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A Marginal distribution of failure time in LDR

Theorem 1. If ti ∼ Gamma(1, 1/λi••) with λi•• =
∑
j,k λijk and λijk ∼ Gamma(rjk, 1/bijk),

the PDF of ti given {rjk} and {bijk} is

f(ti | {rjk}j,k, {bijk}j,k) = ci

∞∑
m=0

(ρi +m)δimb
ρi+m
i(1)

(ti + bi(1))1+ρi+m
,

and the cumulative density function (CDF) is

P (ti < q | {rjk}j,k, {bijk}j,k) = 1− ci
∞∑
m=0

δimb
ρi+m
i(1)

(q + bi(1))ρi+m
, (12)

where ci =
∏
j,k

(
bijk
bi(1)

)rjk
, bi(1) = maxj,k bijk, ρi =

∑
j,k rjk, δi0 = 1, δim+1 =

1
m+1

∑m+1
h=1 hγihδim+1−h for m ≥ 1, and γih =

∑
j,k

rjk
h

(
1− bijk

bi(1)

)h
.

It is difficult to utilize the PDF or CDF of ti in the form of series, but we can use a finite truncation
to approximate (12). Concretely, as P (ti < ∞|ni = 1, {rjk}j,k, {bijk}j,k) = ci

∑∞
m=0 δim =

1, we find an M so large that ci
∑M
m=0 δim close to 1 (say no less than 0.9999), and use 1 −

ci
∑M
m=0

δimb
ρi+m

i(1)

(q+bi(1))
ρi+m

as an approximation. Consequently, sampling ti is feasible by inverting the
approximated CDF for general cases. We have tried prediction by finite truncation on some synthetic
data and found M is mostly between 10 and 30 which is computationally acceptable.

Proof. We first study the distribution of gamma convolution. Specifically, if λt
ind∼ Gamma(rt, 1/bt)

with rt, bt ∈ R+, then the PDF of λ =
∑T
t=1 can be written in a form of series [54] as

f(λ | r1, b1, · · · , rT , bT ) =

c
∑∞
m=0

δmλ
ρ+m−1e

−λb(1)

Γ(ρ+m)/bρ+m
(1)

if λ > 0,

0 otherwise,

where c =
∏T
t=1

(
bt
b(1)

)rt
, b(1) = maxt bt, ρ =

∑T
t=1 rt, δ0 = 1, δm+1 = 1

m+1

∑m+1
h=1 hγhδm+1−h

and γh =
∑T
t=1 rt

(
1− bt

b(1)

)h
/h. [54] proved that 0 < γih ≤ ρibhi0/h and 0 < δim ≤ Γ(ρi+m)bmi0

Γ(ρi)m!

where bi0 = maxj,k(1− bijk
bi(1)

). With ni ≡ 1, we want to show the PDF of ti,

f(ti | {rjk}j,k, {bijk}j,k)

=

∫ ∞
0

f(ti |λi••)f(λi•• | {rjk}j,k, {bijk}j,k)dλi••

=

∫ ∞
0

∞∑
m=0

ciδimt
ni−1
i λni+ρi+m−1

i•• exp(−tiλi•• − bi(1)λi••)

Γ(ni)Γ(ρi +m)
dλi••

=

∞∑
m=0

∫ ∞
0

ciδimt
ni−1
i λni+ρi+m−1

i•• exp(−tiλi•• − bi(1)λi••)

Γ(ni)Γ(ρi +m)
dλi•• (13)

=
cit

ni−1
i

Γ(ni)

∞∑
m=0

Γ(ni + ρi +m)δimb
ρi+m
i(1)

Γ(ρi +m)(ti + bi(1))ni+ρi+m
,
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which suffices to prove the equality in (13). Note that

f(ti |ni, λi••)f(λi•• | {rjk}j,k, {bijk}j,k)

=
ci

Γ(ni)
tni−1
i λni+ρi−1

i•• bρii(1) exp(−tiλi•• − bi(1)λi••)

∞∑
m=0

Γ(ρi +m)

δimbmi(1)λ
m
i••

≤ ci
Γ(ni)

tni−1
i λni+ρi−1

i•• bρii(1) exp(−tiλi•• − bi(1)λi••)

∞∑
m=0

(bi0bi(1)λi••)
m

Γ(ρi)m!

