
The streaming rollout of deep networks - towards fully model-parallel
execution
Supplementary material

A1 Proofs and notes for theory chapter

To improve readability, we will restate certain parts of the theory chapter from the main text.

A1.1 Examples for networks following our definition in Sec. 3

Figure A1: Examples of networks covered by the presented theory in Sec. 3. The crossed-out network
has no input and is consequently not a network by our definition.

A1.2 Note: Connecting the theory of networks with deep neural networks

For deep networks, nodes v correspond to layers and edges e to transformations between layers, such
as convolutions (e.g., see networks in Fig. A1 and Fig. A2). To a node v a state xv ∈ RDv is assigned,
e.g. an image with Dv = 32 × 32 × 3. Let denote ye the result of the transformation fe which is
specified by an edge e = (u, v):

ye = fe(θe, xu),

where θe are parameters of the edge e, e.g. a weight kernel.

For the node v, let SRCv denote the set of all edges targeting v. Ignoring the temporal dimension, a
node’s state is then computed as:

xv = fv(ϑv, ye1v , . . . , ye|SRCv|
v

),

where ϑv are parameters of the vertex v (e.g., biases), and the mapping fv specifying how the sources
are combined (e.g., addition and/or multiplication). Most architectures and network designs can be
subsumed under this definition of a network, because we do not impose any constraints on the node
and edge mappings fv, fe.

For the experiments in this work, for every node v all results of incoming transformations were
summed up:

xv = fv(b, ye1v , . . . , ye|SRCv|
v

) = σ

(
b+

∑
e∈SRCv

ye

)
,

where σ is some activation function, b is a channel-wise bias and the edge transformations fe were
convolutions with suitable stride to provide compatible dimensions for summation.

A1.3 Proofs for definition (rollout) in Sec. 3

Let N = (V,E) be a network. We call a mapping R : E → {0, 1} a rollout pattern of N . For a
rollout pattern R, the rollout window of size W ∈ N is the directed graph RW = (VW , EW) with:

VW ..= {0, . . . ,W} × V, v = (i, v) ∈ VW
EW

..= {((i, u), (j, v)) ∈ VW × VW | (u, v) ∈ E ∧ j = i+R((u, v))}. (8)

1

We dropped the dependency of especially EW on the rollout pattern R in the notation. A rollout
pattern and its rollout windows are called valid iff RW is acyclic for one and hence for all W ∈ N.
We denote the set of all valid rollout patterns as RN , and the rollout pattern for which R ≡ 1 the
streaming rollout Rstream ∈ RN . We say two rollout patterns R and R′ are equally model-parallel
iff for all edges e = (u, v) ∈ E not originating in the network’s input u /∈ IN are equalR(e) = R′(e).
For i ∈ {0, . . . ,W}, the subset {i} × V ⊂ VW is called the i-th frame.

Note (interpretation): Here, we show how this definition reflects the intuition, that a rollout should
be consistent with the network in the sense that it should contain all edges / nodes of the network
and should not add new edges / nodes, which are not present in the network. Further, we show that
this definition yields rollout windows which are temporally consistent and that rollout windows are
consistent with regards to each other:

• Rollout windows cannot add new edges / nodes: By this, we mean, that a rollout window
only contains derived nodes and edges from the original network and for example cannot
introduce edges between nodes in the rollout window, which were not already present in the
network. This follows directly from the definition of EW .

• Edges / nodes of the network are contained in a rollout window: For vertices this is
trivial and for edges e = (u, v) ∈ E always ((0, u), (R(e), v)) ∈ EW .

• Rollout windows contain no temporal backward edges: A backward edge is an edge
((i, u), (j, v)) ∈ EW with j < i. But we know for all edges that j = i+R((u, v)).
• Temporal consistency: Temporal consistency means that for an edge ((i, u), (j, v)) ∈ EW

and a second edge between the same nodes ((i?, u), (j?, v)) ∈ EW the temporal gap is the
same j − i = j? − i?. By definition, both are equal to R((u, v)).

• Rollout windows are compatible with each other: We show that RW is a sub-graph of
RW+1, in the sense that VW ⊂ VW+1 and EW ⊂ EW+1: From the definition, this is
obvious for the set of vertices and edges, but nevertheless we will state it for edges anyway:
Let e ∈ EW with e = ((i, u), (j, v)). Then by definition (u, v) ∈ E and j = i+R((u, v)).
Hence, e ∈ RW+1.

