Interactive Structure Learning with Structural
Query-by-Committee

Christopher Tosh Sanjoy Dasgupta
Columbia University UC San Diego
c.tosh@columbia.edu dasgupta@cs.ucsd.edu
Abstract

In this work, we introduce interactive structure learning, a framework that unifies
many different interactive learning tasks. We present a generalization of the query-
by-committee active learning algorithm for this setting, and we study its consistency
and rate of convergence, both theoretically and empirically, with and without noise.

1 Introduction

We introduce interactive structure learning, an abstract problem that encompasses many interactive
learning tasks that have traditionally been studied in isolation, including active learning of binary
classifiers, interactive clustering, interactive embedding, and active learning of structured output
predictors. These problems include variants of both supervised and unsupervised tasks, and allow
many different types of feedback, from binary labels to must-link/cannot-link constraints to similarity
assessments to structured outputs. Despite these surface differences, they conform to a common
template that allows them to be fruitfully unified.

In interactive structure learning, there is a space of items X'—for instance, an input space on which a
classifier is to be learned, or points to cluster, or points to embed in a metric space—and the goal
is to learn a structure on X, chosen from a family G. This set G could consist, for example, of all
linear classifiers on X, or all hierarchical clusterings of X', or all knowledge graphs on X. There is a
target structure g* € G and the hope is to get close to this target. This is achieved by combining a
loss function or prior on G with interactive feedback from an expert.

We allow this interaction to be fairly general. In most interactive learning work, the dominant
paradigm has been question-answering: the learner asks a question (like “what is the label of this
point £7) and the expert provides the answer. We allow a more flexible protocol in which the learner
provides a constant-sized snapshot of its current structure and asks whether it is correct (“does the
clustering, restricted to these ten points, look right?”). If the snapshot is correct, the expert accepts it;
otherwise, the expert fixes some part of it. This type of feedback, first studied in generality by [15],
can be called partial correction. It is a strict generalization of question-answering, and as we explain
in more detail below, it allows more intuitive interactions in many scenarios.

In Section 3, we present structural query-by-committee, a simple algorithm that can be used for
any instance of interactive structure learning. It is a generalization of the well-known query-by-
committee (QBC) algorithm [33, 16], and operates, roughly, by maintaining a posterior distribution
over structures and soliciting feedback on snapshots on which there is high uncertainty. We also
introduce an adaptation of the algorithm that allows convex loss functions to handle the noise. This
helps computational complexity in some practical settings, most notably when G consists of linear
functions, and also makes it possible to efficiently kernelize structural QBC.

In Section 4, we show that structural QBC is guaranteed to converge to the target g*, even when the
expert’s feedback is noisy. In the appendix, we give rates of convergence in terms of a shrinkage

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

coefficient, present experiments on a variety of interactive learning tasks, and give an overview of
related work.

2 Interactive structure learning

The space of possible interactive learning schemes is large and mostly unexplored. We can get a sense
of its diversity from a few examples. In active learning [32], a machine is given a pool of unlabeled
data and adaptively queries the labels of certain data points. By focusing on informative points, the
machine may learn a good classifier using fewer labels than would be needed in a passive setting.

Sometimes, the labels are complex structured objects, such as parse trees for sentences or segmen-
tations of images. In such cases, providing an entire label is time-consuming and it is easier if the
machine simply suggests a label (such as a tree) and lets the expert either accept it or correct some
particularly glaring fault in it. This is interaction with partial correction. It is more general than the
question-answering usually assumed in active learning, and more convenient in many settings.

Interaction has also been used to augment unsupervised learning. Despite great improvements in
algorithms for clustering, topic modeling, and so on, the outputs of these procedures are rarely
perfectly aligned with the user’s needs. The problem is one of underspecification: there are many
legitimate ways to organize complex high-dimensional data, and no algorithm can magically guess
which a user has in mind. However, a modest amount of interaction may help overcome this issue.
For instance, the user can iteratively provide must-1ink and cannot-1ink constraints [37] to edit a
flat clustering, or triplet constraints to edit a hierarchy [36].

These are just a few examples of interactive learning that have been investigated. The true scope
of the settings in which interaction can be integrated is immense, ranging from structured output
prediction to metric learning and beyond. In what follows, we aim to provide a unifying framework
to address this profusion of learning problems.