=
ci

Γ(ni)
tni−1
i λni+ρi−1

i•• bρii(1) exp(−tiλi•• − bi(1)λi•• + bi0bi(1)λi••),

which shows the uniform convergence of f(ti |ni, λi••)f(λi•• | {rjk}j,k, {bijk}j,k). So the integra-
tion and countable summation are interchangeable, and consequently, (13) holds. Next we want to
show the CDF of ti,

P (ti < q |ni, {rjk}j,k, {bijk}j,k) =

∫ q

0

cit
ni−1
i

Γ(ni)

∞∑
m=0

Γ(ni + ρi +m)δimb
ρi+m
i(1)

Γ(ρi +m)(ti + bi(1))ni+ρi+m
dti

=

∞∑
m=0

∫ q

0

cit
ni−1
i

Γ(ni)

Γ(ni + ρi +m)δimb
ρi+m
i(1)

Γ(ρi +m)(ti + bi(1))ni+ρi+m
dti. (14)

It suffices to show (14). Note that

cit
ni−1
i

Γ(ni)

∞∑
m=0

Γ(ni + ρi +m)δimb
ρi+m
i(1)

Γ(ρi +m)(ti + bi(1))ni+ρi+m

≤cit
ni−1
i

Γ(ni)

∞∑
m=0

Γ(ni + ρi +m)bρi+mi(1) Γ(ni + ρi +m)

Γ(ρi +m)(ti + bi(1))ni+ρi+mΓ(ρi)m!

=
cit

ni−1
i

Γ(ni)

Γ(ρi + ni)b
ρi
i(1)

Γ(ρi)(ti + bi(1))ni+ρi

∞∑
m=0

[
Γ(ni + ρi +m)

Γni+ρim!

(
bi(1)

ti + bi(1)

)m]

=
cit

ni−1
i Γ(ρi + ni)b

ρi
i(1)t

ni+ρi
i

Γ(ni)Γ(ρi)(ti + bi(1))2(ni+ρi)
.

The last equation holds because the summation of a negative binomial probability mass function is
1. So f(ti |ni, {rjk}j,k, {bijk}j,k) is uniformly convergent and (14) holds. Plugging in ni = 1 and
calculating the integration, we obtain the CDF of ti.

B Bayesian inference of LDR

With xi denoting the covariates, yi event type, and ti the time to event of observation i, we express
the full hierarchical form of LDR defined in (7), as

ti = tiyi , yi = argmin
j∈{1,...,J}

tij , tij = tijκij , κij = argmin
k∈{0,...,K}

tijk,

tijk ∼ Exp(λijk), λijk ∼ Gamma(rjk, e
x′iβjk), k = 1, · · · ,K,

βjk ∼
P∏
g=1

N (0, α−1
gjk), αgjk ∼ Gamma(a0, 1/b0), rjk ∼ Gamma(γ0j/K, 1/c0j),

where k = 1, · · · ,K, i = 1, · · · , n, and j = 1, · · · , J . We further let γ0j ∼ Gamma(e0, 1/f0),
c0j ∼ Gamma(e1, 1/f1), r0 ∼ Gamma(e0, 1/f0), and set e0 = f0 = e1 = f1 = 0.01. Let us
denote Ti and Tic as the observed failure time and right censoring time, respectively, for observation i.
Since left censoring is uncommon and not shown in the real datasets analyzed, we only consider right
censoring in our inference and leave to readers other types of censoring which can be analogously
done. A Gibbs sampler accommodating missing event times or missing event types proceeds by
iterating the following steps.
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1. If yi is observed, we first sample κiyi by

P (κiyi = k | yi, · · · ) =
λiyik∑K

k′=1 λiyik′
.

If yi is unobserved which means a missing event type, we sample (yi, κiyi) by

P (yi = j, κiyi = k | · · · ) =
λijk∑S

j′=1

∑K
k′=1 λij′k′

.

We then denote mjk =
∑
i:yi=j

1(κiyi = k). Define nijk = 1 if yi = j and κiyi = k, and
otherwise nijk = 0. The above sampling procedure means that given the event type yi, we
sample the index of the sub-risk that has the minimum survival time.

2. Update ti for i = 1, · · · , n, j = 1, · · · , J and k = 1, · · · ,K.
(a) If the failure time Ti is observed, we set ti = Ti.
(b) Otherwise, we let ti = Tic + t̃i, where (t̃i | −) ∼ Exp(

∑S
j=1

∑K
k=1 λijk) and Tic is

the right censoring. Note Tic = 0 if both event time and censoring time are missing for
observation i.

