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Abstract

We show that gradient descent on full width linear convolutional networks of depth
L converges to a linear predictor related to the `2/L bridge penalty in the frequency
domain. This is in contrast to fully connected linear networks, where regardless of
depth, gradient descent converges to the `2 maximum margin solution.

1 Introduction

Implicit biases introduced by optimization algorithms play an crucial role in learning deep neural net-
works [Neyshabur et al., 2015b,a, Hochreiter and Schmidhuber, 1997, Keskar et al., 2016, Chaudhari
et al., 2016, Dinh et al., 2017, Andrychowicz et al., 2016, Neyshabur et al., 2017, Zhang et al., 2017,
Wilson et al., 2017, Hoffer et al., 2017, Smith, 2018]. Large scale neural networks used in practice
are highly over-parameterized with far more trainable model parameters compared to the number of
training examples. Consequently, optimization objectives for learning such high capacity models
have many global minima that fit training data perfectly. However, minimizing the training loss
using specific optimization algorithms take us to not just any global minima, but some special global
minima, e.g., global minima minimizing some regularizer R(β). In over-parameterized models,
specially deep neural networks, much, if not most, of the inductive bias of the learned model comes
from this implicit regularization from the optimization algorithm. Understanding the implicit bias,
e.g., via characterizingR(β), is thus essential for understanding how and what the model learns.

For example, in linear regression we understand how minimizing an under-determined model (with
more parameters than samples) using gradient descent yields the minimum `2 norm solution, and for
linear logistic regression trained on linearly separable data, Soudry et al. [2017] recently showed that
gradient descent converges in the direction of the hard margin support vector machine solution, even
though the norm or margin is not explicitly specified in the optimization problem. Such minimum
norm or maximum margin solutions are of course very special among all solutions or separators
that fit the training data, and in particular can ensure generalization Bartlett and Mendelson [2003],
Kakade et al. [2009].

Changing the optimization algorithm, even without changing the model, changes this implicit bias,
and consequently also changes generalization properties of the learned models [Neyshabur et al.,
2015a, Keskar et al., 2016, Wilson et al., 2017, Gunasekar et al., 2017, 2018]. For example, for linear
logistic regression, using coordinate descent instead of gradient descent return a maximum `1 margin
solution instead of the hard margin support vector solution solution—an entirely different inductive
bias Telgarsky [2013], Gunasekar et al. [2018].
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Similarly, and as we shall see in this paper, changing to a different parameterization of the same model
class can also dramatically change the implicit bias Gunasekar et al. [2017]. In particular, we study
the implicit bias of optimizing multi-layer fully connected linear networks, and linear convolutional
networks (multiple full width convolutional layers followed by a single fully connected layer) using
gradient descent. Both of these types of models ultimately implement linear transformations, and
can implement any linear transformation. The model class defined by these networks is thus simply
the class of all linear predictors, and these models can be seen as mere (over) parameterizations
of the class of linear predictors. Minimizing the training loss on these models is therefore entirely
equivalent to minimizing the training loss for linear classification. Nevertheless, as we shall see,
optimizing these networks with gradient descent leads to very different solutions.

In particular, we show that for fully connected networks with single output, optimizing the exponential
loss over linearly separable data using gradient loss again converges to the homogeneous hard margin
support vector machine solution. This holds regardless of the depth of the network, and hence, at least
with a single output, gradient descent on fully connected networks has the same implicit bias as direct
gradient descent on the parameters of the linear predictor. In contrast, training a linear convolutional
network with gradient descent biases us toward linear separators that are sparse in the frequency
domain. Furthermore, this bias changes with the depth of the network, and a network of depth L
(with L− 1 convolutional layers), implicitly biases towards minimizing the ‖β̂‖2/L bridge penalty
with 2/L ≤ 1 of the Fourier transform β̂ of the learned linear predictor β subject to margin constraints
(the gradient descent predictor reaches a stationary point of the ‖β̂‖2/L minimization problem). This
is a sparsity inducing regularizer, which induces sparsity more aggressively as the depth increases.