2.1 The space of structures

Let X be a set of data points. This could be a pool of unlabeled data to be used for active learning, or
a set of points to be clustered, or an entire instance space on which a metric will be learned.

We wish to learn a structure on X, chosen from a class G. This could, for instance, be the set of all
labelings of X’ consistent with a function class F of classifiers (binary, multiclass, or with complex
structured labels), or the set of all partitions of X, or the set of all metrics on X. Of these, there is
some target g* € G that we wish to attain.

Although interaction will help choose a structure, it is unreasonable to expect that interaction alone
could be an adequate basis for this choice. For instance, pinpointing a particular clustering over n
points requires §2(n) must-link/cannot-link constraints, which is an excessive amount of interaction
when n is large.

To bridge this gap, we need a prior or a loss function over structures. For instance, if G consists
of flat k-clusterings, then we may prefer clusterings with low k-means cost. If G consists of linear
separators, then we may prefer functions with small norm ||g||. In the absence of interaction, the
machine would simply pick the structure that optimizes the prior or cost function. In this paper, we
assume that this preference is encoded as a prior distribution 7 over G.

We emphasize that although we have adopted a Bayesian formulation, there is no assumption that the
target structure ¢g* is actually drawn from the prior.

2.2 Feedback

We consider schemes in which each individual round of interaction is not expected to take too long.
This means, for instance, that the expert cannot be shown an entire clustering, of unrestricted size,
and asked to comment upon it. Instead, he or she can only be given a small snapshot of the clustering,
such as its restriction to 10 elements. The feedback on this snapshot will be either be to accept it, or
to provide some constraint that fixes part of it.

In order for this approach to work, it is essential that structures be locally checkable: that is, g
corresponds to the target g* if and only if every snapshot of g is satisfactory.

When g is a clustering, for instance, the snapshots could be restrictions of ¢ to subsets S C X’ of some
fixed size s. Technically, it is enough to take s = 2, which corresponds to asking the user questions of
the form ‘Do you agree with having zebra and giraffe in the same cluster?” From the viewpoint of
human-computer interaction, it might be preferable to use larger subsets (like s = 5 or s = 10), with
questions such as “Do you agree with the clustering {zebra, giraffe, dolphin}, {whale, seal}?”
Larger substructures provide more context and are more likely to contain glaring faults that the user
can easily fix (dolphin and whale must go together). In general, we can only expect the user to
provide partial feedback in these cases, rather than fully correcting the substructure.

2.3 Snapshots

Perhaps the simplest type of snapshot of a structure g is the restriction of g to a small number of
points. We start by discussing this case, and later present a generalization.

2.3.1 Projections

For any g € G and any subset S C X of size s = O(1), let g|s be a suitable notion of the restriction
of g to S, which we will sometimes call the projection of g onto S. For instance:

e G isaset of classifiers on X'. We can take s = 1 and let g|, be (z, g(z)) for any x € X.

e G is a set of partitions (flat clusterings) of X'. For aset S C X of size s > 2, let g|s be the
induced partition on just the points .S.

As discussed earlier, it will often be helpful to pick projections of size larger than the minimal possible
s. For clusterings, for instance, any s > 2 satisfies local checkability, but human feedback might be
more effective when s = 10 than when s = 2. Thus, in general, the queries made to the expert will
consist of snapshots (projections of size s = 10, say) that can in turn be decomposed further into
atomic units (projections of size 2).

2.3.2 Atomic decompositions of structures

Now we generalize the notion of projection to other types of snapshots and their atomic units.

We will take a functional view of the space of structures G, in which each structure g is specified
by its “answers” to a set of atomic questions A. For instance, if G is the set of partitions of X, then

A= (3), with g({z,2}) = 1if g places z, 2’ in the same cluster and 0 otherwise.

The queries made during interaction can, in general, be composed of multiple atomic units, and
feedback will be received on at least one of these atoms. Formally, let O be the space of queries. In
the partitioning example, this might be (). The relationship between Q and A is captured by the
following requirements:

e Each ¢ € Q can be decomposed as a set of atomic questions A(q) C A, and we write
9(q) = {(a,g(a)) : a € A(q)}. In the partitioning example, A(q) is the set of all pairs in g.

e The user accepts g(q) if and only if g satisfactorily answers every atomic question in ¢, that
is, if and only if g(a) = ¢g*(a) for all a € A(q).