Proof (definition of valid rollout pattern is well-defined): For a rollout pattern, we prove that if
the rollout window of a certain size W is valid, then the rollout window for any size is valid: Let R be
a rollout pattern for a network N and RW be a valid rollout window. Because RW hence contains no
cycles, also RW ′ for W ′ < W contains no cycles (see statement about rollout window compatibility
from above). Using induction, it is sufficient to show that RW+1 is valid. Assuming it is not, let p be
a cycle in RW+1. Because there are no temporal backward edges (see above) p has to be contained in
the last, the (W + 1)-th frame. Because of the temporal consistency of rollout windows (see above),
there are now cycles in all previous frames which contradicts the validity of RW .

Proof (streaming rollout exists and is valid): The streaming rollout pattern Rstream ≡ 1 always
exists, because according to our network definition, E is not empty. Further, the streaming rollout
pattern is always valid: Assuming that this is not the case, let Rstream

W be a rollout window of size
W which is not acyclic and let p be a cycle in Rstream

W . Because there are no backward edges
e = ((i, u), (j, v)) ∈ EW with j < i, all edges of the cycle must be inside a single frame, which is in
contradiction to Rstream ≡ 1.

Note (streaming rollout is un-ambiguous): Considering the sets of all most streaming and most
non-streaming rollout patterns

Rstreaming =

{
R ∈ RN

∣∣∣∣ |R−1(1)| = max
R?∈RN

|R−1? (1)|
}

Rnon-streaming =

{
R ∈ RN

∣∣∣∣ |R−1(0)| = max
R?∈RN

|R−1? (0)|
}

we have shown above that |Rstreaming| = 1 and this is exactly the streaming rollout. In contrast,
|Rnon-streaming| ≥ 1 especially for networks containing cycles with length greater 1. In this sense, the
streaming rollout is un-ambiguous because it always uniquely exists while the most-sequential rollout
is ambiguous.

2

A1.4 Proof for Lemma 1 in Sec. 3

Lemma 1: Let N = (V,E) be a network. The number of valid rollout patterns |RN | is bounded
by:

1 ≤ n ≤ |RN | ≤ 2|E|−|Erec|, (9)
where Erec is the set of all self-connecting edges Erec

..= {(u, v) ∈ E | u = v}, and n either:

• n = 2|Eforward|, with Eforward being the set of edges not contained in any cycle of N , or

• n =
∏
p∈C

(2|p|−1), C ⊂ CN being any set of minimal and pair-wise non-overlapping cycles.

Proof |RN | ≤ 2|E|−|Erec|: The number of all (valid and invalid) rollout patterns is 2|E|, because
the pattern can assign 0 or 1 to every edge. In order to be valid (acyclic rollout windows), the pattern
has to assign 1 at least to every self-connecting edge.

Proof 1 ≤ n: Concerning the forward case: According to the definition of a network, IN is not
empty and hence there always exists at least one forward edge |Eforward| > 0. Concerning the
recurrent case: It is easy to see that n is greater than 0, increases with |C| and that C has to be at
least the empty set.

Proof n ≤ |RN | forward case: Considering the streaming rollout pattern Rstream ≡ 1 which
always exists and is always valid (see above), we combinatorically can construct 2|Eforward| different
valid rollout patterns on the basis of the streaming rollout pattern by combinatorically changing R(e)
for all forward edges e ∈ Eforward.

Proof n ≤ |RN | recurrent case: W.l.o.g. in case CN = ∅ we set n = 1. Otherwise let C ⊂ CN

be any set of minimal and pair-wise non-overlapping cycles. Based on the streaming rollout pattern
we will again construct the specified number of rollout patterns. The idea is that every cycle p ∈ C
gives rise to 2|p| − 1 different rollout patterns by varying the streaming rollout Rstream(E) ≡ 1 on
all edges in p and we have to subtract the one rollout for which R(p) ≡ 0, because for this specific
rollout pattern, the cycle p does not get unrolled. Because the cycle is minimal, those 2|p|− 1 patterns
are different from one another. Because all cycles in C are disjunct we can combinatorically use this
construction across all cycles of C and constructed

∏
p∈C

(2|p| − 1) valid rollouts.