Finally, in this paper we focus on characterizing which global minimum does gradient descent on
over-parameterized linear models converge to, while assuming that for appropriate choice of step sizes
gradient descent iterates asymptotically minimize the optimization objective. A related challenge in
neural networks, not addressed in this paper, is an answer to when does gradient descent minimize
the non-convex empirical loss objective to reach a global minimum. This problem while hard in
worst case, has been studied for linear networks. Recent work have concluded that with sufficient
over-parameterization (as is the case with our settings), loss landscape of linear models are well
behaved and all local minima are global minima making the problem tractable Burer and Monteiro
[2003], Journée et al. [2010], Kawaguchi [2016], Nguyen and Hein [2017], Lee et al. [2016].

Notation We typeface vectors with bold characters e.g., w,β,x. Individual entries of a vector
z ∈ RD are indexed using 0 based indexing as z[d] for d = 0, 1, . . . , D − 1. Complex numbers
are represented in the polar form as z = |z|eiφz with |z| ∈ R+ denoting the magnitude of z and
φz ∈ [0, 2π) denoting the phase. z∗ = |z|e−iφz denotes the complex conjugate of z. The complex
inner product between z,β ∈ CD is given by 〈z,β〉 =

∑D
d=1 z[d]β

∗[d] = z>β∗. The Dth complex
root of 1 is denoted by ωD = e−

2πi
D . For z ∈ RD we use the notation ẑ ∈ CD to denote the

representation of z in the discrete Fourier basis given by, ẑ[d] = 1√
D

∑D−1
p=0 z[p]ωpdD . For integers

D and a, we denote the modulo operator as a mod D = a−D
⌊
a
D

⌋
. Finally, for multi-layer linear

networks (formally defined in Section 2), we will use w ∈ W to denote parameters of the model in
general domainW , and βw or simply β to denote the equivalent linear predictor.

2 Multi-layer Linear Networks

We consider feed forward linear networks that map input features x ∈ RD to a single real valued
output fw(x) ∈ R, where w denote the parameters of the network. Such networks can be thought
of as directed acyclic graphs where each edge is associated with a weight, and the value at each
node/unit is the weighted sum of values from the parent nodes. The input features form source nodes
with no incoming edges and the output is a sink node with no outgoing edge. Every such network
realizes a linear function x→ 〈x,βw〉, where βw ∈ RD denotes the effective linear predictor.

In multi-layer networks, the nodes are arranged in layers, so an L–layer network represents a
composition of L linear maps. We use the convention that, the input x ∈ RD is indexed as the zeroth
layer l = 0, while the output forms the final layer with l = L. The outputs of nodes in layer l are
denoted by hl ∈ RDl , where Dl is the number of nodes in layer l. We also use wl to denote the
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parameters of the linear map between hl−1 and hl, and w = [wl]
L
l=1 to denote the collective set of

all parameters of the linear network.

Linear fully connected network In a fully connected linear network, the nodes between successive
layers l − 1 and l are densely connected with edge weights wl ∈ RDl−1×Dl , and all the weights are
independent parameters. This model class is parameterized by w = [wl]

L
l=1 ∈

∏L
l=1 RDl−1×Dl and

the computation for intermediate nodes hl and the composite linear map fw(x) is given by,

hl = w>l hl−1 and fw(x) = hL = w>Lw
>
L−1 . . .w

>
1 x. (1)

Linear convolutional network We consider one-dimensional convolutional network architectures
where each non-output layer has exactly D units (same as the input dimensionality) and the linear
transformations from layer l − 1 to layer l are given by the following circular convolutional operation1

parameterized by full width filters with weights [wl ∈ RD]L−1l=1 . For l = 1, 2, . . . , L− 1,

hl[d] =
1√
D

D−1∑
k=0

wl[k]hl−1 [(d+ k) mod D] := (hl−1 ?wl) [d]. (2)

The output layer is fully connected and parameterized by weights wL ∈ RD. The parameters of the
model class therefor consists ofL vectors of sizeD collectively denoted by w = [wl]

L
l=1 ∈

∏L
l=1 RD,

and the composite linear map fw(x) is given by:

fw(x) = ((((x ?w1) ?w2) . . .) ?wL−1)
>
wL. (3)

Remark: We use circular convolution with a scaling of 1/
√
D to make the analysis cleaner. For

convolutions with zero-padding, we expect a similar behavior. Secondly, since our goal here to study
implicit bias in sufficiently over-parameterized models, we only study full dimensional convolutional
filters. In practice it is common to have filters of width K smaller than the number of input features,
which can change the implicit bias.

