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Abstract

In this paper, we study the generalization performance of multi-class classifi-
cation and obtain a shaper data-dependent generalization error bound with fast
convergence rate, substantially improving the state-of-art bounds in the existing
data-dependent generalization analysis. The theoretical analysis motivates us to de-
vise two effective multi-class kernel learning algorithms with statistical guarantees.
Experimental results show that our proposed methods can significantly outperform
the existing multi-class classification methods.

1 Introduction

Multi-class classification is an important problem in various applications, such as natural language
processing, information retrieval, computer vision, web advertising, etc. The statistical learning
theory of binary classification is by now relatively well developed [19, 20, 21, 23, 27, 34], but there
are still numerous statistical challenges to its multi-class extensions [25].

To understand the existing multi-class classification algorithms and guide the development of new
ones, people have investigated the generalization ability of multi-class classification algorithms. In
recent years, some generalization bounds have been proposed to estimate the ability of multi-class
classification algorithms based on different measures, such as VC-dimension [1], Natarajan dimension
[7], covering Number [9, 11, 37], Rademacher Complexity [5, 14, 27], Stability [10], PAC-Bayesian
[26], etc. Although there have been several recent advances in the studying of generalization bounds
of multi-class classification algorithms, convergence rates of the existing generalization bounds are
usually O

(
K2/
√
n
)
, where K and n are the number of classes and size of the sample, respectively.

In this paper, we derive a novel data-dependent generalization bound for multi-class classification via
the notion of local Rademacher complexity and further devise two effective multi-class kernel learning
algorithms based on the above theoretical analysis. The rate of this bound isO

(
(logK)2+1/logK/n

)
,

which substantially improves on the existing data-dependent generalization bounds. Moreover, the
proposed multi-class kernel learning algorithms have statistical guarantees and fast convergence
rates. Experimental results on lots of benchmark datasets show that our proposed methods can
significantly outperform the existing multi-class classification methods. The major contributions
of this paper include: 1) A new local Rademacher complexity based bound with fast convergence
rate for multi-class classification is established. Existing works [16, 27] for multi-class classifiers
with Rademacher complexity does not take into account couplings among different classes. To
obtain sharper bound, we introduce a new structural complexity result on function classes induced
by general classes via the maximum operator, while allowing to preserve the correlations among
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different components meanwhile. Thus, our result in this paper is a non-trivial extension of the
binary classification of local Rademacher complexity to multi-classification; 2) Two novel multi-class
classification algorithms are proposed with statistical guarantees: a) Conv-MKL. Using precomputed
kernel matrices regularized by local Rademacher complexity, this method can be implemented by any
`p-norm multi-class MKL solvers; b) SMSD-MKL. This method puts local Rademacher complexity
in penalized ERM with `2,p-norm regularizer, implemented by stochastic sub-gradient descent with
updating dual weights.

2 Related Work

2.1 Multi-Class Classification Bounds

Rademacher Complexities Bounds. Koltchinskii and Panchenko [14] and Koltchinskii, Panchenko,
and Lozano [15] first introduced a margin-based bound for multi-class classification in terms of
Rademacher complexity. This bound was slightly improved in [27, 5]. Maximov and Reshetova [25]
gave a new Rademacher complexity based bound that is linear in the number of classes. Based on the
`p-norm regularization, Lei, Binder, and Klof [18] introduced a bound with a logarithmic dependence
on the number of class size. Instead of global Rademacher complexity, in this paper, we use local
Rademacher complexity to obtain a sharper bound, which substantially improves generalization
performance upon existing global Rademacher complexity methods.

VC-dimension Bounds. Allwein, Schapire, and Singer [1] used the notion of VC-dimension for
multi-class learning problems, and derived a VC-dimension based bound. Natarajan dimension
was introduced in [28] in order to characterize multi-class PAC learnability, which exactly matches
the notion of Vapnik-Chervonenkis dimension in the case of binary classification. Daniely and
Shalev-Shwartz [7] derived a risk bound with Natarajan dimension for multi-class classification. VC
dimension and Natarajan dimension are important tools to derive generalization bounds, however,
these bounds are usually dimension dependent, which makes them hardly applicable to practical
large-scale problems (such as typical computer vision problems).

Covering Number Bounds. Based on the `∞-norm covering number bound of linear operators,
Guermeur [9] obtained a generalization bound exhibiting a linear dependence on the class size,
which was improved by [37] to a radical dependence. Hill and Doucet [11] derived a class-size
independent risk guarantee. However, their bound is based on a delicate definition of margin, which
is not commonly used in mainstream multi-class literature.