2.4 Summary of framework
To summarize, interactive structure learning has two key components:

e A reduction to multiclass classifier learning. We view each structure g € G as a function
on atomic questions A. Thus, learning a good structure is equivalent to picking one whose
labels g(a) are correct.

e Feedback by partial correction. For practical reasons we consider broad queries, from a
set Q, where each query can be decomposed into atomic questions, allowing for partial
corrections. This decomposition is given by the function A : Q — 24,

Algorithm 1 STRUCTURAL QBC

Input: Distribution! v over query space Q and initial prior distribution 7, over G
Output: Posterior distribution 7; over G
fort=1,2,...do
Draw g; ~ m_1
while Next query ¢, has not been chosen do
Draw g ~ vand g,g" ~ m_1
With probability d(g, ¢; q): take q; = ¢
end while
Show user ¢; and g;(q;) and receive feedback in form of pairs (a¢, y)
Update posterior: m;(g) o m—1(g) exp(—08 - 1(g(at) # yt))
end for

The reduction to multiclass classification immediately suggests algorithms that can be used in the
interactive setting. We are particular interested in adaptive querying, with the aim of finding a good
structure with minimal interaction. Of the many schemes available for binary classifiers, one that
appears to work well in practice and has good statistical properties is query-by-committee [33, 16]. It
is thus a natural candidate to generalize to the broader problem of structure learning.

3 Structural QBC

Query-by-committee, as originally analyzed by [16], is an active learning algorithm for binary
classification in the noiseless setting. It uses a prior probability distribution 7 over its classifiers and
keeps track of the current version space, i.e. the classifiers consistent with the labeled data seen so far.
At any given time, the next query is chosen as follows:

e Repeat:

— Pick z € X at random
— Pick classifiers h, h’ at random from 7 restricted to the current version space
— If h(x) # B/ (x): halt with z as the query

In our setting, the feedback at time ¢ is the answer y; to some atomic question a; € A, and we
can define the resulting version space to be {g € G : g(ay) = yy forall t' < t}. The immediate
generalization of QBC would involve picking a query ¢ € Q at random (or more generally, drawn
from some query distribution /), and then choosing it if g, ¢’ sampled from 7 restricted to our version
space happen to disagree on it. But this is unlikely to work well, because the answers to queries are
no longer binary labels but mini-structures. As a result, g, ¢’ are likely to disagree on minor details
even when the version space is quite small, leading to excessive querying. To address this, we will
use a more refined notion of the difference between g(¢q) and ¢'(q):

/. _ 1 a /a
d(g7g 7Q) - |A(q)| aezA%q)l[g()#g()}

In words, this is the fraction of atomic subquestions of ¢ on which g and ¢’ disagree. It is a value
between 0 and 1, where higher values mean that g(q) differs significantly from ¢’(¢). Then we will
query g with probability d(g, ¢’; q).

3.1 Accommodating noisy feedback

We are interested in the noisy setting, where the user’s feedback may occasionally be inconsistent
with the target structure. In this case, the notion of a version space is less clear-cut. Our modification
is very simple: the feedback at time ¢, say (a¢, y:), causes the posterior to be updated as follows:

mi(g) o m—1(g) exp(—p - L[g(as) # yi])- (1

'In the setting where Q is finite, a reasonable choice of v would be uniform over Q.

Here 8 > 0 is a constant that controls how aggressively errors are punished. In the noiseless setting,
we can take 3 = oo and recover the original QBC update. Even with noise, however, this posterior
update still enjoys nice theoretical properties. The full algorithm is shown in Algorithm 1.

3.2 Uncertainty and informative queries

What kinds of queries will structural QBC make? To answer this, we first quantify the uncertainty
in the current posterior about a particular query or atom. Define the uncertainty of atom a € A
under distribution distribution 7 as u(a;7) = Pry gr(g9(a) # ¢'(a)) and u(g; 7) as the average
uncertainty of its atoms A(q). These values lie in the range [0, 1].