The fully connected and convolutional linear networks described above can both be represented in
terms of a mapping P :W → RD that maps the input parameters w ∈ W to a linear predictor in RD,
such that the output of the network is given by fw(x) = 〈x,P(w)〉. For fully connected networks,
the mapping is given by Pfull(w) = w1w2 . . .wL, and for convolutional networks, Pconv(w) =((

(w↓L ?wL−1) ?wL−2
)
. . . ?w1

)↓
, where w↓ denotes the flipped vector corresponding to w,

given by w↓[k] = w[D − k − 1] for k = 0, 1, . . . , D − 1.

Separable linear classification Consider a binary classification dataset {(xn, yn) : n =
1, 2, . . . N} with xn ∈ RD and yn ∈ {−1, 1}. The empirical risk minimization objective for
training a linear network parameterized as P(w) is given as follows,

min
w∈W

LP(w) :=

N∑
n=1

`(〈xn,P(w)〉, yn), (4)

where ` : R × {−1, 1} → R+ is some surrogate loss for classification accuracy, e.g., logistic loss
`(ŷ, y) = log(1 + exp(−ŷy)) and exponential loss `(ŷ, y) = exp(−ŷy).
It is easy to see that both fully connected and convolutional networks of any depth L can realize
any linear predictor β ∈ RD. The model class expressed by both networks is therefore simply
the unconstrained class of linear predictors, and the two architectures are merely different (over)
parameterizations of this class

{Pfull(w) : w = [wl ∈ RDl−1×Dl ]Ll=1} = {Pconv(w) : w = [wl ∈ RD]Ll=1} = RD.
Thus, the empirical risk minimization problem in (4) is equivalent to the following optimization over
the linear predictors β = P(w):

min
β∈RD

L(β) :=
N∑
n=1

`(〈xn,β〉, yn). (5)

1We follow the convention used in neural networks literature that refer to the operation in (2) as convolution,
while in the signal processing terminology, (2) is known as the discrete circular cross-correlation operator
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Although the optimization problems (4) and (5) are exactly equivalent in terms of the set of global
minima, in this paper, we show that optimizing (4) with different parameterizations leads to very
different classifiers compared to optimizing (5) directly.

In particular, consider problems (4)/(5) on a linearly separable dataset {xn, yn}Nn=1 and using the
logistic loss (the two class version of the cross entropy loss typically used in deep learning). The
global infimum of L(β) is 0, but this is not attainable by any finite β. Instead, the loss can be
minimized by scaling the norm of any linear predictor that separates the data to infinity. Thus, any
sequence of predictors β(t) (say, from an optimization algorithm) that asymptotically minimizes the
loss in eq. (5) necessarily separates the data and diverges in norm, ‖β(t)‖ → ∞. In general there
are many linear separators that correctly label the training data, each corresponding to a direction in
which we can minimize (5). Which of these separators will we converge to when optimizing (4)/(5)?
In other words, what is the direction β

∞
= lim

t→∞
β(t)

‖β(t)‖ the iterates of our optimization algorithm

will diverge in? If this limit exist we say that β(t) converges in direction to the limit direction β
∞

.

Soudry et al. [2017] studied this implicit bias of gradient descent on (5) over the direct parameteriza-
tion of β. They showed that for any linearly separable dataset and any initialization, gradient descent
w.r.t. β converges in direction to hard margin support vector machine solution:

β
∞

=
β∗`2
‖β∗`2‖

, where β∗`2 = argmin
β∈RD

‖β‖22 s.t. ∀n, yn〈β,xn〉 ≥ 1. (6)

In this paper we study the behavior of gradient descent on the problem (4) w.r.t different parameteri-
zations of the model class of linear predictors. For initialization w(0) and sequence of step sizes {ηt},
gradient descent updates for (4) are given by,

w(t+1) = w(t) − ηt∇wLP(w(t)) = w(t) − ηt∇wP(w(t))∇βL(P(w(t))), (7)

where ∇wP(.) denotes the Jacobian of P :W → RD with respect to the parameters w, and ∇βL(.)
is the gradient of the loss function in (5).