A1.5 Proof update steps convergence to full state in Sec. 3

Let RW be a rollout window for a valid rollout pattern R of the network N = (V,E). Then, starting
from the initial state Sinit and successively applying update steps U , converges always to the full state
Sfull:

∃n ∈ N : Un(Sinit) = Sfull

Proof: Using induction, we show this without loss of generality for R1. Assuming that this is not
the case, then there exists a state S ∈ Σ1, such that

∀n ∈ N : Un(S) = S, and ∃v = (1, v) ∈ V1 : S(v) = 0

But being unable to update v means, that there is another node that is input to v which is also not
updated yet (1, v1) ∈ V1 and S((1, v1)) = 0. Because there are no loops in R1 these nodes are not
the same v 6= v1. This line of argument can now also be applied to v1 leading to a third node (1, v2)
with S((1, v2)) = 0 and v 6= v1 6= v2 and so on. Because we only consider networks with |V | <∞
this leads to a contradiction.

A1.6 Proof Definition of inference tableau in Sec. 3

For a valid rollout pattern R and a rollout window RW , we defined the inference tableau as the
mapping T : VW → N with:

T (v) ..= max
p∈Pv

|p| = argmin
n∈N

{Un(Sinit)(v) = 1}

For this, we have to show, that the equation holds.

3

Proof: We denote:
Tmax(v) ..= max

p∈Pv

|p|

Tmin(v) ..= argmin
n∈N

{Un(Sinit)(v) = 1}

and have to show Tmin ≡ Tmax. The proof is divided into two parts, first showing that the number of
necessary update steps to update a certain node v is higher or equal the length of any path p ∈ Pv

and hence Tmin ≥ Tmax. In the second part of the proof, we show that maximal paths p ∈ Pv get
successively updated at every update step.

In the first part, we will prove the following statement: For every v ∈ VW and p ∈ Pv:

Tmin(v) ≥ Tmin(p(1)src) + |p|. (10)

Here, we denoted again the edges of the path as p(i) = (p(i)src, p(i)tgt) ∈ EW . In words this means,
that for every path in a valid rollout window, the tableau values of the paths first p(1)src and last
v = p(|p|)tgt node differ at least about the length of the path. This is clear for paths of length one
|p| = 1, because p(1)tgt can neither be updated before nor at the same update step as p(1)src, because
p(1)src is an input of p(1)tgt. Using induction and the same argument for paths of greater lengths
|p| = n proves (10) and therefore also Tmin ≥ Tmax.

In the second part of the proof, we will show that for all v ∈ VW all paths p ∈ Pv of maximal length
get updated node by node in each update step:

U i−1(Sinit)(p(i)tgt) = 0

U i(Sinit)(p(i)tgt) = 1

for i ∈ {1, . . . , |p|}.
We will prove this via induction over maximal path lengths. For v ∈ VW for which the maximum
length of a path p ∈ Pv is zero |p| = 0 and hence Pv = ∅ we know by definition of Pv and because
the rollout window is connected to the initial state (see Sec. A1.5) that U0(Sinit)(v) = Sinit(v) = 1.
This proves the second part for v with maximum path length zero. Now we consider v ∈ VW for
which the maximum length of a path p ∈ Pv is one |p| = 1. Because p is maximal, its first node is
in the initial state Sinit(p(1)src) = 1 and due to the definition of Pv it is Sinit(p(1)tgt) = 0. Further,
because p is maximal and of length 1, the initial state of all inputs to p(1)tgt is 1 and hence p(1)tgt
can be updated in the first update step U(Sinit)(p(1)tgt) = 1. This proves the second part for v with
maximum path length one.

Let now be n ≥ 2, and we assume that the statement is true for nodes v for which maximal paths
p ∈ Pv have length n. Be v now a node in VW for which the maximal length of a path p ∈ Pv is n+1.
If the end node of a maximal path p ∈ Pv cannot be updated Un+1(Sinit)(p(n+ 1)tgt) = 0, then one
of this end node’s inputs vinput ∈ VW was not yet updated Un(Sinit)(vinput) = 0. But because p is
maximal and of length n + 1, and vinput is input to v, the maximum length of paths in Pvinput is n.
Hence Un(Sinit)(vinput) = 1 contradicting that vinput was not yet updated and therefore proving the
second part of the proof. This proves Tmin ≡ Tmax and hence both can be used to define the inference
tableau.

