ BW and µ1 ≤ BV , respectively, we obtain

∥W∥∗ ≤ rBW ,

and
∥V∥∗ ≤ rBV .

Then we can bound the Rademacher complexity as

RS,P(l ◦W, l ◦ V) ≤ Λ

|S ∪ P|
Eσ

[
rγ1∥Σ∥2 + rµ1∥Σ′∥2

]
.

Using Theorem 5 with a = rγ1 and b = rµ1, we obtain the desired bound

RS,P(l ◦W, l ◦ V) ≤ cΛ

|S ∪ P|

[
rBW23K+K′

K
√
n(lnn)K−1/2

+ rBV2
K+3K′

K ′√n(lnn)K
′−1/2

]
.
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□
Proof of Theorem 2: We expand (8) for the coupled norm ∥W,V∥accp,(λ1,λ2,L)(λ3,F)

as

RS,P(l ◦W, l ◦ V) = 1

|S ∪ P|
Eσ

[
sup

W(1),W(2),V∈W

∑
i1,..,iK

Σi1,..,iK l(Xi1,..,iK ,W(1)
i1,..,iK

+W(2)
i1,..,iK

)

+
∑

j1,...,jK′

Σ′
j1,...,jK′ l(Yj1,...,jK′ ,Vj1,...,jK′ )

]

≤ Λ

|S ∪ P|
Eσ

[
sup

W(1),W(2),V∈W

∑
i1,..,iK

Σi1,..,iK (W(1)
i1,..,iK

+W(2)
i1,..,iK

)

+
∑

j1,...,jK′

Σ′
j1,...,jK′Vj1,...,jK′

]
(Lipschitz continuity)

≤ Λ

|S ∪ P|
Eσ

[
sup

W(1),W(2),V∈W

∥W(1)∥⋆∥Σ∥⋆∗ + ∥W (2)∥⋆∥Σ∥2 + ∥V∥⋆∥Σ′∥2
]
,

(Duality relationship)

where in the last step we apply the Holder’s inequality to each W(1), W(2), and V with relation to
Σ and Σ′. Since we use the hypothesis class W both Σ and Σ′ are also constrained by the dual norm
∥Σ,Σ′∥accp,(λ1,λ2,L)(λ3,F)

∗ .

We introduce upper bounds for γ(1)
1 , γ(2)

1 , and µ1 of the coupled norm (3) as BW1
, BW2

, and BV ,
respectively. Since we take Rank(W(1)) = Rank(V) = r1 and by assumptions that γ(1)

1 ≤ BW1

and µ1 ≤ BV , we obtain ∥W(1)∥⋆ ≤ r1BW1
and ∥V∥⋆ ≤ r1BV . Further, by assumption that

γ
(2)
1 ≤ BW2

, we obtain ∥W(2)∥⋆ ≤ r1BW2
. Then, using the definition of the hypothesis class, we

have

RS,P(l ◦W, l ◦ V) ≤ cΛ

|S ∪ P|
Eσ

[
r1BW1

∥Σ∥2 + r2BW2
∥Σ∥2 + r2BV∥Σ′∥2

]
.

Using the Theorem 5, we obtain

RS,P(l ◦W, l ◦ V) ≤ cΛ

|S ∪ P|

[
(r1BW1

+ r2BW2
)23K+K′

K
√
n(lnn)K−1/2

+ r2BV2
K+3K′

K ′√n(lnn)K
′−1/2

]
.

□
Additionally, we give the excess risk bound for completion using the norm
∥W,V∥accp,(λ1,λ2,L)(λ3,λ4,L)

in the next theorem.

Theorem 6. Let us consider ∥W,V∥accp,(λ1,λ2,L)(λ3,λ4,L)
and

its hypothesis class as W = {W(1),W(2),V(1),V(2) :
infW(1)+W(2)=W infV(1)+V(2)=V ∥W,V∥accp,(λ1,λ2,L)(λ3,λ4,L)

, rank(W(1)) = rank(V(1)) =

r1, rank(W(2)) = r2, rank(V(2)) = r3}, the Rademacher complexity is bounded as

RS,P(l ◦W, l ◦ V) ≤ cΛ

|S ∪ P|

[
(r1BW1

+ r2BW2
)23K+K′

K
√
n(lnn)K−1/2

+ (r1BV1 + r3BV2)2
K+3K′

K ′√n(lnn)K
′−1/2

]
.

where γ
(1)
1 ≤ BW1

, γ(2)
1 ≤ BW2

, ν(1)1 ≤ BV1
, ν(2)1 ≤ BV2

, and c is a constant.