For separable datasets, if w(t) minimizes (4) for linear fully connected or convolutional networks,
then we will again have ‖w(t)‖ → ∞, and the question we ask is: what is the limit direction

β
∞

= lim
t→∞

P(w(t))
‖P(w(t))‖ of the predictors P(w(t)) along the optimization path?

The result in Soudry et al. [2017] holds for any loss function `(u, y) that is strictly monotone in uy
with specific tail behavior, name the tightly exponential tail, which is satisfied by popular classification
losses like logistic and exponential loss. In the rest of the paper, for simplicity we exclusively focus
on the exponential loss function `(u, y) = exp(−uy), which has the same tail behavior as that of the
logistic loss. Along the lines of Soudry et al. [2017], our results should also extend for any strictly
monotonic loss function with a tight exponential tail, including logistic loss.

3 Main Results

Our main results characterize the implicit bias of gradient descent for multi-layer fully connected and
convolutional networks with linear activations. For the gradient descent iterates w(t) in eq. (7), we
henceforth denote the induced linear predictor as β(t) = P(w(t)).

Assumptions. In the following theorems, we characterize the limiting predictor β
∞

= lim
t→∞

β(t)

‖β(t)‖
under the following assumptions:

1. w(t) minimize the objective, i.e., LP(w(t))→ 0.
2. w(t), and consequently β(t) = P(w(t)), converge in direction to yield a separator β

∞
=

lim
t→∞

β(t)

‖β(t)‖ with positive margin, i.e., minn yn〈xn,β
∞〉 > 0.

3. Gradients with respect to linear predictors∇βL(β(t)) converge in direction.

These assumptions allow us to focus on the question of which specific linear predictor do gradient
descent iterates converge to by separating it from the related optimization questions of when gradient
descent iterates minimize the non-convex objective in eq. (5) and nicely converge in direction.
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(a) Fully connected network of depth L
β
∞ ∝ argmin

∀n, yn〈xn,β〉≥1

‖β‖2 (independent of L)

(b) Convolutional network of depth L

β
∞ ∝ first order stationary point of argmin

∀n, yn〈xn,β〉≥1

‖β̂‖2/L

(c) Diagonal network of depth L
β
∞ ∝ first order stationary point of argmin

∀n, yn〈xn,β〉≥1

‖β‖2/L

Figure 1: Implicit bias of gradient descent for different linear network architectures.

Theorem 1 (Linear fully connected networks). For any depth L, almost all linearly separable
datasets {xn, yn}Nn=1, almost all initializations w(0), and any bounded sequence of step sizes {ηt}t,
consider the sequence gradient descent iterates w(t) in eq. (7) for minimizing LPfull(w) in eq. (4)
with exponential loss `(ŷ, y) = exp(−ŷy) over L–layer fully connected linear networks.

If (a) the iterates w(t) minimize the objective, i.e., LPfull(w(t)) → 0, (b) w(t), and consequently
β(t) = Pfull(w(t)), converge in direction to yield a separator with positive margin, and (c) gradients
with respect to linear predictors∇βL(β(t)) converge in direction, then the limit direction is given by,

β
∞

= lim
t→∞

Pfull(w(t))

‖Pfull(w(t))‖
=

β∗`2
‖β∗`2‖

, where β∗`2 := argmin
w
‖β‖22 s.t. ∀n, yn〈xn,β〉 ≥ 1. (8)

For fully connected networks with single output, Theorem 1 shows that there is no effect of depth
on the implicit bias of gradient descent. Regardless of the depth of the network, the asymptotic
classifier is always the hard margin support vector machine classifier, which is also the limit direction
of gradient descent for linear logistic regression with the direct parameterization of β = w.