Stability Bounds and PAC-Bayesian Bounds. Stability [10] and PAC-Bayesian [26] are two
popular tools to analyze generalization performance on neural networks for multi-class setting.
Hardt, Recht and Singer [10] generated generalization bounds for models learned with stochastic
gradient descent. McAllester [26] proposed a dropout bound for neural networks with PAC-Bayesian.
However, the convergence rate based on stability and PAC-Bayesian is usually at most O(1/

√
n).

2.2 Local Rademacher Complexity

In recent years, several authors have applied local Rademacher complexity to obtain better gen-
eralization error bounds for traditional binary classification [2, 13, 22, 24], similar analysis has
been explored in multi-label learning [35] and multi-task learning [36] as well. However, numerous
statistical challenges remain in the multi-class case, and it is still unclear how to use this tool to derive
a tighter bound for multi-class. In this paper, we bridge this gap by deriving a sharper generalization
bound using local Rademacher complexity.

2.3 Multi-Class Kernel Learning Algorithms

As one of the success stories in multiple kernel learning, improvements in multi-class MKL have
emerged [38], in which a one-stage multi-class MKL algorithm was presented as a generalization
of multi-class loss function [6, 33]. And Orabona designed stochastic gradient methods, named
OBSCURE [30] and UFO-MKL [29], which optimize primal versions of equivalent problems. In
this paper, we consider the use of the local Rademacher complexity to devise the novel multi-class
classification algorithms, which have statistical guarantees and fast convergence rates.
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3 Notations and Preliminaries

We consider multi-class classification problems with K ≥ 2 classes in this paper. Let X be
the input space and Y = {1, 2, . . . ,K} the output space. Assume that we are given a sample
S = {z1 = (x1, y1), . . . , zn = (xn, yn)} of size n drawn i.i.d. from a fixed, but unknown probability
distribution µ on Z = X × Y . Based on the training examples S, we wish to learn a scoring rule h
from a spaceH mapping from Z to R and use the mapping x→ arg maxy∈Y h(x, y) to predict. For
any hypothesis h ∈ H, the margin of a labeled example z = (x, y) is defined as

ρh(z) := h(x, y)−max
y′ 6=y

h(x, y′).

The h misclassifies the labeled example z = (x, y) if ρh(z) ≤ 0 and thus the expected risk incurred
from using h for prediction is L(h) := Eµ[1ρh(z)≤0], where 1t≤0 is the 0-1 loss, 1t≤0 = 1 if
t ≤ 0, otherwise 0. Since 0-1 loss is hard to handle in learning machines, one usually considers
the proxy loss: such as the square hinge `(t) = (1 − t)2

+ and the square margin loss `s(t) =(
1t≤0 + (1− ts−1)10<t≤s

)2
, s > 0. In the following, we assume that: 1) `(t) bounds the 0-1 loss:

1t≤0 ≤ `(t); 2) ` is decreasing and it has a zero point c`, i.e., `(c`) = 0; 3) ` is ζ-smooth, that
is |`′(t) − `′(s)| ≤ ζ|t − s|. Note that both square hinge loss and margin loss satisfy the above
assumptions.

Any function h : X × Y → R can be equivalently represented by the vector-valued function
(h1, . . . , hK) with hj(x) = h(x, j), ∀j = 1, . . . ,K. Let κ : X × X → R be a Mercer kernel with
φ being the associated feature map, i.e., κ(x,x′) = 〈φ(x), φ(x′)〉. The `p-norm hypothesis space
associated with the kernel κ is denoted by:

Hp,κ =
{
hw = (〈w1, φ(x)〉, . . . , 〈wK , φ(x)〉) : ‖w‖2,p ≤ 1, 1 ≤ p ≤ 2

}
, (1)

where w = (w1, . . . ,wK) and ‖w‖2,p =
[∑K

i=1 ‖wi‖p2
] 1

p

is the `2,p-norm. For any p ≥ 1, let q be
the dual exponent of p satisfying 1/p+ 1/q = 1.

The space of loss function associated withHp,κ is denoted by

L = {`h := `(ρh(z)) : h ∈ Hp,κ} . (2)

Let L(`h) and L̂(`h) be expected generalization error and empirical error with respect to `h:

L(`h) := Eµ[`(ρh(z))] and L̂(`h) =
1

n

n∑
i=1

`(ρh(zi)).

