Appendix for “Random Feature Stein Discrepancies”

A Proof of Proposition 3.1: KSD-®SD inequality

We apply the generalized Holder’s inequality and the Babenko-Beckner inequality in turn to find
D D
KSDi(Qn, P) = Xuly [ 17 (Qn(Ta®) ()P p(w) dw < [lplle Xgly 17 (Qn (Ta®)))|
D
<t allollee Sl 10N (Ta@)lI7 = €2 4llpllce @SDG . (Qn, P),

where t = 37 and ¢, 4 := (r¥/"/s'/*)¥2 < 1fors =r/(r —1).
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B Proof of Theorem 3.2: Tilted KSDs detect non-convergence

For any vector-valued function f, let M1(f) = supg y:jo—y), =1/ (2) = f(y)ll,- The result will
follow from the following theorem which provides an upper bound on the bounded Lipschitz metric
dBL ., (u, P) in terms of the KSD and properties of A and U. Let b := V log p.

Theorem B.1 (Tilted KSD lower bound). Suppose P € P and k(x,y) = A(z)¥(xz — y)A(y) for
U c C?and A € C' with A > 0 and V log A bounded and Lipschitz. Then there exists a constant
M p such that, for all € > 0 and all probability measures p,

dBLH'Hz (N’) P) S 6+CKSD]€(M,P),

where

C = (2m) " Y4|1/A| . MpH (E[| Gl B(G)](1 + M, (log A) + MpM; (b + Viog A))e ),
H(t) := sup,cpd e"“*’”g/(QtQ)/\i!(w), G is a standard Gaussian vector, and B(y) :=
SUPgz R4, ue(0,1] A(Jc)/A(m + uy)

Remarks By bounding H and optimizing over e, one can derive rates of convergence in dpr,. Iy®
Thm. 5 and Sec. 4.2 of Gorham et al. [12] provide an explicit value for the Stein factor M p.

Let A, (x) = A(x — Ex~p[X]). Since |[1/A||l,>. = [[1/Aul 2. Mi(logA,) < M;(log A),
M;(Vlog A,) < My (Vlog A), and sup,cpa yeo,1) Ap()/Au(z + uy) = B(y), the exact conclu-
sion of Theorem B.1 also holds when k(z,y) = A, (x)¥(x — y)A,(y). Moreover, since log A is
Lipschitz, B(y) < el¥ll2 so E[||G||,B(G)] is finite. Now suppose KSDy, (11, P) — 0 for a sequence
of probability measures (yv ) v>1. Forany € > 0, limsup, dpr | (un, P) < €, since H(t) is finite
for all ¢ > 0. Hence, dBLH~H2 (un, P) — 0, and, as dBLH~H2 metrizes weak convergence, uy = P.

B.1 Proof of Theorem B.1: Tilted KSD lower bound

Our proof parallels that of [11, Thm. 13]. Fix any h € BL).,. Since A € C! is positive, Thm. 5

and Sec. 4.2 of Gorham et al. [12] imply that there exists a g € C'* which solves the Stein equation
Tp(Ag) = h — Ep[h(Z)] and satisfies My(Ag) < Mp for Mp a constant independent of A, h,
and g. Since 1/A4 € L?, we have ||g|| ;. < Mp||1/A] ;..

Since V log A is bounded, A(z) < exp(7||z||) for some . Moreover, any measure in P is sub-
Gaussian, so P has finite exponential moments. Hence, since A is also positive, we may define
the tilted probability measure P4 with density proportional to Ap. The identity Tp(Ag) = ATp,g
implies that

My(AVTp,g) = Mo(VTr(Ag) — Tp(Ag)Viog A) < 1+ M (log A).