In contrast, next we show that for convolutional networks we get very different biases. Let us first look
at a 2–layer linear convolutional network, i.e., a network with single convolutional layer followed by
a fully connected final layer.
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Recall that β̂ ∈ CD denote the Fourier coefficients of β, i.e., β̂[d] = 1√
D

D−1∑
p=0

β[p] exp
(
− 2πipd

D

)
,

and that any non-zero z ∈ C is denoted in polar form as z = |z|eiφz for φz ∈ [0, 2π). Linear
predictors induced by gradient descent iterates w(t) for convolutional networks are denoted by β(t) =

Pconv(w(t)). It is evident that if β(t) converges in direction to β
∞

, then its Fourier transformation

β̂
(t)

converges in direction to β̂
∞

. In the following theorems, in addition to the earlier assumptions,
we further assume a technical condition that the phase of the Fourier coefficients eiφβ̂(t) converge

coordinate-wise. For coordinates d with β̂
∞
[d] 6= 0 this follows from convergence in direction of

w(t), in which case e
iφ

β̂(t)[d] → e
iφ

β̂
∞

[d] . We assume such a φ
β̂
∞

[d]
also exists when β̂

∞
[d] = 0.

Theorem 2 (Linear convolutional networks of depth two). For almost all linearly separable datasets
{xn, yn}Nn=1, almost all initializations w(0), and any sequence of step sizes {ηt}t with ηt smaller
than the local Lipschitz at w(t), consider the sequence gradient descent iterates w(t) in eq. (7) for
minimizing LPconv (w) in eq. (4) with exponential loss over 2–layer linear convolutional networks.

If (a) the iterates w(t) minimize the objective, i.e., LPconv (w(t))→ 0, (b) w(t) converge in direction

to yield a separator β
∞

with positive margin, (c) the phase of the Fourier coefficients β̂
(t)

of the
linear predictors β(t) converge coordinate-wise, i.e., ∀d, e

iφ
β̂(t)[d] → e

iφ ̂̂
β
∞

[d] , and (d) the gradients
∇βL(β(t)) converge in direction, then the limit direction β

∞
is given by,

β
∞

=
β∗F,1
‖β∗F,1‖

, where β∗F,1 := argmin
β
‖β̂‖1 s.t. ∀n, yn〈β,xn〉 ≥ 1. (9)

We already see how introducing a single convolutional layer changes the implicit bias of gradient
descent—even without any explicit regularization, gradient descent on the parameters of convolutional
network architecture returns solutions that are biased to have sparsity in the frequency domain.

Furthermore, unlike fully connected networks, for convolutional networks we also see that the implicit
bias changes with the depth of the network as shown by the following theorem.
Theorem 2a (Linear Convolutional Networks of any Depth). For any depth L, under the conditions
of Theorem 2, the limit direction β

∞
= lim

t→∞
Pconv(w(t))
‖Pconv(w(t))‖ is a scaling of a first order stationary

point of the following optimization problem,

min
β
‖β̂‖2/L s.t. ∀n, yn〈β,xn〉 ≥ 1, (10)

where the `p penalty given by ‖z‖p =
(∑D

i=1 |z[i]|p
)1/p

(also called the bridge penalty) is a norm
for p = 1 and a quasi-norm for p < 1.

When L > 2, and thus p = 2/L < 1, problem (10) is non-convex and intractable Ge et al. [2011].
Hence, we cannot expect to ensure convergence to a global minimum. Instead we show convergence
to a first order stationary point of (10) in the sense of sub-stationary points of Rockafellar [1979] for
optimization problems with non-smooth and non-convex objectives. These are solutions where the
local directional derivative along the directions in the tangent cone of the constraints are all zero.

The first order stationary points, or sub-stationary points, of (10) are the set of feasible predictors β
such that ∃{αn ≥ 0}Nn=1 satisfying the following: ∀n, yn〈xn,β〉 > 1 =⇒ αn = 0, and∑

n

αnynx̂n ∈ ∂◦‖β̂‖p, (11)

where x̂n is the Fourier transformation of xn, and ∂◦ denotes the local sub-differential (or Clarke’s
sub-differential) operator defined as ∂◦f(β) = conv{v : ∃(zk)k s.t. zk → β and∇f(zk)→ v}.