The probability that a particular query g € Q is chosen in round ¢ by structural QBC is proportional
to v(q)u(g; m¢—1). Thus, queries with higher uncertainty under the current posterior are more likely
to be chosen. As the following lemma demonstrates, getting feedback on uncertain atoms eliminates,
or down-weights in the case of noisy feedback, many structures inconsistent with g*.

Lemma 1. For any distribution 7 over G, we have 7({g : g(a) # y}) > u(a;m)/2.

The proof of Lemma 1 is deferred to the appendix. This gives some intuition for the query selection
criterion of structural QBC, and will later be used in the proof of consistency.

3.3 General loss functions

The update rule for structural QBC, equation (1), results in a posterior of the form m;(g) o
m(g) exp(—/ - #(mistakes made by ¢)), which may be difficult to sample from. Thus, we con-
sider a broader class of updates,

mi(g) o m—1(g) exp(—B - €(g(ar), yt)),)

where ¢(-, -) is a general loss function. In the special case where G consists of linear functions and ¢
is convex, m; will be a log-concave distribution, which allows for efficient sampling [28]. We will
show that this update also enjoys nice theoretical properties, albeit under different noise conditions.

To formally specify this setting, let)/ be the space of answers to atomic questions .4, and suppose that
structures in G generate values in some prediction space Z C R?. That is, each g € G is a function
g: A— Z, and any output z € Z gets translated to some prediction in). The loss associated with
predicting z when the true answer is y is denoted £(z, y). Here are some examples:

e 0—1loss. Z=Yand {(z,y) = 1(y # 2).
e Squared loss. Y = {—1,1}, Z = [-B, B], and £(2,y) = (y — 2)°.
e Logistic loss. Y = {—1,1}, Z = [-B, B] for some B > 0, and ¢(z,y) = In(1 + e~ ¥%).

When moving from a discrete to a continuous prediction space, it becomes very possible that the
predictions, on a particular atom, of two randomly chosen structures will be close but not perfectly
aligned. Thus, instead of checking strict equality of these predictions, we need to modify our querying
strategy to take into account the distance between them. To this end, we will use the normalized
average squared Euclidean distance:

2 / 1 a) — d'(a)ll?
#(9.99) = a7 3 lg(a) Dg()

a€A(q)

where D = max,ec4 max, g¢cg ||g(a) — ¢'(a)||*. Note that d*(g, ¢'; q) is a value between 0 and 1.
We treat it as a probability, in exactly the same way we used d(g, ¢’; ¢) in the 0-1 loss setting.

In the 0-1 loss setting, structural QBC chooses queries proportional to their uncertainty. What queries
will structural QBC make in the general loss setting? Define the variance of a € A under 7 as

var(am) = £ 3 (o) wl) lg(a) — o' (@)
9,9'€9

and var(q; 7) as the average variance of its atoms A(q). Then the probability that structural QBC
chooses g € Q at step ¢ is proportional to v(g)var(g; m;—1) in the general loss setting.

Algorithm 2 ROBUST QUERY SELECTION

Input: Fixed set of queries q1, ..., ¢, € Q, current distribution 7 over G

Output: Query g;

Initial shrinkage estimate: 4, = 1/2

fort =0,1,2,...do
Draw glmgiv e 7gntag;” ~ T
If there exists ¢; such that n% St d(gis g q;) > Uy then we halt and query g;
Otherwise, let U1 = Uy /2.

end for

3.4 Kernelizing structural QBC

Consider the special case where G consists of linear functions, i.e. G = {g,,(7) = (z,w) : w € R},
As mentioned above, when our loss function is convex, the posteriors we encounter are log-concave,
and thus efficiently samplable. But what if we want a more expressive class than linear functions? To
address this, we will resort to kernels.

Gilad-Bachrach et al. [17] investigated the use of kernels in QBC. In particular, they observed that
QBC does not actually need samples from the prior restricted to the current version space. Rather,
given a candidate query z, it is enough to be able to sample from the distribution the posterior induces
over the labelings of x. Although their work was in the realizable binary setting, this observation still
applies to our setting.

Given a feature mapping ¢ : X — R? our posterior update becomes m;(g,) o
e—1(gw) €xp (—BL({d(x¢), w),yt)) . As the following lemma shows, when £(-, -) is the squared-loss
and our prior is Gaussian, the predictions of the posterior have a univariate normal distribution.