3. Sample (λijk | −) ∼ Gamma
(
rjk + nijk,

ex
′
iβjk

1+tie
x′
i
βjk

)
, for i = 1, · · · , n, j = 1, · · · , J

and k = 1, · · · ,K.
4. Sample βjk, for j = 1, · · · , J and k = 1, · · · ,K, by Pólya Gamma (PG) data aug-

mentation. First Sample (ωijk | −) ∼ PG(rjk + nijk,x
′
iβjk + log ti). Then sample

(βjk | −) ∼ MVN(µjk,Σjk) where Σjk = (Vjk +X ′ΩjkX)
−1, X = [x′1, · · · ,x′N ]′,

Ωjk = diag(ω1jk, · · · , ωnjk) and µjk = Σjk

[
−
∑N
i=1

(
ωijk log ti +

rjk−nijk
2

)
xi

]
.

Note to sample from the Pólya-Gamma distribution, we use a fast and accurate approximate
sampler of Zhou [41] that matches the first two moments of the original distribution; we set
the truncation level of that sampler as five.

5. Sample (αvjk | −) ∼ Gamma
(
a0 + 0.5, 1/(b0 + 0.5β2

vjk)
)

for v = 0, · · · , V , j =

1, · · · , J and k = 1, · · · ,K.
6. Sample rjk and γ0j , for j = 1, · · · , J and k = 1, · · · ,K, by Chinese restaurant table (CRT)

data augmentation [43].

First sample (n
(2)
ijk | −) ∼ CRT(nijk, rjk), and (ljk | −) ∼ CRT(

∑N
i=1 n

(2)
ijk, γ0j/K). Then

sample (rjk | −) ∼ Gamma
(∑N

i=1 n
(2)
ijk + γ0j/K,

1

c0j+
∑N
i=1 log(1+tie

x′
i
βjk )

)
, and

(γ0j | −) ∼ Gamma
(
e0 +

∑K
k=1 ljk,

1
f0− 1

K

∑K
k=1 log(1−pjk)

)
, where pjk =∑N

i=1 log(1+tie
x′iβjk )

c0j+
∑N
i=1 log(1+tie

x′
i
βjk )

.

7. Sample (c0j | −) ∼ Gamma
(
e1 + γ0j ,

1
f1+

∑K
k=1 rjk

)
for j = 1, · · · , J .

8. For j = 1, · · · , J and k = 1, · · · ,K, prune sub-risk k of risk j for all observations if
mjk = 0, by setting λijk ≡ 0 and tijk ≡ ∞ for ∀i.

C Maximum a posteriori estimation

With the reparameterization that λijk = λ̃ijke
x′iβjk where λ̃ijk

iid∼ Gamma(rjk, 1) we first find pi,
the likelihood of observation i having event type yi at event time ti.

pi = E (P (ti, yi |λi)) ≡
∫

(pti × pyi) p(λ̃i | r)dλ̃i

where λ̃i = {λ̃ijk}j,k, p(λ̃i | r) =
∏
j,k Gamma(rjk, 1), r = {rjk}j,k, Gamma(rjk, 1) is the pdf of

a gamma distribution with shape rjk and scale 1, and
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pti =


(
∑
j,k λ̃ijke

x′iβjk) exp
{
−ti

∑
jk λ̃ijke

x′iβjk
}

if ti is uncensored and observed,

exp
{
−Tic

∑
jk λ̃ijke

x′iβjk
}

if ti is right censored at Tic, i.e., ti > Tic,

1 if ti is missing, but yi is not,

pyi =


∑
k λ̃iyike

x′iβyik∑
j,k λ̃ijke

x′
i
βjk

if yi is not missing,

1 if yi is missing, but ti is not.

Note that we do not define P (ti, yi |λi) if both ti and yi are missing and remove such observations
from data. We write pti ≡ pt(λ̃i | r) and pyi ≡ py(λ̃i | r).