Definition 1 (Rademacher complexity). Assume L is a space of loss functions as defined in Equation
(2). Then the empirical Rademacher complexity of L is:

R̂(L) := Eσ

[
sup
`h∈L

1

n

n∑
i=1

σi`h(zi)

]
,

where σ1, σ2, . . . , σn is an i.i.d. family of Rademacher variables taking values -1 and 1 with equal
probability independent of the sample S = (z1, . . . , zn). The Rademacher complexity of L is
R(L) = EµR̂(L).

Generalization bounds based on the notion of Rademacher complexity for multi-class classifica-
tion are standard [14, 15, 27]: with probability 1 − δ, L(h) ≤ inf0<γ<1

(
L̂(hγ) + O

(
R(L)/γ +

log(1/δ)/
√
n
))
, where L̂(hγ) = 1

n

∑n
i=1

[
1ρh(zi)≤γ

]
. Since R(L) is in the order of O(K2/

√
n)

for various kernel multi-class in practice, so the standard Rademacher complexity bounds converge at
rate O

(
K2/
√
n
)
, usually.

Although Rademacher complexity is widely used in bound generalization analysis, it does not take
into consideration the fact that, typically, the hypotheses selected by a learning algorithm have a
better performance than in the worst case and belong to a more favorable sub-family of the set of all
hypotheses [4]. Therefore, to derive sharper generalization bound, we consider the use of the local
Rademacher complexity in this paper.
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Definition 2 (Local Rademacher Complexity). For any r > 0, the local Rademacher complexity of
L is defined as

R(Lr) := R
{
a`h

∣∣∣a ∈ [0, 1], `h ∈ L, L[(a`h)2] ≤ r
}
,

where L(`2h) = Eµ
[
`2(ρh(z))

]
.

The key idea to obtain sharper generalization error bound is to choose a much smaller class Lr ⊆ L
with as small a variance as possible, while requiring that the solution is still in {h|h ∈ Hp,κ, `h ∈ Lr}.
In the following, we assume that ϑ = supx∈X κ(x,x) <∞, and `h : Z → [0, d], d > 0 is a constant.
The above two assumptions are two common restrictions on kernel function and loss functions, which
are satisfied by the popular Gaussian kernels and the bounded hypothesis, respectively.

4 Sharper Generalization Bounds

In this section, we first estimate the local Rademacher complexity, and further derive a sharper
generalization bound.

4.1 Local Rademacher Complexity

The estimate the local Rademacher complexity of multi-class classification is given as follows.

Theorem 1. With probability at least 1− δ,

R(Lr) ≤ cd,ϑξ(K)
√
ζr log

3
2 (n)√

n
+

4 log(1/δ)

n
,

where

ξ(K) =

{√
e(4 logK)1+ 1

2 log K , if q ≥ 2 logK,

(2q)1+ 1
qK

1
q , otherwise,

cd,ϑ is a constant depends on d and ϑ.

Note that the order of the (global) Rademacher complexity over L is usually O
(
K2/
√
n
)

for various
kernel multi-classes. From Theorem 1, one can see that the order of the local Rademacher complexity
is R(Lr) = O

(√
rξ(K)/

√
n + 1/n

)
. Note that ξ(K) is logarithmic dependence on K when

q ≥ 2 logK. For 2 ≤ q < 2 logK, ξ(K) = O(K
2
q ) which is also substantially milder than the

quadratic dependence for Rademacher complexity. If we choose a suitable value of r, the order can
even reach O

(
(logK)2+1/ logK/n

)
(see in the next subsection), which substantially improves the

Rademacher complexity bounds.

4.2 A Sharper Generalization Bound

A sharper bound for multi-class classification based on the notion of local Rademacher complexity is
derived as follows.

Theorem 2. ∀h ∈ Hp,κ and ∀k > max(1,
√

2
2d ), with probability at least 1− δ, we have

L(h) ≤ max

{
k

k − 1
L̂(`h), L̂(`h) +

cd,ϑ,ζ,kξ
2(K) log3 n

n
+
cδ
n

}
,

where

ξ(K) =

{√
e(4 logK)1+ 1

2 log K , if q ≥ 2 logK,

(2q)1+ 1
qK

1
q , otherwise,

cd,ϑ is a constant depending on d, ϑ, ζ, k, and cδ is a constant depending on δ.
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The order of the generalization bound in Theorem 2 is O
(
ξ2(K)/n

)
. From the definition of ξ(K),

we can obtain that

O
(
ξ2(K)

n

)
=


O
(

(logK)2+1/logK/n
)
, if q ≥ 2 logK,

O
(
K2/q/n

)
, if 2 ≤ q < 2 logK.