For p = 1 and β̂ represented in polar form as β̂ = |β̂|eiφβ̂ ∈ CD, ‖β̂‖p is convex and the local
sub-differential is indeed the global sub-differential given by,

∂◦‖β̂‖1 = {ẑ : ∀d, |ẑ[d]| ≤ 1 and β̂[d] 6= 0 =⇒ ẑ[d] = eiφβ̂
[d]}. (12)
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For p < 1, the local sub-differential of ‖β̂‖p is given by,

∀p < 1, ∂◦‖β̂‖p = {ẑ : β̂[d] 6= 0 =⇒ ẑ[d] = p eiφβ̂
[d] |β̂[d]|p−1}. (13)

Figures 1a–1b summarize the implications of the main results in the paper. The proof of this Theorem,
exploits the following representation of Pconv(β) in the Fourier domain.
Lemma 3. For full-dimensional convolutions, β = Pconv(w) is equivalent to

β̂ = diag(ŵ1) . . . diag(ŵL−1)ŵL,

where for l = 1, 2, . . . , L, ŵ1 ∈ CD are the Fourier coefficients of the parameters wl ∈ RD.

From above lemma (proved in Appendix C), we can see a connection of convolutional networks to a
special network where the linear transformation between layers is restricted to diagonal entries (see
depiction in Figure 1c), we refer to such networks as linear diagonal network.

The proof of Theorem 1 and Theorem 2-2a are provided in Appendix B and C, respectively.

4 Understanding Gradient Descent in the Parameter Space

We can decompose the characterization of implicit bias of gradient descent on a parameterization
P(w) into two parts: (a) what is the implicit bias of gradient descent in the space of parameters w?,
and (b) what does this imply in term of the linear predictor β = P(w), i.e., how does the bias in
parameter space translate to the linear predictor learned from the model class?

We look at the first question for a broad class of linear models, where the linear predictor is given by a
homogeneous polynomial mapping of the parameters: β = P(w), where w ∈ RP are the parameters
of the model and P : RP → RD satisfies definition below. This class covers the linear convolutional,
fully connected networks, and diagonal networks discussed in Section 3.
Definition (Homogeneous Polynomial). A multivariate polynomial function P : RP → RD is said
to be homogeneous, if for some finite integer ν <∞, ∀α ∈ R,v ∈ RP , P(αv) = ανP(v).
Theorem 4 (Homogeneous Polynomial Parameterization). For any homogeneous polynomial map
P : RP → RD from parameters w ∈ RD to linear predictors, almost all datasets {xn, yn}Nn=1

separable by B := {P(w) : w ∈ RP }, almost all initializations w(0), and any bounded sequence of
step sizes {ηt}t, consider the sequence of gradient descent updates w(t) from eq. (7) for minimizing
the empirical risk objective LP(w) in (4) with exponential loss `(u, y) = exp(−uy).

If (a) the iterates w(t) asymptotically minimize the objective, i.e., LP(w(t)) = L(P(w(t))) → 0,
(b) w(t), and consequently β(t) = P(w(t)), converge in direction to yield a separator with positive
margin, and (c) the gradients w.r.t. to the linear predictors,∇βL(β(t)) converge in direction, then the
limit direction of the parameters w∞ = lim

t→∞
w(t)

‖w(t)‖2
is a positive scaling of a first order stationary

point of the following optimization problem,

min
w∈RP

‖w‖22 s.t. ∀n, yn〈xn,P(w)〉 ≥ 1. (14)

Theorem 4 is proved in Appendix A. The proof of Theorem 4 involves showing that the asymptotic
direction of gradient descent iterates satisfies the KKT conditions for first order stationary points of
(14). This crucially relies on two properties. First, the sequence of gradients∇βL(β(t)) converge in

direction to a positive span of support vectors of β
∞

= lim
t→∞

β(t)

‖β(t)‖ (Lemma 8 in Gunasekar et al.
[2018]), and this result relies on the loss function ` being exponential tailed. Secondly, if P is not
homogeneous, then the optimization problems minw‖w‖22 s.t. ∀n, 〈xn, yn〉 ≥ γ for different values
of unnormalized margin γ are not equivalent and lead to different separators. Thus, for general
non-homogeneous P , the unnormalized margin of one does not have a significance and the necessary
conditions for the first order stationarity of (14) are not satisfied.