Imposing a prior p(βjk) on βjk and p(rjk) on rjk, the log posterior is

logP =
∑
i

log pi +
∑
j,k

log p(βjk) +
∑
j,k

log p(rjk) + C (15)

where C is a constant function of {βjk} and {rjk}. In practice we assume a Student’s t distribution
with degrees of freedom a on each element of βjk and a Gamma(0.01/K, 1/0.01) prior on rjk.
We also found a Gamma(1/K, 1) prior on rjk or an l2-regularizer, 0.001||r||2, is more numerically
stable. Then we have

logP =
∑
i

log pi +
∑
v,j,k

−a+ 1

2
log
(
1 + β2

vjk/a
)

+
∑
j,k

[(0.01/K − 1) log rjk − 0.01rjk] + c

where c is also a constant function of {βjk} and {rjk}. For simplicity, we define β = {βjk}j,k. We
want to maximize logP with respect to β and r. The difficulty lies in pi being the expectation of
pti × pyi over λ̃i which is a random variable parameterized by r. Now we show how to approximate
the derivatives of log pi by Monte-Carlo simulation and score function gradients. Specifically,

∇β log pi =

∫
[∇β (pti × pyi)] p(λ̃i | r)dλ̃i∫

(pti × pyi) p(λ̃i | r)dλ̃i
≈

1
M

∑M
m=1∇β

[
pt(λ̃

(m)
i | r)× py(λ̃

(m)
i | r)

]
1
M

∑M
m=1

[
pt(λ̃

(m)
i | r)× py(λ̃

(m)
i | r)

]
(16)

where M is a reasonably large number, say 10, λ̃(m)
i = {λ̃(m)

ijk }jk and λ̃(m)
ijk

iid∼ Gamma(rjk, 1),
∀i = 1, · · · , n and m = 1, · · · ,M . With the fact that ∇rp(λ̃i | r) = p(λ̃i | r)∇r log p(λ̃i | r),

∇r log pi =

∫
∇r
[
(pti × pyi) p(λ̃i | r)

]
dλ̃i∫

(pti × pyi) p(λ̃i | r)dλ̃i

=

∫
(pti × pyi)∇r log p(λ̃i | r)p(λ̃i | r)dλ̃i∫

(pti × pyi) p(λ̃i | r)dλ̃i

≈
1
M

∑M
m=1 pt(λ̃

(m)
i | r)× py(λ̃

(m)
i | r)∇r log p(λ̃

(m)
i | r)

1
M

∑M
m=1

[
pt(λ̃

(m)
i | r)× py(λ̃

(m)
i | r)

]
=

M∑
m=1

pt(λ̃
(m)
i | r)× py(λ̃

(m)
i | r)∑M

m′=1

[
pt(λ̃

(m′)
i | r)× py(λ̃

(m′)
i | r)

]∇r log p(λ̃
(m)
i | r). (17)

Therefore, we can approximate the derivatives of logP with respect to β and r by plugging in (16)
and (17), respectively, and maximize − logP by (stochastic) gradient descent.

D Description of SEER data and experiment settings

D.1 SEER data for survival analysis

We use breast cancer data from Surveillance, Epidemiology, and End Results Program (SEER) of
National Cancer Institute between 1973 and 2003. There are two causes of death; the first is breast
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cancer and the second is other causes treated as a whole. Explanatory variables include age of
diagnosis, gender, race, marital status, historic stage, behavior type, tumor size, tumor extension,
number of malignant tumors, number of regional nodes containing tumor, number of regional nodes
that are examined or removed, confirmation type and surgery type. We use dummies for all categorical
variables and select a subset of patient collected from the hospital C503 so that we do not have to
consider site effects. We exclude observations with any missing values in explanatory variables.
Finally, there are 2647 and 4166 observations in our data if we exclude and include observations with
a missing cause of death, respectively.

D.2 Experiment settings

We run 10, 000 interations of Gibbs sampler for LDR with the gamma process truncated at K = 10
for all experiments, take the first 8, 000 as burn-in, and estimate CIF by averaging its estimators from
the last 2, 000 iterations. For random survial forests, we set the number of trees equal to 100 and
the number of splits equal to 2 as suggested by Ishwaran et al. [24]. We use R for all the analysis:
C-indices are estimated by package pec [55], the Cox model by riskRegression [56], FG by
cmprsk [57], BST by CoxBoost [58], and RF by randomForestSRC [59].

Isomap algorithm is often used for nonlinear dimensionality reduction. We first find five nearest
neighbors of each observation, and then construct a neighborhood graph where an observation is
connected to another with the edge length equal to the Euclidean distance if it is a 5-nearest neighbor.
We calculate the shortest path between two nodes of the graph by Floyd–Warshall algorithm [60] and
obtain a geodesic distance matrix with which we compute two-dimensional embeddings by classical
multidimensional scaling [61].