Note that our bounds is linear dependence on the reciprocal of sample size n, while for the existing
data-dependent bounds are all radical dependence. Furthermore, our bounds enjoy a mild dependence
on the number of classes. The dependence is polynomial with degree 2/q for 2 ≤ q < 2 logK and
becomes logarithmic if q ≥ 2 logK, which is substantially milder than the quadratic dependence
established in [14, 15, 27, 5].

4.3 Comparison with the Related Work

Rademacher Complexity Bounds Koltchinskii and Panchenko [14] and Koltchinskii, Panchenko,
and Lozano [15] introduce a margin-based bound for multi-class classification in terms of Rademacher
complexities: L(h) ≤ inf0<γ<1 L̂(hγ) +O

(
K2

γ
√
n

+ log 1/δ√
n

)
. The order is O

(
K2
√
n

)
, which is slightly

improved (by a constant factor prior to the Rademacher complexity term) by [27, 5]. Maximov and
Reshetova [25] give a new Rademacher complexity bound: L(h) ≤ inf0<γ<1 L̂(hγ)+O

(
K/(γ

√
n)+

log(1/δ)/
√
n
)
, which has the form of O

(
K/
√
n
)
. Based on the `p-norm regularization, Lei, Binder,

and Klof [18] derive a new bound: L(h) ≤ L̂(`h) +O
(
log2K/

√
n
)
. The existing bounds based on

Rademacher complexity are all radical dependence on the reciprocal of sample size.

In this paper, we derive a sharper bound based on the local Rademacher complexity with order
O
(
(logK)2+ 1

log K /n
)
, substantially sharper than the existing bounds of Rademacher complexity.

Covering Number Bounds Based on the `∞-norm covering number bound of linear operators,
Guermeur [9] obtains a generalization of form O

(
K/
√
n
)
, which is improved by [37] to a radical

dependence: L(h) ≤ L̂(`h) + O
(√

K/n
)
. Hill and Doucet [11] derive a class-size independent

risk guarantee of form O
(√

1/n
)
. However, their bound is based on a delicate definition of margin,

which is not commonly used in mainstream multi-class literature.

VC-dimension Bounds VC-dimension is an important tool to derive the generalization bound for
binary classification. Allwein, Schapire, and Singer [1] show how to use it for multi-class learning
problems, and derive a VC-dimension based bounds: L(h) ≤ L̂(hγ) +O

(√
V logK/

√
n
)
, where V

is the VC-dimension. Natarajan dimension is introduced in [28] in order to characterize multi-class
PAC learnability. Daniely and Shalev-Shwartz [7] derive a generalization bound with Natarajan
dimension: L(h) ≤ L̂(hγ) + O

(
dNat/n

)
, where dNat is the Natarajan dimension. Note that VC

dimension bounds, as well as Natarajan dimension bounds, are usually dimension dependent, which
makes them hardly applicable for practical large scale problems (such as typical computer vision
problems).

Stability and PAC-Bayesian Bounds Stability [10] and PAC-Bayesian [26] are two useful tools to
analyze generalization performance on neural networks for a multi-class setting. Hardt, Recht and
Singer [10] generated generalization bounds for models learned with stochastic gradient descent
using stability: L(h) ≤ L̂(hγ) +O

(
1/
√
n
)
. McAllester [26] used the PAC-Bayesian theory to derive

generalization bound: L(h) ≤ L̂(hγ) +O
(√

L̂(hγ)/n
)
.

5 Multi-Class Multiple Kernel Learning

Motivated by the above analysis of generalization bound, we will exploit the properties of the local
Rademacher complexity to devise two algorithms for multi-class multiple kernel learning (MC-MKL).