A1.7 Proof for Theorem 1 in Sec. 3

Theorem 1: Let R be a valid rollout pattern for the network N = (V,E) then the following
statements are equivalent:

a) R and the streaming rollout pattern Rstream are equally model-parallel.
b) The first frame is updated entirely after the first update step: F (R) = 1.
c) For W ∈ N, the i-th frame of RW is updated at the i-th update step:

∀(i, v) ∈ VW : T ((i, v)) ≤ i.

d) ForW ∈ N, the inference tableau ofRW is minimal everywhere and over all rollout patterns
(most frequent responses & earliest response):

∀v ∈ VW : TRW
(v) = min

R′∈RN

TR′
W

(v).

4

Proof: Equivalency of statements a) - d) will be shown via a series of implications connecting all
statements:

a) =⇒ b): Assuming there is a v = (1, v) which cannot be updated with the first update step,
then there has to be an input (1, vinput) of v for which Sinit((1, vinput)) = 0 which contradicts that R is
equally model-parallel to the streaming rollout.

b) =⇒ a): Assuming R(e) = 0 for an edge e = (u, v) ∈ E with u /∈ IN , would yield a
dependency of (1, v) on (1, u). Because u /∈ IN , (1, u) is not updated at the beginning Sinit((1, u)) =
0 and therefore U1(Sinit)((1, v)) = 0 and hence T ((1, v)) ≥ 2 which contradicts b).

c) =⇒ b): Trivial.

a) =⇒ c): Let v = (i, v) ∈ VW . First we note, that every maximal path p ∈ Pv has to start in the
initial state Sinit(p(1)src) = 1, otherwise we can extend p to a longer path. We will use the definition
of T over maximum path lengths to prove c). Let R be equally model-parallel to the streaming rollout
and p ∈ Pv a path of maximal length. We know Sinit(p(1)src) = 1 and hence either p(1)src ∈ {0}×V
or p(1)src ∈ {0, . . . ,W} × IN . For the first case, it is easy to see that |p| = i, because R is equally
model-parallel to the streaming rollout and hence one frame is bridged R(e) = 1 for every edge e in
p. For the second case p(1)src ∈ {0, . . . ,W} × IN , it follows from the same argument as before that
|p| = i− isrc with p(1)src = (isrc, vsrc) which proves c).

a) =⇒ d): For this proof we introduce induced paths: Let R be a valid rollout pattern, v =
(i, v) ∈ RW and pR ∈ PRW

v (same as Pv from rollout definition but now expressing the dependency
on the rollout window RW):

pR(k) = ek

=
(
(jksrc, e

k
src), (j

k
tgt, e

k
tgt)
)

=
(
(jksrc, e

k
src), (j

k
src +R(ek), ektgt)

)
,

for k ∈ {1, . . . , |pR|} and ek = (eksrc, e
k
tgt) ∈ E. Let R′ be a second valid rollout pattern and let

denote n = |pR|. Notice that (jntgt, e
n
tgt) = (i, v). We want to define the induced path pR′ ∈ PR′

W

v as
the path also ending at v ∈ R′W , backwards using the same edges as pR and respecting the rollout
pattern R′. We define this induced path pR′ ∈ PR′

W

v of pR recursively, beginning with the last edge
of pR, as the end of the following sequence of paths, starting with the path:

pR′,1 : {1} → ER′
W

pR′,1(1) = ((i−R′(en), ensrc), (i, e
n
tgt))

Recursively we define:

pR′,m : {1, . . . ,m} → ER′
W

pR′,m(k) = pR′,m−1(k − 1), k ∈ {2, . . . ,m}
pR′,m(1) = ((i− sR′,pR

(m), vn−m+1
src), (i− sR′,pR

(m− 1), vn−m+1
tgt))

with sR′,pR
(m) =

m∑
k=1

R′(en−k+1). In words, sR′,pR
(m) is the frame length of the last m edges

of the path pR under the rollout pattern R′. The sequence stops at a certain m, either if no edges
are left in pR: m = n or at the first time the source of the path’s first edge reaches the 0-th frame:
i− sR′,pR

(m) = 0. With this definition we can proceed in the prove of a) =⇒ d):

Let R be equally model-parallel to the streaming rollout pattern, W ∈ N, and v ∈ VW . Let further be
pR ∈ PRW

v a path of maximal length, R′ be any valid rollout pattern, and pR′ be the induced path of
pR. We want to show that |pR| = |pR′ |.