E Additional experimental results

We first show in Table 2 through Table 8 the Brier score at the evaluation time for each risk of the
synthetic data sets, SEER and DLBCL data, respectively. Brier score (BS) for risk j at time τ can
be estimated by BSj(τ) = 1

n

∑n
i=1 [1(ti ≤ τ, yi = j)− P (ti ≤ τ, yi = j)]

2, with a smaller value
indicating a better model fit. Note that the model performance quantified by Brier score is basically
consistent with quantified by C-indices. For the cases like synthetic data 1, SEER and ABC and GCB
of DLBCL, where covariates are believed to be linearly influential by C-indices, the Brier scores are
comparable for Cox, FG, BST and LDR, and slightly smaller than those of RF. For synthetic data 2
and T3 of DLBCL where C-indices imply nonlinear covariate effects, the Brier scores of LDR and
RF are smaller than those of Cox, FG and BST. Moreover, the Brier score of LDR is slightly larger
than those of RF for synthetic data 2 but smaller for T3 of DLBCL.

Table 2: Brier score for risk 1 of synthetic data 1.
τ = 0.5 τ = 1 τ = 1.5 τ = 2 τ = 2.5 τ = 3

Cox .165±.012 .166±.010 .165±.010 .166±.012 .164±.012 .162±.012
FG .168±.010 .167±.010 .166±.009 .166±.012 .164±.013 .162±.012
BST .167±.010 .166±.010 .166±.010 .166±.010 .166±.011 .165±.010
RF .173±.013 .175±.012 .171±.012 .172±.014 .172±.014 .170±.014
LDR .164±.014 .166±.011 .164±.010 .165±.012 .164±.013 .162±.013

Table 3: Brier score for risk 2 of synthetic data 1.
τ = 0.5 τ = 1 τ = 1.5 τ = 2 τ = 2.5 τ = 3

Cox .152±.011 .158±.014 .158±.015 .157±.015 .157±.014 .159±.014
FG .157±.012 .159±.014 .159±.015 .158±.015 .158±.014 .159±.014

BST .158±.013 .158±.013 .158±.013 .158±.013 .158±.013 .158±.013
RF .164±.012 .166±.015 .166±.016 .164±.015 .165±.014 .165±.014

LDR .152±.012 .158±.014 .158±.016 .156±.015 .157±.014 .158±.014

We show in Figure 5 the C-indices of risk 2 for synthetic data 1 and 2 used in Section 5.1. The
C-indices of risk 2 for data 1 are very similar to those of risk 1 as in panel (a) of Figure 1; LDR, Cox,
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Table 4: Brier score for risk 1 of synthetic data 2.
τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

Cox .206±.008 .235±.006 .241±.005 .242±.005 .243±.005 .243±.005
FG .206±.008 .235±.006 .241±.006 .242±.005 .243±.005 .243±.005
BST .234±.005 .234±.005 .234±.005 .234±.005 .234±.005 .234±.005
RF .186±.010 .193±.011 .188±.011 .186±.010 .184±.010 .183±.010
LDR .193±.007 .194±.007 .191±.006 .191±.006 .191±.006 .191±.006

Table 5: Brier score for risk 2 of synthetic data 2.
τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

Cox .251±.002 .247±.003 .245±.004 .244±.004 .244±.004 .244±.004
FG .251±.002 .247±.003 .245±.004 .244±.004 .244±.004 .244±.005
BST .245±.003 .245±.003 .245±.003 .245±.003 .245±.003 .245±.003
RF .178±.011 .182±.010 .181±.010 .182±.010 .182±.010 .183±.010
LDR .204±.006 .199±.005 .197±.005 .198±.005 .197±.005 .199±.005

Table 6: Brier score for ABC of DLBCL.
τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

Cox .162±.056 .190±.055 .196±.058 .202±.054 .196±.053 .202±.054
FG .159±.057 .185±.058 .198±.058 .196±.057 .196±.056 .199±.055
BST .136±.045 .146±.045 .163±.044 .154±.044 .150±.045 .152±.044
RF .156±.052 .173±.055 .196±.051 .198±.051 .198±.051 .200±.051
LDR .131±.050 .143±.050 .163±.047 .158±.045 .155±.043 .156±.041

Table 7: Brier score for GCB of DLBCL.
τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

Cox .138±.048 .212±.051 .266±.061 268±.062 .265±.062 .277±.063
FG .137±.046 .206±.064 .268±.059 .265±.062 .267±.063 .273±.064
BST .133±.046 .204±.056 .262±.042 .252±.036 .253±.048 .257±.041
RF .137±.038 .197±.054 .248±.050 .247±.046 .253±.050 .262±.053
LDR .129±.035 .179±.052 .242±.053 .236±.050 .237±.052 .244±.052