In this paper, we consider the use of multiple kernels, κµ =
∑M
m=1 µmκm. A common approach to

multi-class classification is the use of joint feature maps φ(x) : X → H [33]. For multiple kernel
learning, we have M feature mappings φm, m = 1, . . . ,M and κm(x,x′) = 〈φm(x), φm(x′)〉,
where m = 1, . . . ,M . Let φµ(x) = [φ1(x), . . . , φM (x)]. Using Theorem 2, to obtain a shaper
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generalization bound, we confine q ≥ 2 logK, thus 1 < p ≤ 2 logK
2 logK−1 . The `p hypothesis space of

multiple kernels can be written as:

Hmkl =
{
hw,κµ = (〈w1, φµ(x)〉, . . . , 〈wK , φµ(x)〉) , ‖w‖2,p ≤ 1, 1 < p ≤ 2 logK

2 logK − 1

}
.

5.1 Conv-MKL

The global Rademacher complexity of Hmkl can be bounded by the trace of kernel matrix Kµ =∑M
m=1 Km. Existing works on [17, 32] use the following constraint to Hmkl: Tr(Kµ) ≤ 1.

According to the above theoretical analysis, the local Rademacher complexity (the tail sum of
the eigenvalues of the kernel) leads to tighter generalization bounds than the global Rademacher
complexity (the trace). Thus, we add the local Rademacher complexity to restrictHmkl:

H1 =
{
hw,κµ ∈ Hmkl :

∑
j>ζ

λj(Kµ) ≤ 1
}
,

where λj(Kµ) is the j-th eigenvalues of Kµ and ζ is free parameter removing the ζ largest eigen-
values to control the tail sum. Note that the tail sum is the difference between the trace and the ζ
largest eigenvalues:

∑
j>ζ λj(Kµ) = Tr(Kµ)−

∑ζ
j=1 λj(Kµ), thus the tail sum can be calculated

in O(n2ζ) for each kernel.

One can see that H1 is not convex, and we know that:
∑M
m=1 µm

∑
j>ζ λj(Km) =∑M

m=1 µm/‖µ‖1
∑
j>ζ λj(‖µ‖1Km) ≤

∑
j>ζ λj

(
Kµ

)
. Thus, we consider the use of the con-

vexH2:

H2 =
{
hw,κµ ∈ Hmkl :

M∑
m=1

µm
∑
j>ζ

λj(Km) ≤ 1
}
.

According to normalized kernels κ̃m =
(∑

j>ζ λj(Km)
)−1

κm and κ̃µ =
∑M
m=1 µmκ̃m, we

can simply rewrite H2 as
{
hw,κ̃µ =

(
〈w1, φ̃µ(x)〉, . . . , 〈wK , φ̃µ(x)〉

)
, ‖w‖2,p ≤ 1, 1 < p ≤

2 logK
2 logK−1 ,µ � 0, ‖µ‖1 ≤ 1

}
, which is a commonly studied hypothesis class in multi-class multiple

kernel learning. A simple process with precomputed kernel matrices regularized by local Rademacher
complexity can be seen in Algorithm 1:

Algorithm 1 Conv-MKL

Input: precomputed kernel matrices K1, . . . ,KM and ζ
for i = 1 to M do

Compute tail sum: rm =
∑
j>ζ λj (Km)

Normalize precomputed kernel matrix: K̃m = Km/rm
end for
Use K̃m, m = 1, . . . ,M , as the basic kernels in any `p-norm MKL solver

5.2 SMSD-MKL

Considering a more challenging case, we perform penalized ERM over the classH1, aiming to solve
a convex optimization problem with an additional term representing local Rademacher complexity :

min
w,µ

1

n

n∑
i=1

`(w, φµ(xi), yi)︸ ︷︷ ︸
C(w)

+
α

2
‖w‖22,p + β

M∑
m=1

µmrm︸ ︷︷ ︸
Ω(w)

, (3)

where `(w, φµ(xi), yi) =

∣∣∣∣1− (〈wyi , φµ(xi)〉 −max
y 6=yi
〈wy, φµ(xi)〉

)∣∣∣∣
+

and rm =
∑
j>ζ λj(Km)

is the tail sum of the eigenvalues of the m-th kernel matrix, m = 1, . . . ,M .
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Algorithm 2 SMSD-MKL

Input: α, β, r, T
Initialize: w1 = 0, θθθ1 = 0,µ1 = 1, q = 2 logK
for t = 1 to T do

Sample at random (xt, yt)
Compute the dual weight: θθθt+1 = θθθt − ∂C(wt)
νt+1
m = ‖θt+1

m ‖ − tβrm, ∀m = 1, . . . ,M

µt+1
m =

sgn(νt+1
m )|νt+1

m |q−1

α‖θt+1
m ‖|νt+1

m |q−2
q

, ∀m = 1, . . . ,M

end for

Based on the stochastic mirror descent framework for minimization problems in [31, 29], we design
a stochastic mirror and sub-gradient descent algorithm, called SMSD-MKL, to minimize (3), seen in
Algorithm 2.