Since b and V log A are Lipschitz, we may apply the following lemma, proved in Appendix B.2
to deduce that there is a function g € K for ky(z,y) := ¥(z — y) such that |(Tp(Agc))(z) —

(Tp(Ag))(x)| = A(2)[(Tpyge) (@) — (Tpyg)(x)| < € for all z with norm
el )
< (2m)~ Y H(E[|G|,B(G))(1 + M, (log A) + MpM, (b+ Viog A))e )2 [|1/A] .- Mp.
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Lemma B.2 (Stein approximations with finite RKHS norm). Consider a function A : R4 — R
satisfying B(y) = SUp,epa ye(o.1) A(x)/A(z + uy). Suppose g : RY — R is in L N C'. If P has
Lipschitz log density, and k(z,y) = ¥(x —y) for U € C? with generalized Fourier transform U, then
for every e € (0,1], there is a function g. : R* — R such that |(Tpge)(x) — (Tpg)(x)| < ¢/A(x)
forall x € R and

1/2

lgellicy < (2m)=**H (E[|GIl,B(G)(Mo(AVTrg) + Mo(Ag)Mi(b))e") " [lgll 2,

where H (t) := sup,,cpa eI/ ) 1 (w) and G is a standard Gaussian vector.

Since || Ag.|| K = llge Kd > the triangle inequality and the definition of the KSD now yield

[Eu[A(X)] = Ep[h(Z)]] = [E,[(Tr(Ag))(X)]|
< [E[(TP(Ag)(X) = (Tp(Age))(X)]| + [Eu[(Tr (Age)) (X)]]
< e+ ll9ellcy, KSDi(p, P).

The advertised conclusion follows by applying the bound (4) and taking the supremum over all
h e BL”.H.

B.2 Proof of Lemma B.2: Stein approximations with finite RKHS norm

Assume My(AVTpg)+ My(Ag) < oo, as otherwise the claim is vacuous. Our proof parallels that of
Gorham and Mackey [11, Lem. 12]. Let Y denote a standard Gaussian vector with density p. For each
§ € (0,1], we define ps(x) = 6~p(z/J), and for any function f we write f5(x) = E[f(x + §Y)].
Under our assumptions on h = Tpg and B, the mean value theorem and Cauchy-Schwarz imply that
for each x € RY there exists u € [0, 1] such that

lhs(z) — h(2)| = [Ep[h(z + 6Y) — h(2)]| = [E,[(6Y, VA(z + §Yu))]|
< OMo(AVTrg) E,[[IY ||/ A(x + 6Yu)] < 6Mo(AVTrg) E,[|IY [, B(Y)]/A(z).
Now, for each z € R% and § > 0,

hs(z) = Eo[(b(z + 6Y), g(z + 6Y))] + E[(V, g(z + 6Y))] and
(Tegs)(x) = Ep[(b(2), g(z + oY )] + E[{V, g(z +6Y))],

s0, by Cauchy-Schwarz, the Lipschitzness of b, and our assumptions on g and B,

[(Trgs)(x) = hs(2)| = [Ey[(b(x) = b(z + 6Y), g(x + 6Y))]|
<Ep[[[b(z) = b(x + 6Y)|l5llg(x + 6Y) ][]
< Mo(Ag)My(0) 6B, [[[Y [ly /A2 4 6Y)] < Mo(Ag)Mi () S E,[||Y[|, B(Y)]/A(x).

Thus, if we fix e > 0 and define € = ¢/(E,[||Y|,B(Y)](Mo(AVTpg) + Mo(Ag)M;(D))), the
triangle inequality implies

[(Tpge)(x) = (Trg)(2)| < |[(Trge)(x) — he(x)| + |he(z) — h(z)[ < e/A(z).

To conclude, we will bound ||95Hzcg- By Wendland [29, Thm. 10.21],

lgsllxeg = (2m) =% /Rd m do = (2m)*1% /]Rd W dw

—llwliZ6?/2
< (2m)" Y% sup ——— /\g(w)|2dw,
werd  P(w) Rd

where we have used the Convolution Theorem [29, Thm. 5.16] and the identity gs(w)
p(0w). Finally, an application of Plancherel’s theorem [14, Thm. 1.1] gives ||95||;¢i

2m) A F ()2 gl o

IA
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C Proof of Proposition 3.3

We begin by establishing the ®SD convergence claim. Define the target mean mp := Ez.p[Z].
Since log A is Lipschitz and A > 0, Ay < Ae™» and hence P(Ay) < coand Ep {AN(Z) HZH;} <

oo for all NV by our integrability assumptions on P.