25



Proof : We can expand (8) for ∥W,V∥accp,(λ1,λ2,L)(λ3,λ4,L)
as

RS,P(l ◦W, l ◦ V) = 1

|S ∪ P|
Eσ

[
sup

W(1),W(2),V(1),V(2)∈W

∑
i1,..,iK

Σi1,..,iK l(Ti1,..,iK ,W(1)
i1,..,iK

+W(2)
i1,..,iK

)

+
∑

j1,...,jK′

Σ′
j1,...,jK′ l(Yj1,...,jK′ ,V

(1)
j1,...,jK′ + V(2)

j1,...,jK′ )

]

≤ Λ

|S ∪ P|
Eσ

[
sup

W(1),W(2),V(1),V(2)∈W

∑
i1,..,iK

Σi1,..,iK (W(1)
i1,..,iK

+W(2)
i1,..,iK

)

+
∑

j1,...,jK′

Σ′
j1,...,jK′ (V

(1)
j1,...,jK′ + V(2)

j1,...,jK′ )

]
(Lipschitz continuity)

≤ Λ

|S ∪ P|
Eσ

[
sup

W(1),W(2),V (1),V (2)∈W

∥W(1)∥⋆∥Σ∥⋆∗ + ∥W(2)∥⋆∥Σ∥2

+ ∥V(1)∥⋆∥Σ′∥2 + ∥V(2)∥⋆∥Σ′∥2
]
, (Duality relationship)

where in the last step we apply the Holder’s inequality to each W(1), W(2), V(1), and V(2) with
relation to Σ and Σ′. Since we use the hypothesis class W both Σ and Σ′ are also constrained by the
dual norm ∥Σ,Σ′∥accp,(λ1,λ2,L)(λ3,λ4,L)

.

Now, we use upper bounds for γ(1)
1 , γ(2)

1 , µ(1)
1 , and µ

(2)
1 of the coupled norm (3) as BW1

, BW2
,

BV1 , and BV2 , respectively. Form the definition of the norm, we know that Rank(W(1)) =

Rank(V(1)) = r1, Rank(W(2)) = r2, and Rank(V(2)) = r3. By assumptions that γ(1)
1 ≤ BW1

and µ
(1)
1 ≤ BV1

, we obtain ∥W(1)∥⋆ ≤ r1BW1
, ∥W(2)∥⋆ ≤ r2BW2

, ∥V(1)∥⋆ ≤ r1BV1
, and

∥V(2)∥⋆ ≤ r3BV2 . These assumptions lead to

RS,P(l ◦W, l ◦ V) ≤ Λ

|S ∪ P|
Eσ

[
r1BW1

∥Σ∥2 + r2BW2
∥Σ∥2 + r1BV1

∥Σ′∥2 + r3BV2
∥Σ′∥2

]
.

Using the Theorem 5, we obtain

RS,P(l ◦W, l ◦ V) ≤ cΛ

|S ∪ P|

[
(r1BW1

+ r2BW2
)23K+K′

K
√
n(lnn)K−1/2

+ (r1BV1
+ r3BV2

)2K+3K′
K ′√n(lnn)K

′−1/2

]
.

□
As a reference, we give the excess risk bounds for tensor completion that is regularized using the
tensor nuclear norm. In order to prove this, we use the following theory from (Nguyen et al., 2015).

Theorem 7. Let T ∈ Rn×...×n be a random K-mode tensor, whose entries are independent, zero-
mean random variables. For any κ ≤ 1

64 , assume that 1 ≤ q ≤ 2Kκnln 5e
κ . Then,

(E∥T ∥q2)
1
q ≤ c′8K

√
2Kln

5e

κ

([
log2

(
1

κ

)]K−1
(

K∑
j=1

ET α
q
j

) 1
q

+
√
κn(ET β

q)
1
q

)
,

where

α2
j = max

i1,...,ij−1,ij+1,...,iK

(
n∑
ij

T 2
i1,...,ij−1,ij+1,...,iK

)
and β = max

i1,...,iK
|Ti1,...,iK |
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Since we use the spectral norm of a tensor, q = 1. Additionally, we want to consider the case where
Ti1,...,iK ∈ {1, 0,−1} to bounds Rademacher variables in our proofs.

With q = 1, we have

E∥T ∥2 ≤ c′8K
√
2Kln

5e

κ

([
log2

(
1

κ

)]K−1
(

K∑
j=1

ET αj

)
+
√
κn

)
,

where

α2
j = max

i1,...,ij−1,ij+1,...,iK

(
n∑
ij

T 2
i1,...,ij−1,ij+1,...,iK

)
and β = max

i1,...,iK
|Ti1,...,iK |.