As shown in the mirror descent algorithm, it maintains two weight vectors: the primal vector w and
the dual vector θθθ. Meanwhile, the optimization formulation can be divided into two parts: C(w) to
update θθθ and Ω(w) to update w by the gradient of the Fenchel dual of Ω. Actually, the algorithm
puts the kernel weight µµµ aside when updating θθθ, but µµµ is updated together with w according to a
tricky link function given in Theorem 3.

• For C(w), the algorithm updates the dual vector with the gradient of C(w). Since
hinge loss used in C(w) is not differentiable, the algorithm uses sub-gradient of zt =
∂`(wt, φµ(xt), yt), where ∂`(wt, φµ(xt), yt) is the sub-gradient w.r.t wt.
• For Ω(w), as in the UFO-MKL [29], the algorithm uses w = ∇Ω∗(θθθ) to update the primal

vector w, of which the calculation has been given in Theorem 3.

The algorithm starts with w1 = 0, θθθ1 = 0 and µµµ1 = 1. Especially, the algorithm initializes
q = 2 logK to make the order of generalization reach O

( (logK)2+1/ log K

n

)
, according to Theorem 2.

In each iteration, the algorithm randomly samples a training example from the train set.

Actually, the algorithm updates real numbers ‖θt+1
m ‖, νt+1

m and µt+1
m in scalar products instead of

high-dimensional variables wt+1 and θt+1
m . The ‖θt+1

m ‖ can be calculated in an efficient incremental
way by scalar values as following:

‖θθθt+1
m ‖22 = ‖θθθtm − ztm‖22 = ‖θθθtm‖22 − 2θθθtm · ztm + ‖ztm‖22

where zt = ∂`(wt, φµ(xt), yt).

Theorem 3. Let ν =
[
‖θθθ1‖ − βr1, . . . , ‖θθθM‖ − βrM

]
, then the component m-th of ∇Ω∗(θθθ) is

sgn(νm)θθθm
α‖θθθm‖

|νm|q−1

‖ν‖q−2
q

,

where sgn(x) is defined as sgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0 and sgn(x) ∈ [−1,+1], if
x = 0.

6 Experiments

In this section, we compare our proposed Conv-MKL (Algorithm 1) and SMSD-MKL (Algorithm 2)
with 7 popular multi-class classification methods: One-against-One [12], One-against-the-Rest [3],
`1-norm linear multi-class SVM (LMC) [6], generalized minimal norm problem solver (GMNP) [8],
the Multiclass MKL (MC-MKL) with `1-norm and `2-norm [38] and mixed-norm MKL solved by
stochastic gradient descent (UFO-MKL) [29]. Actually, we complete comparison tests via implements
in LIBSVM (One-against-One and One-against-the-Rest), the DOGMA library 2 (LMC, GMNP, `1-
norm and `2-norm MC-MKL) and the SHOGUN-6.1.3 3 (UFO-MKL). We implement our proposed
Conv-MKL and SMSD-MKL algorithms based on UFO-MKL.

2Available at http://dogma. sourceforge. net
3Available at http://www.shogun-toolbox.org/
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Table 1: Comparison of average test accuracies of our Conv-MKL and SMSD-MKL with the others. We
bold the numbers of the best method and underline the numbers of the other methods which are not
significantly worse than the best one.