Finally, we also note that in many cases (including linear convolutional networks) the optimization
problem (14) is non-convex and intractable (see e.g., Ge et al. [2011]). So we cannot expect w∞
to be always be a global minimizer of eq. (14). We however suspect that it is possible to obtain
a stronger result that w∞ reaches a higher order stationary point or even a local minimum of the
explicitly regularized estimator in eq. (14).
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Implications of the implicit bias in predictor space While eq. (14) characterizes the bias of
gradient descent in the parameter space, what we really care about is the effective bias introduced in
the space of functions learned by the network. In our case, this class of functions is the set of linear
predictors {β ∈ RD}. The `2 norm penalized solution in eq. (14), is equivalently given by,

β∗RP = argmin
β
RP(β) s.t. ∀n, yn〈β,xn〉 ≥ 1, whereRP(β) = inf

w:P(w)=β
‖w‖22. (15)

The problems in eq. (14) and eq. (15) have the same global minimizers, i.e., w∗ is global minimizer
of eq. (14) if and only if β∗ = P(w∗) minimizes eq. (15). However, such an equivalence does not
extend to the stationary points of the two problems. Specifically, it is possible that a stationary point
of eq. (14) is merely a feasible point for eq. (15) with no special significance. So instead of using
Theorem 4, for the specific networks in Section 3, we directly show (in Appendix) that gradient
descent updates converge in direction to a first order stationary point of the problem in eq. (15).

5 Understanding Gradient Descent in Predictor Space

In the previous section, we saw that the implicit bias of gradient descent on a parameterization
P(w) can be described in terms of the optimization problem (14) and the implied penalty function
RP(β) = minw:P(w)=β‖w‖22. We now turn to studying this implied penaltyRP(β) and obtaining
explicit forms for it, which will reveal the precise form of the implicit bias in terms of the learned
linear predictor. The proofs of the lemmas in this section are provided in the Appendix D.
Lemma 5. For fully connected networks of any depth L > 0,

RPfull(β) = min
w:Pfull(w)=β

‖w‖22 = L‖β‖2/L2 = monotone(‖β‖2).

We see that β∗RPfull = argminβRPfull(β) s.t. ∀n, yn〈xn,β〉 ≥ 1 in eq. (15) for fully connected
networks is independent of the depth of the network L. In Theorem 1, we indeed show that gradient
descent for this class of networks converges in the direction of β∗RPfull .

Next, we motivate the characterization of RP(β) for linear convolutional networks by first look-
ing at the special linear diagonal network depicted in Figure 1c. The depth–L diagonal net-
work is parameterized by w = [wl ∈ RD]Ll=1 and the mapping to a linear predictor is given
by Pdiag(w) = diag(w1)diag(w2) . . . diag(wL−1)wL.

Lemma 6. For a depth–L diagonal network with parameters w = [wl ∈ RD]Ll−1, we have

RPdiag (β) = min
w:Pdiag(w)=β

‖w‖22 = L‖β‖2/L2/L = monotone(‖β‖2/L).

Finally, for full width linear convolutional networks parameterized by w = [wl ∈ RD]Ll=1, recall the
following representation of β = Pconv(w) in Fourier from Lemma 3.

β̂ = diag(ŵ1) . . . diag(ŵL−1)ŵL,

where β̂, ŵl ∈ CD are Fourier basis representation of β,wl ∈ RD, respectively. Extending the
result of diagonal networks for the complex vector spaces, we get the following characterization of
RPconv (β) for linear convolutional networks.
Lemma 7. For a depth–L convolutional network with parameters w = [wl ∈ RD]Ll−1, we have

RPconv (β) = min
w:Pconv(w)=β

‖w‖22 = L‖β̂‖2/L2/L = monotone(‖β̂‖2/L).

6 Discussion

In this paper, we characterized the implicit bias of gradient descent on linear convolutional networks.
We showed that even in the case of linear activations and a full width convolution, wherein the
convolutional network defines the exact same model class as fully connected networks, merely
changing to a convolutional parameterization introduces radically different, and very interesting, bias
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when training with gradient descent. Namely, training a convolutional representation with gradient
descent implicitly biases towards sparsity in the frequency domain representation of linear predictor.