Lemma 2. Suppose m = N(0,021,), {(-,-) is the squared-loss, and we have observed
(xlay1)7 T (It, Z/t) Ifgw ~ T, then <w7 ¢(I)> ~ N(,lt70'2) where

w=202BrT (I, = X, K)y and o° =02 (¢(z) d(x) — KT Sok)

o

for Ky = (6w 0(a,), s = {0(a:). 6(x)), and Sy = (gl + K)

The proof is deferred to the appendix. The important observation here is that all the quantities
involving the feature mapping in Lemma 2 are inner products. Thus we never need to explicitly
construct any feature vectors.

3.5 Reducing the randomness in structural QBC

It is easy to see that the query selection procedure of structural QBC is a rejection sampler where
each query ¢ is chosen with probability proportional to v(q)u(g; 7¢) (in the case of the 0-1 loss) or
v(q)var(q; ;) (for general losses). However, it is possible for the rejection rate to be quite high,
even when there are many queries that have much higher uncertainty or variance than the rest. To
circumvent this issue, we introduce a ‘robust’ version of structural QBC, wherein many candidate
queries are sampled, and the query that has the highest uncertainty or variance is chosen.

In the 0-1 loss case, we can estimate the uncertainty of a candidate query ¢ by drawing many pairs
91,94+ 9ns gy ~ m and using the unbiased estimator u(g; ™) == = > | d(g;, 9; q)-

Unfortunately, the number of structures we need to sample in order to identify the most uncertain
query depends on its uncertainty, which we do not know a priori. To circumvent this difficulty, we
can use the halving procedure shown in Algorithm 2. If the appropriate number of structures are
sampled at each round ¢, on the order of O((1/u?)log(m log(1/u,))) for some crude lower bound
u, on the highest uncertainty, then with high probability this procedure terminates with a candidate
query whose uncertainty is within a constant factor of the highest uncertainty [35].

4 Consistency of structural QBC

In this section, we look at a typical setting in which there is a finite but possibly very large pool of
candidate questions Q, and thus the space of structures G is effectively finite. Let g* € G be the target
structure, as before. Our goal in this setting is to demonstrate the consistency of structural QBC,
meaning that lim;_, o, 7¢(¢*) = 1 almost surely. To do so, we formalize our setting. Note that the
random outcomes during time step ¢ of structural QBC consist of the query ¢, the atomic question ay
that the expert chooses to answer (pick one at random if the expert answers several of them), and the
response y; to a;. Let F; denote the sigma-field of all outcomes up to, and including, time ¢.

4.1 Consistency under 0-1 loss

In order to prove consistency, we will have to make some assumptions about the feedback we receive
from a user. For query ¢ € Q and atomic question a € A(q), let n(y|a, ¢) denote the conditional
probability that the user answers y to atomic question a, in the context of query g. Our first assumption
is that the single most likely answer is g*(a).

Assumption 1. There exists 0 < A < 1 such that n(g*(a)|a, q) — n(yla,q) > X for all ¢ € Q and
a € A(q) and all y # g*(a).
(We will use the convention A = 1 for the noiseless setting.) In the learning literature, Assumption 1

is known as Massart’s bounded noise condition [2].

The following lemma, whose proof is deferred to the appendix, demonstrates that under Assumption 1,
the posterior probability of g* increases in expectation with each query, as long as the 5 parameter of
the update rule in equation (1) is small enough relative to A.

Lemma 3. Fix any t and suppose the expert provides an answer to atomic question a; € A(q:) at
timet. Let v = m—1({g € G : g(at) = 9*(a+)}). Define A; by:

1
Ti-1(9%)

9

1
E Lﬁ:(g*) ft—laqt7a't:| = (1-A4Ay)
Under Assumption 1, A; can be lower-bounded as follows:
(a) If X = 1 (noiseless setting), Ay > (1 —~;)(1 — e P).
(b) For A € (0,1), if B < \/2, then Ay > BA(1 —) /2.

To understand the requirement 5 = O(\), consider an atomic question on which there are just two
possible labels, 1 and 2, and the expert chooses these with probabilities p; and p2, respectively. If the
correct answer according to g* is 1, then p; > p2 + A under Assumption 1. Let G5 denote structures
that answer 2.

e With probability p;, the expert answers 1, and the posterior mass of G- is effectively
multiplied by e=#.

e With probability po, the expert answers 2, and the posterior mass of Gs is effectively
multiplied by e”.