Conv-MKL SMSD-MKL LMC One vs. One One vs. Rest GMNP `1 MC-MKL `2 MC-MKL UFO-MKL
plant 77.14±2.25 78.01±2.17 70.12±2.96 75.83±2.69 75.17±2.68 75.42±3.64 77.60±2.63 75.49±2.48 76.77±2.42
psortPos 74.41±3.35 76.23±3.39 63.85±3.94 73.33±4.21 71.70±4.89 73.55±4.22 71.87±4.87 70.70±4.89 74.56±4.04
psortNeg 74.07±2.16 74.66±1.90 57.85±2.49 73.74±2.87 71.94±2.50 74.27±2.51 72.83±2.20 72.42±2.65 73.80±2.26
nonpl 79.15±1.51 78.69±1.58 75.16±1.48 77.78±1.52 77.49±1.53 78.35±1.46 77.89±1.79 77.95±1.64 78.07±1.56
sector 92.83±2.62 93.39±0.70 93.16±0.66 90.61±0.69 91.34±0.61 \ \ 92.15±2.57 92.60±0.47
segment 96.79±0.91 97.62±0.83 95.07±1.11 97.08±0.61 97.02±0.80 96.87±0.80 96.98±0.64 97.58±0.68 97.20±0.82
vehicle 79.35±2.27 77.28±2.78 75.61±3.56 78.72±1.92 79.11±1.94 81.57±2.24 74.96±2.93 76.27±3.15 76.92±2.83
vowel 98.82±1.19 98.83±5.57 62.32±4.97 98.12±1.76 98.22±1.83 97.04±1.85 98.27±1.22 97.86±1.75 98.22±1.62
wine 99.63±0.96 99.63±0.96 97.87±2.80 97.24±3.05 98.14±3.04 97.69±2.43 98.61±1.75 98.52±1.89 99.44±1.13
dna 96.08±0.83 96.30±0.79 92.02±1.50 95.89±0.56 95.61±0.73 94.60±0.94 96.27±0.68 95.06±0.92 95.84±0.61
glass 75.19±5.05 73.72±5.80 63.95±6.04 71.98±5.75 70.00±5.75 71.24±8.14 69.07±8.08 74.03±6.41 72.46±6.12
iris 96.67±2.94 97.00±2.63 88.00±7.82 95.93±3.25 95.87±3.20 95.40±7.34 95.40±6.46 94.00±7.82 95.93±2.88
svmguide2 82.69±5.65 85.17±3.83 81.10±4.15 84.79±3.45 84.27±3.03 81.77±3.45 83.16±3.63 83.84±4.21 82.91±3.09
satimage 91.64±0.88 91.78±0.82 84.95±1.15 90.67±0.91 89.29±0.96 89.97±0.81 91.86±0.62 90.43±1.27 91.92±0.83

We experiment on 14 publicly available datasets: four of them evaluated in [38] (plant, nonpl,
psortPos, and psortNeg) and others from LIBSVM Data. For each dataset, we use the Gaussian kernel
K(x,x′) = exp

(
−‖x− x′‖22/2τ

)
as our basic kernels, where τ ∈ 2i, i = −10,−9, . . . , 9, 10. For

single kernel methods (One vs. One, One vs. Rest and GMNP), we choose the kernel which have
the highest performance among basic kernels estimated by 10-folds cross-validation. Meanwhile,
we use all basic kernels in MKL methods (Conv-MKL, SMSD-MKL, `1 MC-MKL, `2 MC-MKL
and UFO-MKL). The regularization parameterized α ∈ 2i, i = −2, . . . , 12 in all algorithms and
ζ ∈ 2i, i = 1, 2, . . . , 4, β ∈ 10i, i = −4, . . . , 1 in SMSD-MKL are determined by 10-folds cross-
validation on training data. Other parameters in compared algorithms follow the same experimental
setting in their papers. For each dataset, we run all methods 50 times with randomly selected 80%
for training and 20% for testing, offering an estimate of the statistical significance of differences in
performance between methods. All statement of statistical significance in the remainder refer to a
95% level of significance under t-test.

The average test accuracies are reported in Table 1. The results show: 1) Our methods Conv-MKL
and SMSD-MKL give best results on nearly all datasets except vehicle and satimage; 2) SMSD-MKL
is better than Conv-MKL because it wins on 2/3 datasets; 3) Compared with typical MKL methods,
our methods get better results over almost all datasets except that only UFO-MKL works slightly
better than ours on satige; 4) The MKL methods usually work better than the compared single kernel
methods (One vs. One, One vs. Rest and GMNP); 5) The kernel classification methods have better
performance than the linear classification machine (LMC) on all datasets.

The above results show that the use of the local Rademacher complexity can significantly improve
the performance of multi-class multiple kernel learning algorithms, which conforms to our theoretical
analysis.

7 Conclusion

In this paper, we studied the generalization performance of multi-class classification, and derived a
sharper data dependent generalization error bound using the local Rademacher complexity, which is
much sharper than existing data-dependent generalization bounds of multi-class classification. Then,
we designed two algorithms with statistical guarantees and fast convergence rates: Conv-MKL and
SMSD-MKL. Based on local Rademacher complexity, our analysis can be used as a solid basis for the
design of new multi-class kernel learning algorithms.
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