If both rollouts are equally model-parallel on the edges of the path {e1, . . . , e|pR|} (this means
R(ek) = R′(ek) for k ∈ {1, . . . , |pR|} if e1 does not originate in the input e1src /∈ IN , and for

5

k ∈ {2, . . . , |pR|} if e1 does originate in the input), the path pR and its induced path pR′ are the same
up to their first edge which might or might not bridge a frame, but in both cases |pR| = |pR′ |.
If the rollouts are not model-parallel on the edges of the path and hence differ on at least one edge
ek which does not originate in the input, and because R is equally model-parallel to the streaming
rollout, it is:

sR,pR
(|pR|) > sR′,pR

(|pR′ |). (11)

Because the induced path using the same rollout cannot loose length, we also know:

i− sR,pR
(|pR|) ≥ 0. (12)

Greater than zero would be the case for pR originating in the input pR(1)src ∈ {1, . . . ,W} × IN .
Combining (11) and (12) yields:

i− sR′,pR
(|pR′ |) > 0.

Considering the two stopping criteria from the sequence of paths used to define the induced path
from above, this proves |pR| = |pR′ |.
We now have proven that the induced path pR′ from a maximal path pR in a rollout window from
a rollout pattern R which is equally model-parallel to the streaming rollout is never shorter than
pR (especially for highly sequential R′, most pR′ are not of maximal length). This means, that the
maximal length of paths in PR′

W

v is at least as large as the maximal length of paths in PRW

v which by
definition of the inference tableau proves a) =⇒ d).

d) =⇒ b): Trivial.

A2 Details about networks, data, and training

In the depiction of network architectures (Fig. 1, Fig. A3, and Fig. A2), connections between
nodes are always realized as convolutional or fully connected layers. In case a node (layer) is the
target of several connections, its activation is always computed as the sum over outputs of these
connections. This is mathematically equivalent to concatenating all inputs of the layer and applying a
single convolution on the concatenation.

a)

FF

I

H1

H2

O
b) c) d)

S

e) f)

Figure A2: Neural networks (gray boxes) used for MNIST (Fig. 3a-c) with different rollouts.
Schematics of a feed-forward network (FF, a, green) with its corresponding sequential (b, blue) and
streaming (c, red) rollouts. Nodes represent layers, edges represent transformations, e.g. convolutions.
Only one rollout step is shown and each column in (b) and (c) is one frame within the rollout. Rollouts
are also shown for networks with an additional skip connection (S, d-f). Node labels on the left are
referred to in Sec. A2.

MNIST The network designs are shown in Fig. 1 and Fig. A2. The size of the layers (pixels, pixels,
features) are: input image I with (28, 28, 1), hidden layer H1 with (7, 7, 16), hidden layer H2 with (1,
1, 128) and output layer O with (1, 1, 10).

The following network design specifications were applied with A-B meaning the edge between layer
A and layer B. Some of these edges only exist in the networks with skip connection (S) or with skip
and self-recurrent connections (SR). For node labels see Fig. A2:

• I-H1: a convolution with receptive field 7 and stride 4

6

• H1-H2 and H2-O: fully connected layers
• H1-O: a fully connected layer
• H1-H1-recurrence: a convolution with receptive field 3 and stride 1

a)

I

H1

H2

HD

O

H11

H12

H13

H21

H22

H23

DSR0 DSR1 DSR2 DSR4 DSR6

b) c)

Figure A3: a: A selection of the sequence of networks evaluated on CIFAR10 (for details see Sec. A2).
For evaluating the GTSRB dataset the network DSR4 is used, but without the self-connection of node
H1. The input of the networks are images with added Gaussian noise as shown in b: for CIFAR10
and c: for GTSRB (for details see Table A1).