The second outcome is clearly undesirable. In order for it to be counteracted, in expectation, by the
first, 5 must be small relative to p; /p2. The condition S < \/2 ensures this.

Lemma 3 does not, in itself, imply consistency. It is quite possible for 1/7;(g*) to keep shrinking
but not converge to 1. Imagine, for instance, that the input space has two parts to it, and we keep
improving on one of them but not the other. What we need is, first, to ensure that the queries ¢,
capture some portion of the uncertainty in the current posterior, and second, that the user chooses
atoms that are at least slightly informative. The first condition is assured by the SQBC querying
strategy. For the second, we need an assumption.

Assumption 2. There is some minimum probability p, > 0 for which the following holds. If the user
is presented with a query q and a structure g € G such that g(q) # ¢*(q), then with probability at
least p, the user will provide feedback on some a € A(q) such that g(a) # g*(a).

Assumption 2 is one way of avoiding scenarios in which a user never provides feedback on a particular
atom a. In such a pathological case, we might not be able to recover ¢g*(a), and thus our posterior
will always put some probability mass on structures that disagree with g* on a.

The following lemma gives lower bounds on 1 — ~; under Assumption 2.
Lemma 4. Suppose that G is finite and the user’s feedback obeys Assumption 2. Then there exists a
constant ¢ > 0 such that for every round t
E[l = | Fiea] > em-1(9")*(1 = m-1(9"))*
where vy = m—1({g € G : g(a:) = g*(at)}) and a; is the atom the user provides feedback on.

Together, Lemmas 3 and 4 show that the sequence ﬁ is a positive supermartingale that decreases

in expectation at each round by an amount that depends on 7;(g*). The following lemma tells us
exactly when such stochastic processes can be guaranteed to converge.

Lemma 5. Let f : [0,1] — R>q be a continuous function such that f(1) = 0 and f(x) > 0 for all
e (0,1). If
Bl [Ain] < s - s
— | Fie — — f(m—
m(g) |7 T mnly Y
foreacht € N, then m(g*) — 1 almost surely.

As a corollary, we see that structural QBC is consistent.
Theorem 6. Suppose that G is finite, and Assumptions I and 2 hold. If w(g*) > 0, then m(g*) — 1
almost surely under structural QBC’s query strategy.

We provide a proof of Theorem 6 in the appendix, where we also provide rates of convergence.

4.2 Consistency under general losses

We now turn to analyzing structural QBC with general losses. As before, we will need to make some
assumptions. The first is that the loss function is well-behaved.

Assumption 3. The loss function is bounded, 0 < £(z,y) < B, and Lipschitz in its first argument,
ie. U(z,y) — (2, y) < Cl|z— 2|, for some constants B,C > 0.

It is easily checked that this assumption holds for the three loss functions we mentioned earlier.

In the case of 0-1 loss, we assumed that for any atomic question a, the correct answer g*(a) would be
given with higher probability than any incorrect answer. We now formulate an analogous assumption
for the case of more general loss functions. Recall that 7(+|a) is the conditional probability distribution
over the user’s answers to a € A (we can also allow 7 to also depend upon the context ¢, as we did
before; here we drop the dependence for notational convenience). The expected loss incurred by

z € Z on this atom is thus
L(z,a) =Y _n(yla) {(z,y).
y

a), and
(a).
Assumption 4. There exists a constant \ > 0 such that L(z,a) — L(g*(a),a) > M|z — g*(a)]]?
for any atomic question a € A and any z € Z.

We will require that for any atomic question a, this expected loss is minimized when z = ¢g*(
predicting any other z results in expected loss that grows with the distance between z and g*

Let’s look at some concrete settings:

e 0 — 1loss with Y = Z = {0,1}. Assumption 4 is equivalent to Assumption 1.
e Squared loss with) = {—1,1} and Z C R. Assumption 4 is satisfied when g*(a) = E[y|a]

and A = 1.
o Logistic loss with) = {—1,1} and Z = [-B, B]. Fora € A, let p = n(1|a). Assump-
tion 4 is satisfied when g*(a) = In 2 and \ = %

From these examples, it is clear that requiring ¢*(a) to be the minimizer of L(z, a) is plausible if
Z is a discrete space but much less so if Z is continuous. In general, we can only hope that this
holds approximately. With this caveat in mind, we stick with Assumption 4 as a useful but idealized
mathematical abstraction.