Suppose W4, (Qn,P) — 0, and, for any probability measure p with pu(Ax) < oo, define the
tilted probability measure p 4, via dpa, () = dp(z)An(x). By the definition of Wy, , we have
|Qn(ANnh) — P(Axh)| — 0 forall h € H. In particular, since the constant function h(x) = 1is in
H, we have |Qn (An) — P(An)| — 0. In addition, since the functions fy(z) = (x — my)/An(z)
are uniformly Lipschitz in N, we have my — mp = Qn(fn) — P(fn) — O and thus Ay — Ap
for Ap(z) := A(x — mp) > 0. Therefore, P(Ay) — P(Ap) > 0, and, as z/y is a continuous
function of (z,y) when y > 0, we have

Qn.ay(h) = Pay(h) = Qn(Anh)/Qn(AN) — P(Anh)/P(AN) = 0
and hence the 1-Wasserstein distance dy (Qn, 4y, Pay) — 0.

Now note that, for any g € Gg /4

AN(TANg) = QN(ANTP, 9) = QN(AN)QN,ay (P4, 9)
= ((@n(ANn) — P(AN)) + P(AN))Q@N,ax (TP4, 9)
< Way (@n, P) + P(AN))QnN,ax (TPa, 9)

where Tp 4 18 the Langevin operator for the tilted measure Pu ., defined by

D
(Teay 9)(@) = D (p(2)An (2)) " Oy (p() A () 9a()).-

d=1
Taking a supremum over g € Gg /4, -, We find
®SDg (Qn, P) £ Way(@n, P) + P(AN)) ®SDg /4y (@N, Ay Pay)-
Furthermore, since ®(z, z)/An(z) = F(x — z), Holder’s inequality implies
sup () oo < 17

sup ||amdg($)||oo < ||8zdFHLT7 and
z€RP de[D]

sup 102,02, 9(@) | o, < [|0240e, F
z€RP d,d’€[D]

LT

for each g € Gg 4, ,»- Since Vlogp and Vlog Ay are Lipschitz and Ep {AN(Z)HZHQ < 00,

we may therefore apply [11, Lem. 18] to discover that @SDq)/AN,T(QN,AN , P4, ) — 0and hence
®SDg . (Qn, P) — 0 whenever the 1-Wasserstein distance dy (Qn 4y, Pay) — 0.

To see that R@SD?DWVN’MN (Qn,P) £ 0 whenever @SD§)7T(QN, P) — 0, first note that since
r € [1,2], we may apply Jensen’s inequality to obtain

E[R®SD3 ., ar (Qn, P) = B[ (L SN un(Zin) QN (Ta®) (Zn)[7)/7]
< E Y N (Z) T QN (Ta®) (Z,) 1)/
= ®SD3 . (Qn, P).

Hence, by Markov’s inequality, for any € > 0,
PR®SD3,., sy (@ P) >  SERBSDE, ., a1, (Qw, P))/e < BSD3, (Qw, P)/e =0,

yielding the result.
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D Proof of Proposition 3.6

To achieve the first conclusion, for each d € [D], apply Corollary M.2 with § /D in place of ¢ to the
random variable

3 L=t walZn, Q).
The first claim follows by plugging in the high probability lower bounds from Corollary M.2 into
RCDSD%{M’V’M(QN, P) and using the union bound.
The equality E[Y;] = ®SDg , (Qn,P), the KSD-®SD inequality of Proposition 3.1
(®SDg . (Qn, P) > KSDi(Qn, P)Hp||£:/2), and the assumption KSDy(Qn, P) > N~Y/2 im-

ply that E[Yy] = N="/2|p|| ./ /2, Plugging this estimate into the initial importance sample size
requirement and applying the KSD-®SD inequality once more yield the second claim.

E Proof of Proposition 3.7

It turns out that we obtain (C, 1) moments whenever the weight functions wq(z, Q n) are bounded.
Let Q(®,v,C") :={Qn | sup, qwa(z,Qn) < C'}.