For convenience and simplicity of presentation, we studied one dimensional circular convolutions.
Our results can be directly extended to higher dimensional input signals and convolutions, including
the two-dimensional convolutions common in image processing and computer vision. We also expect
similar results for convolutions with zero padding instead of circular convolutions, although this
requires more care with analysis of the edge effects.

A more significant way in which our setup differs from usual convolutional networks is that we use
full width convolutions, while in practice it is common to use convolutions with bounded width, much
smaller then the input dimensionality. This setting is within the scope of Theorem 4, as the linear
transformation is still homogeneous. However, understanding the implied bias in the predictor space,
i.e. understandingRP(β) requires additional work. It will be very interesting to see if restricting the
width of the convolutional network gives rise to further interesting behaviors.

Another important direction for future study is understanding the implicit bias for networks with
multiple outputs. For both fully connected and convolutional networks, we looked at networks with a
single output. With C > 1 outputs, the network implements a linear transformation x 7→ βx where
β ∈ RC×D is now a matrix. Results for matrix sensing in Gunasekar et al. [2018] imply that for
two layer fully connected networks with multiple outputs, the implicit bias is to a maximum margin
solution with respect to the nuclear norm ‖β‖?. This is already different from the implicit bias of a
one-layer “network” (i.e. optimizing β directly), which would be in terms of the Frobenius norm
‖β‖F (from the result of Soudry et al. [2017]). We suspect that with multiple outputs, as more layers
are added, even fully connected networks exhibit a shrinking sparsity penalty on the singular values
of the effective linear matrix predictor β ∈ RC×D. Precisely characterizing these biases requires
further study.

When using convolutions as part of a larger network, with multiple parallel filters, max pooling,
and non-linear activations, the situation is of course more complex, and we do not expect to get the
exact same bias. However, we do expect the bias to be at the very least related to the sparsity-in-
frequency-domain bias that we uncover here, and we hope our work can serve as a basis for further
such study. There are of course many other implicit and explicit sources of inductive bias—here we
show that merely parameterizing transformations via convolutions and using gradient descent for
training already induces sparsity in the frequency domain.

On a technical level, we provided a generic characterization for the bias of gradient descent on linear
models parameterized as β = P(w) for a homogeneous polynomial P . The `2 bias (in parameter
space) we obtained is not surprising, but also should not be taken for granted – e.g., the result
does not hold in general for non-homogeneous P , and even with homogeneous polynomials, the
characterization is not as crisp when other loss functions are used, e.g., with a squared loss and matrix
factorization (a homogeneous degree two polynomial representation), the implicit bias is much more
fragile Gunasekar et al. [2017], Li et al. [2017]. Moreover, Theorem 4 only ensures convergence to
first order stationary point in the parameter space, which is not sufficient for convergence to stationary
points of the implied bias in the model space (eq. (15)). It is of interest for future work to strengthen
this result to show either convergence to higher order stationary points or local minima in parameter
space, or to directly show the convergence to stationary points of (15).

It would also be of interest to strengthen other technical aspects of our results: extend the results to
loss functions with tight exponential tails (including logistic loss) and handle all datasets including
the set of measure zero degenerate datasets—these should be possible following the techniques of
Soudry et al. [2017], Telgarsky [2013], Ji and Telgarsky [2018]. We can also calculate exact rates of
convergence to the asymptotic separator along the lines of Soudry et al. [2017], Nacson et al. [2018],
Ji and Telgarsky [2018] showing how fast the inductive bias from optimization kicks in and why
it might be beneficial to continue optimizing even after the loss value L(β(t)) itself is negligible.
Finally, for logistic regression, Ji and Telgarsky [2018] extend the results of asymptotic convergence
of gradient descent classifier to the cases where the data is not strictly linearly separable. This is an
important relaxation of our assumption on strict linear separability. More generally, for non-separable
data, we would like a more fine grained analysis connecting the iterates β(t) along the optimization
path to the estimates along regularization path, β̂(c) = argminRP(β)≤c L(β), where an explicit
regularization is added to the optimization objective.
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