With these assumptions in place, the following theorem guarantees the consistency of structural QBC
under general losses. Its proof is deferred to the appendix.

Theorem 7. Suppose we are in the general loss setting, G is finite, and the user’s feedback satisfies
Assumptions 2, 3, and 4. If m(g*) > 0, then (g*) — 1 almost surely.

5 Conclusion

In this work, we introduced interactive structure learning, a generic framework for learning structures
under partial correction feedback. This framework can be applied to any structure learning problem
in which structures are in one-to-one correspondence with their answers to atomic questions. Thus,
interactive structure learning may be viewed as a generalization of active learning, interactive
clustering with pairwise constraints, interactive hierarchical clustering with triplet constraints, and
interactive ordinal embeddings with quadruplet constraints.

On the algorithmic side, we introduced structural QBC, a generalization of the classical QBC
algorithm to the interactive structure learning setting. We demonstrated that this algorithm is
consistent, even in the presence of noise, provided that we can sample from a certain natural posterior.
In the appendix, we also provided rates of convergence. Because this posterior is often intractable
to sample from, we also considered an alternative posterior based on convex loss functions that
sometimes allows for efficient sampling. We showed that structural QBC remains consistent in this
setting, albeit under different noise conditions.

In the appendix, we provide experiments on both interactive clustering and active learning tasks. On
the interactive clustering side, these experiments demonstrate that even when the prior distribution
places relatively low mass on the target clustering, structural QBC is capable of recovering a low-
error clustering with relatively few rounds of interaction. In contrast, these experiments also show
that random corrections are not quite as useful. On the active learning side, there are experiments
demonstrating the good empirical performance of structural QBC using linear classifiers with the
squared-loss posterior update, with and without kernelization.

Acknowledgments

The authors are grateful to the reviewers for their feedback and to the NSF for support under grant
CCF-1813160. Part of this work was done at the Simons Institute for Theoretical Computer Science,
Berkeley, during the “Foundations of Machine Learning” program. CT also thanks Stefanos Poulis
and Sharad Vikram for helpful discussions and feedback.

References

[1] H. Ashtiani, S. Kushagra, and S. Ben-David. Clustering with same-cluster queries. In Advances
in Neural Information Processing Systems, pages 3216-3224, 2016.

[2] P. Awasthi, M.-F. Balcan, N. Haghtalab, and R. Urner. Efficient learning of linear separators
under bounded noise. In Proceedings of the 28th Annual Conference on Learning Theory, pages
167-190, 2015.

[3] P. Awasthi, M.-F. Balcan, and K. Voevodski. Local algorithms for interactive clustering. In
Proceedings of the 31st International Conference on Machine Learning, 2014.

[4] P. Awasthi and R.B. Zadeh. Supervised clustering. In Advances in Neural Information Process-
ing Systems, 2010.

[5] K. Azuma. Weighted sums of certain dependent random variables. Tohoku Mathematical
Journal, Second Series, 19(3):357-367, 1967.

[6] M.-F. Balcan and A. Blum. Clustering with interactive feedback. In Algorithmic Learning
Theory (volume 5254 of the series Lecture Notes in Computer Science), pages 316-328, 2008.

[7] A. Beygelzimer, S. Dasgupta, and J. Langford. Importance weighted active learning. In
Proceedings of the 26th International Conference on Machine Learning, 2009.

[8] R.Castro and R. Nowak. Minimax bounds for active learning. IEEE Transactions on Information
Theory, 54(5):2339-2353, 2008.

[9] D. Cohn, L. Atlas, and R. Ladner. Improving generalization with active learning. Machine
Learning, 15(2):201-221, 1994.

[10] G. Dasarathy, R. Nowak, and X. Zhu. S2: An efficient graph based active learning algorithm
with application to nonparametric classification. In 28th Annual Conference on Learning Theory,
pages 503-522, 2015.

[11] S. Dasgupta. Analysis of a greedy active learning strategy. In Advances in Neural Information
Processing Systems, 2004.