Proposition E.1. For any C > 0, (®,r,v) yields (C,1) second moments for P and Q(®,v,C").
Proof Tt follows from the definition of Q(®, v, C) that

sup sup |[(@nTa®)(2)|"/v(z) < C.
QNEQ(P,v,C) d,z

Hence for any Qn € Q(®,v,C) and d € [D], Yq < C as. and thus
E[Y}] < C'E[Yy).
]

Thus, to prove Proposition 3.7 it suffices to have uniform bound for wy(z, Qn) for all Qn € Q(C").
Let o(xz) := 1+ ||z|| and fix some @ € Q(C’). Then v(z) = Qn(c®(-,2))/C(QN), where
C(Qn) = ||F||p: Q(cA(- —mn)) < ||F||L:C’. Moreover, for ¢, ¢’ > 0 not depending on Q y,

(@nTa®)(2)]" < Qn(|0alogp + Jalog A(- — mn) + dqlog F(- — 2)[ (-, 2))"
< @Qn(ILA+ (I + - = mal|*[@(, 2))"
<) QN (0®(+, 2)).
Thus,
(@nTa®) ()" _ C(Q)(C) ' Qn (0 ®( 2))
v(z) - Qn(0®(:,2))

wa(z Qn) = < ()| Fle.

F Technical Lemmas

Lemma F.1. If P € P, Assumptions A to D hold, and (3) holds, then for any \ € (1/2,\),
(QNTa®)(2)| < Crc KSDij_l .
Proof Letcy(w) := (1 + wq) QN (TaA(- — my)e~ ™). Applying Proposition H.1 with D =
QONTIA(—mpy), h=F, o(w) =1+ wg, and t = 1/2 yields
(@Ta®)() < 1l (lsall oo 10+ 080 12) 7 QuTa

The finiteness of || F'||(», follows from Assumption C. Using P € P, Assumption A, and (3) we
have

gd(w) = (1 + wd)ilQN([ad logp + 04 log A( — mN) — iwd]A(~ — mN)Giiw“)
< CQN([L+[-JAC —mn)
<cc,
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50 ||sall L is finite. The finiteness of ||(1 + 94)W(*/9)|| 2 follows from the Plancherel theorem and
Assumption D. The result now follows upon noting that ||QnTq®||;, = KSDy,. O

Lemma F.2. If P € P, Assumptions A and B hold, and (3) holds, then for some b € [0,1),C}, > 0,
QN Ta®(2)| < CyF(z —mp) "
Moreover, b =0ifs = 0.

Proof We have (with C' a constant changing line to line)
|QnTa®(2)| < Qn|Ta® (-, 2)]
= Qn(|0qlogp + Oglog A(- — mpy) + Oqlog F(- — 2)|A(- — mn)F(- — 2))
< CQN(L+ I+ [I- = 2I°|AC = mu) F(- = my) ™) F (2 — my)
<CON(L+ -+ 1I- = mu ]l + llz = mu [P|AC = ma)F(- = mu) ") F (2 = my)
<CC(1+ ||z —mn||*)F(z — mn).
By assumption (1 + ||z||*)F(z) — 0 as ||z]| — oo, so for some C, > 0 and b € [0,1),
(14 ||z —mn|?) < CpF(2)7°. O

G Proof of Theorem 3.8: (C, ) second moment bounds for R®SD

Take Qn € Q(C) fixed and let wq(z) := wa(z,Qn). Foraset S let vs(S’) = [¢q v(dz). Let
K = {z € RP |||z — my| < R}. Recall that Z ~ v and Y; = wq(Z). We have
E[Y7] = Elwa(2)?] = Elwa(2)*1(Z € K)] + Elwa(Z)*1(Z ¢ K)]
< llwall 1) llwal (- € K)oy + 120 ¢ )l L1 [wil(- ¢ K)lp=)

= |QNTa®|% sup wa(z) + v(KC) sup wa(z)?
z2€K 2€K©C

= E[Yy] sup wa(z) + v(K®) sup wq(z)?
z€K 2€KC

Without loss of generality we can take v(z) = U(z — my)&"/||[W&7|| 11, since a different choice of v
only affects constant factors. Applying Lemma F.1, Assumption D, and (2), we have

sup wq(z) < O ¢ KSD;E{%_I) sup v(z)~*
z€EK zeK

< C5 el WE7 (|1 sup F(z —my)~¢" KSD MY
zeK

T —&r r T T —&r r(2A—1
< R e O 0 |9/ B2 e f(R) ST QN Tad|[1 )
= Ch el (W /) LW/ F?| e f(R) " "E[Yq]* "