Table 8: Brier score for T3 of DLBCL.
τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

Cox .193±.053 .190±.061 .206±.069 .220±.071 .233±.068 .245±.072
FG .183±.051 .186±.062 .195±.067 .212±.069 .230±.070 .234±.069
BST .169±.046 .172±.044 .177±.049 .185±.046 .185±.047 .193±.048
RF .117±.045 .151±.046 .157±.043 .169±.049 .180±.051 .185±.052
LDR .111±.035 .137±.038 .142±.036 .151±.041 .165±.044 .171±.046

Table 9: Brier score for breast cancer of SEER.
τ = 10 τ = 50 τ = 100 τ = 150 τ = 200 τ = 250 τ = 300

Cox .014±.003 .106±.006 .150±.006 .169±.006 .177±.007 .180±.006 .179±.005
FG .016±.003 .112±.011 .156±.009 .170±.006 .177±.011 .186±.013 .189±.010
BST .014±.004 .114±.008 .154±.007 .168±.004 .174±.009 .184±.009 .184±.008
RF .015±.003 .106±.007 .151±.007 .174±.008 .182±.008 .185±.008 .187±.007
LDR .018±.003 .107±.006 .153±.006 .173±.006 .182±.007 .186±.006 .185±.006

FG and BST are comparable and all slightly outperform RF in terms of mean values. The C-indices
of risk 2 for data 2 are also analogous to those of risk 1 as in panel (c) of Figure 1 except that LDR
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Table 10: Brier score for other causes of SEER.
τ = 10 τ = 50 τ = 100 τ = 150 τ = 200 τ = 250 τ = 300

Cox .008±.003 .073±.011 .141±.010 .195±.010 .204±.010 .193±.009 .178±.007
FG .008±.003 .076±.010 .161±.013 .241±.018 .290±.029 .302±.035 .301±.040

BST .008±.003 .074±.009 .142±.011 .201±.010 .213±.016 .203±.006 .228±.018
RF .008±.003 .073±.010 .145±.011 .200±.010 .213±.009 .207±.009 .199±.008

LDR .009±.003 .083±.008 .148±.008 .193±.008 .205±.009 .199±.008 .194±.008

slightly underperforms RF in terms of mean values. But they both significally outperforms the other
three approaches which completely fail.
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(a) C-index of risk 2 for synthetic data 1.
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(b) C-index of risk 2 for synthetic data 2.

Figure 5: Cause-specific C-indices of risk 2 for synthetic data 1 and 2.

Since we have random partitions in the analysis of DLBCL dataset, improvements of LDR can
be underrated for the overlaps of boxplots across the five approaches in Figure 2. Therefore,
we calculate the difference of C-indices between LDR and each of the other four benchmarks
within each random partition, and report the mean and standard deviation in Table 11 where ∆X,
X ∈ {Cox, FG, BST, RF}, denotes the C-index of LDR minus that of approach X. In terms of mean
difference, LDR outperforms all the other benchmarks for all the three risks at any time evaluated
except for BST under risk ABC.

Table 11: Difference of C-indices between LDR and other benchmarks.
ABC GCB T3

year ∆COX ∆FG ∆BST ∆RF ∆COX ∆FG ∆BST ∆RF ∆COX ∆FG ∆BST ∆RF
1 .09±.08 .03±.05 .01±.06 .06±.08 .07±.09 .06±.09 .07±.06 .16±.12 .16±.15 .11±.12 .06±.05 .10±.12
2 .09±.06 .03±.04 .00±.07 .04±.08 .11±.08 .10±.08 .05±.06 .17±.13 .20±.17 .10±.08 .05±.05 .03±.08
3 .09±.05 .04±.05 -.01±.06 .05±.06 .12±.07 .12±.06 .05±.06 .16±.09 .20±.17 .10±.09 .05±.05 .03±.08
4 .09±.05 .04±.05 -.01±.06 .05±.06 .11±.07 .12±.06 .05±.06 .15±.10 .21±.15 .11±.09 .04±.05 .02±.08
5 .09±.05 .04±.05 -.01±.06 .05±.06 .12±.07 .12±.06 .05±.06 .15±.09 .21±.16 .11±.08 .04±.05 .01±.08
6 .09±.05 .03±.05 -.01±.06 .04±.06 .11±.07 .12±.06 .05±.06 .16±.09 .23±.14 .11±.08 .04±.05 .02±.09
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