[12] S. Dasgupta. Coarse sample complexity bounds for active learning. In Advances in Neural
Information Processing Systems, 2005.

[13] S. Dasgupta and D.J. Hsu. Hierarchical sampling for active learning. In Proceedings of the 25th
International Conference on Machine Learning, 2008.

[14] S. Dasgupta, D.J. Hsu, and C. Monteleoni. A general agnostic active learning algorithm. In
Advances in Neural Information Processing Systems, 2007.

[15] S. Dasgupta and M. Luby. Learning from partial correction. ArXiv e-prints, 2017.

[16] Y. Freund, H. Seung, E. Shamir, and N. Tishby. Selective sampling using the query by committee
algorithm. Machine Learning, 28(2):133-168, 1997.

[17] R. Gilad-Bachrach, A. Navot, and N. Tishby. Query by committeee made real. In Advances in
Neural Information Processing Systems, 2005.

[18] A. Gonen, S. Sabato, and S. Shalev-Shwartz. Efficient active learning of halfspaces: an
aggressive approach. Journal of Machine Learning Research, 14(1):2583-2615, 2013.

[19] A. Guillory and J. Bilmes. Average-case active learning with costs. In Conference on Algorithmic
Learning Theory, pages 141-155, 2009.

[20] S. Hanneke. A bound on the label complexity of agnostic active learning. In Proceedings of the
25th International Conference on Machine Learning, 2007.

[21] N.J. Higham. Accuracy and stability of numerical algorithms. SIAM, 2002.

[22] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58(301):13-30, 1963.

[23] T.-K. Huang, A. Agarwal, D.J. Hsu, J. Langford, and R.E. Schapire. Efficient and parsimonious
agnostic active learning. In Advances in Neural Information Processing Systems, 2015.

[24] D.M Kane, S. Lovett, S. Moran, and J. Zhang. Active classification with comparison queries.
In IEEE Symposium on Foundations of Computer Science, pages 355-366, 2017.

[25] S. Kpotufe, R. Urner, and S. Ben-David. Hierarchical label queries with data-dependent
partitions. In Proceedings of the 28th Annual Conference on Learning Theory, 2015.

[26] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

[27] M. Lichman. UCI machine learning repository, 2013.

[28] L. Lovasz and S. Vempala. The geometry of logconcave functions and sampling algorithms.
Random Structures and Algorithms, 30:307-358, 2007.

10

[29] Nicolo N. Cesa-Bianchi, C. Gentile, and F. Vitale. Learning unknown graphs. In Conference on
Algorithmic Learning Theory, pages 110-125, 2009.

[30] R. Nowak. The geometry of generalized binary search. IEEE Transactions on Information
Theory, 57(12):7893-7906, 2011.

[31] S. Poulis and S. Dasgupta. Learning with feature feedback: from theory to practice. In
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, pages
1104-1113, 2017.

[32] B. Settles. Active learning. Morgan Claypool, 2012.

[33] H.S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In Proceedings of the 5th
Annual Workshop on Computational Learning Theory, pages 287-294, 1992.

[34] C. Tosh and S. Dasgupta. Lower bounds for the gibbs sampler on mixtures of gaussians. In
Thirty-First International Conference on Machine Learning, 2014.

[35] C. Tosh and S. Dasgupta. Diameter-based active learning. In Proceedings of the 34th Interna-
tional Conference on Machine Learning, pages 3444-3452, 2017.

[36] S. Vikram and S. Dasgupta. Interactive Bayesian hierarchical clustering. In Proceedings of the
33rd International Conference on Machine Learning, 2016.

[37] K. Wagstaff and C. Cardie. Clustering with instance-level constraints. In Proceedings of the
17th International Conference on Machine Learning, 2000.

[38] Y. Xu, H. Zhang, K. Miller, A. Singh, and A. Dubrawski. Noise-tolerant interactive learning

using pairwise comparisons. In Advances in Neural Information Processing Systems, pages
2431-2440, 2017.

[39] X. Zhu, J. Lafferty, and Z. Ghahramani. Combining active learning and semi-supervised
learning using gaussian fields and harmonic functions. In ICML Workshop on the Continuum
from Labeled to Unlabeled Data, 2003.

11