Applying Lemma F.2 we have

sup wq(z)? < C? sup F(z —my)2=07 /u(2)?
z€K?® zeK©

= C2[| T2, sup F(z —my)21=0=9r
z€K?C

— RV f(RO
Thus, we have that
E[Y7] < CxcreB[Ya] F(R)™" + Coer f (R 7076,
As long as E[Y;]? < Cp ¢, f(0)2(0=0=¢/27 /C ¢ .. ¢, since f is continuous and non-increasing to
zero we can choose R such that f(R)?(1=0=8)" = Oy ¢, ¢E[Y4]**/C} ¢, and the result follows for
E[Yo]™ < Coerf(0)20 77427 /Cr o e

Otherwise, we can guarantee that E[Y,?] < C,E[Y,]?>~7= be choosing C,, sufficiently large, since by
assumption E[Y;] is uniformly bounded over Q x € Q(C).
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H A uniform MMD-type bound

Let D denote a tempered distribution and ¥ a stationary kernel. Also, define f)(w) = Dye Hwi),

Proposition H.1. Let h be a symmetric function such that for some s € (0,1], h € Ky and
Doh(& —+) € Ky(s). Then

Deh(E = 2)| < [|Pllgeo

el

w(s)
and for any t € (0, s) any function o(w),

1-t

. . 1—s
vl < (o, i) e

w(s)

Furthermore, if for some ¢ > 0 and r € (0,5/2), h < cU", then

=2
[Allge < W

Proof The first inequality follows from an application of Cauchy-Schwartz:
Doh(& = 2)| = [(h(- = 2), De ¥ (& =)y
<A = 2l ||[PoT (@

= Bl [P0~ )|

')Hq;m

wis)

For the first norm, we have

S )
Il = )~ [ 222

A (2m) =42 / % (w) dw

_ 62(27r)—d/2H\I/(r—s/2)’ 2 .
L2

Note that by the convolution theorem .% (D, ¥(*) (&: — -))(w) = D(w)¥*(w). For the second norm,
applying Jensen’s inequality and Holder’s inequality yields

[P = (27r)_d/2/ \i](wgzl(f)wF d

— (2m) %2 (/ \iﬁ|f>|2> /@(}’ELﬁéT;)Q@(w)S—tdw

Aga = R 25=t
—(/Wm@ 1D — )

—s

_ 1—t 25 t
< (e, [ ) ipave - i

H

1—s

1—t 2;‘%?
= (e 2] [lew[.) " 12w - 915
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I Verifying Example 3.3: Tilted hyperbolic secant R®SD properties

We verify each of the assumptions in turn. By construction or assumption each condition in As-
sumption A holds. Note in particular that \II“Ch € C. Since e~l@al < sech(azq) < 2¢~alzal

Assumption B holds with [|-|| = [|-]|,, f(R) = 2% _\/?“R, and ¢ = 274, and s = 1. In particular,

1°
azd IOg \I]sech( ) = Vo atanh(\/ 2T afEd) + Zg;ﬁd IOg sech(\/ 2 axd/)
< (V2ma)(1+ Ly zalra)
< (V2ra)(1+ ()

and using Proposition L.3 we have that
\Ilzech(m )< eﬁa|\m|\lwzech(z) < Qd\p(slech(z)/\l/zech(x).
Assumption C holds with A = 1 since for any A € (0, 1), it follow from Proposition L.2 that
J?j/(i,;\ﬂ _ ‘i/;?lch/(\ij(slcch))\/Q < 2d/2(\ij§<{:lch)1—)\ cI2

The first part of Assumption D holds as well since by (6), w3 ¥s? (w) = a~ Pwiisai(w) € L.
Finally, to verify the second part of Assumption D, we first note that since » = 2, t = co. The

assumption holds since by Proposition L.2, IS¢t () /I5ech ()2 < 1.