CIFAR10 The network design is shown in Fig. A3a. We used a sequence of 7 increasingly deep
network architectures with the first network DSR0 being a simple (3 hidden layers) forward design
and the first hidden layer having a self-recurrent connection. We added additional hidden layers to
generate the next networks in the following way: H11 to DSR0, H21 to DSR2, H12 to DSR3, ...,
H23 to DSR6. Note that every network is a sub-network of its successor. Hence, the length of the
shortest path is always 4, while the length of the longest path increases from 4 to 11 by 1 for every
consecutive network.

The size of the layers (pixels, pixels, features) are: input image I with (32, 32, 3) and hidden layers
H1, H11, H12, H13 with (32, 32, 32) and H2, H21, H22, H23 with (16, 16, 64), fully connected layer
HD with (4, 4, 512) and output layer O with (1, 1, 10).

The following network design specifications were applied:

• I-H1: a convolution with receptive field 5 and stride 1

• H1-H11, H11-H12, H12-H13: a convolution with receptive field 3 and stride 1

• H2-H21, H21-H22, H22-H23: a convolution with receptive field 3 and stride 1

• H13-H2: convolutions with receptive field 3 and stride 2

• H23-HD: convolutions with receptive field 3 and stride 4

• H1-H1-recurrence: a convolution with receptive field 3 and stride 1

• skip connections H1-H12, H1-H13, H1-H2, H11-H13, H11-H2, H12-H2 and H2-H22,
H2-H23, H2-HD, H21-H23, H21-HD, H22-HD: convolution with receptive field 3 and stride
input size
output size

GTSRB For the experiments, the network DSR4 shown in Fig. A3a was used without the self-
recurrence H1-H1 connection. Design specifications are adapted from the CIFAR10 networks with
input image I with (32, 32, 3) and output layer O with (1, 1, 43). For each repetition, 80% of the data
was randomly taken for training, 10% for validation, and 10% for testing.

7

Training details To train networks, we used RMSprop ([58]) with an initial learning rate of 10−4

and an exponential decay of 10−6. All networks were trained for 100 epochs. A dropout rate of 0.25
was used for all but the last hidden layer, for which a rate of 0.5 was used. The loss for the rolled-out
networks is always the mean over the single-frame prediction losses, for which we used cross-entropy.
At the zero-th frame, states of all but the input layers were initialized with zero.

Details about experimental setups and data processing are given in Table A1.

Data value perturbation augmentation training / batch reps
range val. / test size size

Noisy [0,1] 1. N (σ = 2.0); None 50k / 10k / 10k 128 6
MNIST 2. clipped to [0,1]

CIFAR10 [0,1] 1. N (σ = 1.0); horizontal 40k / 10k / 10k 64 1
2. clipped to [0,1] flipping
3. mean subtracted

GTRSB [0,1] 1. N (σ = 0.5); None 80% / 10% / 10% of 16 12
2. clipped to [0,1] 1305 tracks
3. resized to 32× 32 pixels (30 frames each)

Table A1: Experimental setups for the data sets: Image pixels were scaled (value range); then each
frame was perturbed adding Gaussian noise with a standard deviation of σ, clipped back into the
value range and for CIFAR10 the channel-wise mean over all training images was subtracted. For
GTRSB images of different size were resized. Data augmentation was conducted for training and the
number of images for training, validation, and testing (training / val. / test size) and the batch sizes
are listed. Experiments were repeated (reps) times.

A3 Toolbox for streaming rollouts

One of the contributions of this work is to provide an open-source toolbox (https://github.
com/boschresearch/statestream) to design, train, evaluate, and interact with the streaming
rollout of deep networks. An example screenshot of the provided user interface is shown in Fig. A4.

Networks are specified in a text file, and a core process distributes the network elements onto separate
processes on CPUs and/or GPUs. Network elements are executed with alternating read and write
phases, synchronized via a core process, and operate on a shared representation of the network. The
toolbox is written in Python and uses the Theano [59] or TensorFlow [60] backend. The shared
representation enables parallelization of operations across multiple processes and GPUs on a single
machine and enables online interaction.

Figure A4: Visualization example of a simple classification network using the provided toolbox (best
viewed in color). The network is shown as graph together with information about the network.

8

https://github.com/boschresearch/statestream
https://github.com/boschresearch/statestream