Since Ti1,...,iK ∈ {1, 0,−1} we have β = 1 and ET αj ≤
√
n leading to

E∥T ∥2 ≤ c′8K

√
2Kln

(
5e

κ

)([
log2

(
1

κ

)]K−1

K
√
n+

√
κn

)
.

Let us consider κ = (lnn)2(K−1)

n as in the Corollary 4 in (Nguyen et al., 2015), then we obtain

E∥B∥2 ≤ c′8KK(lnn)K−1/2
√
n. (34)

In the theorem below, we give the excess risk bound for the individual completion T using the tensor
nuclear norm (1).

Theorem 8. Let us consider a K-mode tensor W ∈ Rn×···×n with observed samples indexed by
the set S. Let the hypothesis class for completion of T using the tensor nuclear norm be W =
{W | ∥W∥∗ ≤ B, rank(W) = r}. Then following Rademacher complexity holds with probability
1− δ,

RS(l ◦W) ≤ Λ

|S|
c′8KrBWK(lnn)K−1/2

√
n.

where γ1 ≤ BW of (1) and c′ is a constant.

Proof : The Rademacher complexity for a individual tensor can be written as follows,

RS(l ◦W) =
1

|S|
Eσ

[
sup
W∈W

∑
(i1,..,iK)∈S

Σi1,..,iK l(Wi1,..,iK , Ti1,..,iK )

]
,

where Σi1,...,iK = σϕ ∈ {−1, 1} with probability 0.5 if (i1, .., iK) ∈ S belonging to an index
ϕ ∈ 1, . . . , |S| or Σi1,...,iK = 0 otherwise, which can be further expanded as

RS(l ◦W) =
Λ

|S|
Eσ

[
sup
W∈W

∑
i1,..,iK

Σi1,..,iK l(Wi1,..,iK , Ti1,..,iK )

]

≤ Λ

|S|
Eσ

[
sup
W∈W

∑
i1,..,iK

Σi1,..,iKWi1,..,iK

]
(Lipschitz continuity)

≤ Λ

|S|
Eσ

[
sup
W∈W

∥W∥⋆∥Σ∥2
]

(Duality relationship).

By the definition of the tensor nuclear norm, we have

∥W∥∗ = inf

{
r∑

j=1

γj |W =

r∑
j=1

γju1j ⊗ u2j ⊗ · · · ⊗ uKj , ∥ukj∥22 = 1, γj ≥ γj+1 > 0

}
,

and with an assumption that γ1 ≤ BW , we have ∥W∥⋆ ≤ rBW . Further, using the result in (34),
we obtain the desired bound

RS(l ◦W) ≤ Λ

|S|
c′8KrBWK(lnn)K−1/2

√
n.

□
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D More Simulation Experiments

In this section, we provide more simulation experiments for coupled tensors based on different ranks
as we have given in the Section 5.1. We consider the same conditions and coupled tensor structures
T ∈ R20×20×20 and M ∈ R20×30.

Our first experiment in this section was designed by making the tensor T with CP rank of 5 and
the matrix M with rank of 10. We shared 5 components on the first modes to couple T and M .
Figure 4 shows that coupled norms have given an equivalent performance to the tensor nuclear
norm for tensor completion. For matrix completion, we can see that the best performance is given
by ∥·, ·∥ccp,(λ,λ,L),(λ,F) (ccp-3), better than the other two coupled nuclear norms. This indicates
that ∥·, ·∥ccp,(λ,λ,L),(λ,F) is able to learn more efficiently since it separates the shared and unshared
components among the coupled tensor and the matrix.
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Figure 4: Performances of completion of the tensor with dimensions of 20 × 20 × 20 and CP rank
of 5 and matrix with dimensions of 20× 30 and rank of 10 both sharing 5 components.

Next, we designed a tensor T with multilinear rank of (15, 5, 5) and a matrix M with rank of 5.
Again, we shared 5 components on the first modes to couple T and M . Figure 5 shows that for
tensor completion, coupled nuclear norms have given a comparable performance to tensor nuclear
norm and the coupled norm (O,O,S). However, for matrix completion coupled nuclear norms have
dominated when the training samples are small and have given a weaker performance as the number
of training samples increases.
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Figure 5: Performances of completion of the tensor with dimensions of 20×20×20 and multilinear
rank of (15, 5, 5) and matrix with dimensions of 20× 30 and rank of 5 both sharing 5 components.
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