J Verifying Example 3.4: IMQ R®SD properties

We verify each of the assumptions in turn. By construction or assumption each condition in As-

sumption A holds. Note in particular that \Ilc, 5 € €. Assumption B holds with - = 1l
f(R)=((¢)>+ R?)*,c=1,and s = 0. In particular,
2 !
00, Tog W90 < ——0 1l ooy
()2 + ]l
and
\I,IMQ -8’
5%~ 2) ( +||:cz|2>
™M
Vs (2) + =15
. ( +2||z||2 +2x||2>
2+ 2113
—-p’
(2+2||zu /()?)
M
=27 \I]c’ ﬁQ/( )

By Wendland [29, Theorem 8.15], \Ilil\gQ has generalized Fourier transform

Gy — 27 (llwlly T
R = g () Karopateliel)

where K, (z) is the modified Bessel function of the third kind. We write a(¢) ~ b({) to denote
asymptotic equivalence up to a constant: lim, a(¢€)/b(¢) = ¢ for some ¢ € (0, 00). Asymptotically [1,
eq. 10.25.3],
VoA w) & flwlly 7 e,
& IM
s

lwlly = co and

. —(B+D/2)—|B+D/2 — (284D
& Jlwlly PHP/DTIBERIRL — 1|5 GAHP)

w) lwlly = 0.
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Assumption C holds since for any A € (0, \),

GO (FIMQYN2 |7 F+D/2DHE+D/21/ 202 (= +eM ol ], 5 00 and

AN2B+D)+/2—(28'+D)+ _ ||w||/\(25+D)/2
2 2

~ [l lwlly =0,

S0 \i{?ﬁﬁ/(\iﬂjg@)kﬂ € L?aslongas ¢ = cA\/2 > cA/2and \(23+ D) > —D. The first condition
holds by construction and second condition is always satisfied, since 25 + D > 0 > —D.

The first part of Assumption D holds as well since \1,101/\/[[3 (w) decreases exponentially as ||w||, — 00

and @g/\/{g (w) ~ 1as [jw|, = 0,s0 wfi\ilg\/[g (w) is integrable.
Finally, to verify the second part of Assumption D we first note thatt = r/(2—r) = —D/(D+45'¢).
Thus, B

\iIINéQ/(\ilIMQ)Q - Hw”2—2([3-s—D/2—1/2)/2+2(/3’-|FD/2—1/2))62(,,;/2+(;')|\WH2

B’ H(UHQ — oo and

) 2(28’+ D)4 — (284D —(28+D
R | BRI g 20 lwlly = 0,
) \il?véQ/(\iwag)z € L' whenever ¢/2 > ¢ and
D
— 28+ D) >-D < — 28) — D/(2¢) > 5.

Both these conditions hold by construction.

K Proofs of Proposition 4.1 and Theorem 4.3: Asymptotics of R®SD

The proofs of Proposition 4.1 and Theorem 4.3 rely on the following asymptotic result.

Theorem K.1. Let &, : RP x Z - R,i=1,...,1, be a collection of functions; let Zy ,, "L un,

. N jid. . . .
where vy is a distribution on Z; and let X,, "~ 1, where i is absolutely continuous with respect
to Lebesgue measure. Define the random variables En nim = &i(Xn, ZNm) and, forr,s > 1, the

random variable
I M N rys/m\ 2/
Fosn = <Z¢=1 (Zm:l ’NA > n=1&Nnim ) > .

Assume that for all N > 1, i € [I], and m € [M), {n,1im has a finite second moment that that
Yimirm = UMy 00 COV(EN im, ENirms) < 00 exists for all i,i € [I] and m,m’ € [M]. Then the
following statements hold.

1. If onyim = (1 X vn) (&) = 0 forall i € [N] then

s/r 2/s
NF..n = (Zf_l(zﬁf_lm,»mr“) ) as N = oo, )

where ¢ ~ A (0,%).
2. If onim # O for some i and m, then

NF,. N 2 0 as N — .

Proof Let Vi i, = N~1/2 25:1 &N, nim- By assumption ||| < oo. Hence, by the multivariate
CLT,

VN — Nl/ZQN % JV(O,E).
Observe that NF,. s v = (Zle(zn]\f:l [V .im|")*/7)?/*. Hence if o = 0, (5) follows from the
continuous mapping theorem.

Assume gy,;; # 0 for some ¢ and j and all N > 0. By the strong law of large numbers,
N-Y2vy “% o.. Together with the continuous mapping theorem conclude that Fr s N L8 ¢ for

19



some ¢ > 0. Hence NF,. s v % . O

When r = s = 2, the R®SD is a degenerate V -statistic, and we recover its well-known distribution
[24, Sec. 6.4, Thm. B] as a corollary. A similar result was used in Jitkrittum et al. [16] to construct
the asymptotic null for the FSSD, which is degenerate U-statistic.

Corollary K.2. Under the hypotheses of Theorem K.1(1),
NF2727N % 27{:1 Z%:l )\mwfm as N — o0,
where A = eigs(3) and wi; = A (0,1).

To apply these results to R®SDs, take s = 2 and apply Theorem K.1 with I = D, En am = & N, dim.-
Under Hy : p = P, P(&N,am) = 0 for all d € [D] and m € [M], so part 1 of Theorem K.1 holds.
On the other hand, when u # P, there exists some m and d for which ((&, 4p,) # 0. Thus, under
H;y : i # P part 2 of Theorem K.1 holds.

The proof of Theorem 4.3 is essentially identical to that of Jitkrittum et al. [16, Theorem 3].

L. Hyperbolic secant properties

Recall that the hyperbolic secant function is given by sech(a) = M_% For x € R, define the
hyperbolic secant kernel

d
sech R z — a E .
Wt () = bGCh(H 5 ax) : il:[lbeCh(“ 5 ax,b>.

It is a standard result that
UM (w) = a PO (w). (6)

We can relate W5°h(z)¢ to \Ilzegh(x), but to do so we will need the following standard result:
Lemma L.1. Fora,b > 0and€ € (0,1],

as + b¢

13 13 13
ﬁﬁ(a-i—b) <a*+ b5,

Proof The lower bound follows from an application of Jensen’s inequality and the upper bound
follows from the concavity of a — af. O

Proposition L.2. For ¢ € (0,1],
U () < WD (€)= W () < 20O W (S
2D (a) < U ()€ < L),

Thus, \I/ZC/Cgh is equivalent to (e (©),

Proof Apply Lemma L.1 and (6). O

Proposition L.3. For all z,y € R? and a > 0,
\I/ZeCh(ﬁ - Z) < eﬁa\|m\\lquech(2).

Proof Take d = 1 since the general case follows immediately. Without loss of generality assume
that z > O and let o’ = /% a. Then

’ ’7 ’ 7
\I/ZeCh(CC _ Z) eVE 4 ema® eV E 4 ema® o' o'
- ’ ’ = / / ’ € S € .
\Ijsech(z) et (z—2) +e—a (z—2) e—a'z 4 g2a'zpa’z
a
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M Concentration inequalities

Theorem M.1 (Chung and Lu [5, Theorem 2.9]). Let X1,..., X, bi independent random variables
satisfying X; > —Aforalli=1,...,m. Let X :== > | X; and X? := %" | E[X?]. Then for all
t >0,

P(X < E[X] —t) < e~ 2t/ (XP+AL/3)

Let X = # Z:’il Xl

Corollary M.2. Let X,..., X, be i.i.d. nonnegative random variables with mean X =E[X
Assume there exist ¢ > 0 and ~y € [0, 2] such that E[X?] < ¢X*77. If, for 6 € (0,1) and ¢ € (0,1

. 2clog(1/9)
a2

then with probability at least 1 — 6, X > (1 —¢)X.

1]
),

X,

Proof Applying Theorem M.1 with t = me X and A = 0 yields
P(X < (1 _ E)X) < e—%eszQ/(c]E[Xlz]) < e—ieszW.

Upper bounding the right hand side by ¢ and solving for m yields the result. O

Corollary M.3. Let X1, ..., X, be i.i.d. nonnegative random variables with mean X = E[X;].
Assume there exists ¢ > 0 and v € [0, 2] such that E[X?] < ¢X?77. Let € = | X* — X| and assume
e < nX* for somen € (0,1). If, for § € (0,1),

. 2clog2(1/5) 21
g

then with probability at least 1 — 8, X > (1 — ) X*. In particular, if ¢ < % and X* > 2 then

= n2n

with probability at least 1 — 6, X > (1 — £)X* as long as

2¢(1 —n)?n*7

ATy
~ e20271og(1/90)

Proof Apply Corollary M.2 with Ef—(* in place of €. O

Example M.1. If we take v = 1/4 and n = ¢ = 1/2, then X* > % and m > Wnl/‘l
guarantees that X > %X * with probability at least 1 — 4.
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