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Abstract

In recent years, deep generative models have been shown to ‘imagine’ convincing
high-dimensional observations such as images, audio, and even video, learning
directly from raw data. In this work, we ask how to imagine goal-directed visual
plans – a plausible sequence of observations that transition a dynamical system
from its current configuration to a desired goal state, which can later be used as
a reference trajectory for control. We focus on systems with high-dimensional
observations, such as images, and propose an approach that naturally combines
representation learning and planning. Our framework learns a generative model of
sequential observations, where the generative process is induced by a transition
in a low-dimensional planning model, and an additional noise. By maximizing
the mutual information between the generated observations and the transition in
the planning model, we obtain a low-dimensional representation that best explains
the causal nature of the data. We structure the planning model to be compatible
with efficient planning algorithms, and we propose several such models based on
either discrete or continuous states. Finally, to generate a visual plan, we project
the current and goal observations onto their respective states in the planning model,
plan a trajectory, and then use the generative model to transform the trajectory to
a sequence of observations. We demonstrate our method on imagining plausible
visual plans of rope manipulation3.

1 Introduction
For future robots to perform general tasks in unstructured environments such as homes or hospitals,
they must be able to reason about their domain and plan their actions accordingly. In AI literature,
this general problem has been investigated under two main paradigms – automated planning and
scheduling [34] (henceforth, AI planning) and reinforcement learning [41] (RL).

Classical work in AI planning has drawn on the remarkable capability of humans to perform long-term
reasoning and planning by using abstract representations of the world. For example, humans might
think of "cup on table" as a state rather than detailed coordinates or a precise image of such a scene.
Interestingly, powerful classical planners exist that can reason very effectively with these kinds of
representations, as demonstrated by results in the International Planning Competition [44]. However,
such logical representations of the world can be difficult to specify correctly. As an example, consider
designing a logical representation for the state of a deformable object such as a rope. Moreover,
logical representations that are not grounded a priori in real-world observation require a perception
module that can identify, for example, exactly when the cup is considered "on the table".

In RL, on the other hand, a task is solved directly through trial and error, guided by a manually
provided reward signal. Recent advances in model-free RL (e.g., [28, 23]) have shown remarkable
success in learning policies that act directly on high-dimensional observations, such as raw images.
Designing a reward function that depends on such observations can be challenging, however, and
most recent studies either relied on domains where the reward can be instrumented [28, 23, 33], or
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required successful demonstrations as guidance [13, 39]. Moreover, since RL is guided by the reward
to solve a particular task, it does not automatically generalize to different tasks [43, 18].

In principle, model-based RL can solve the generalization problem by learning a dynamics model and
planning with that model. However, applying model-based RL to domains with high-dimensional
observations has been challenging [46, 14, 12]. Deep learning approaches to learning dynamics
models (e.g., action-conditional video prediction models [30, 1, 12]) tend to get bogged down in
pixel-level detail, tend to be computationally expensive, and are far from accurate over longer time
scales. Moreover, the representations learned using such approaches are typically unstructured,
high-dimensional continuous vectors, which cannot be used in efficient planning algorithms.

In this work, we aim to combine the merits of deep learning dynamics models and classical AI plan-
ning, and propose a framework for long-term reasoning and planning that is grounded in real-world
perception. We present Causal InfoGAN (CIGAN), a method for learning plannable representations
of dynamical systems with high-dimensional observations such as images. By plannable, we mean
representations that are structured in such a way that makes them amenable for efficient search,
through AI planning tools. In particular, we focus on discrete and deterministic dynamics models,
which can be used with graph search methods, and on continuous models where planning is done by
linear interpolation, though our framework can be generalized to other model types.

In our framework, a generative adversarial net (GAN; [15]) is trained to generate sequential observa-
tion pairs from the dynamical system. The GAN generator takes as input both unstructured random
noise and a structured pair of consecutive states from a low-dimensional, parametrized dynamical
system termed the planning model. The planning model is meant to capture the features that are
most essential for representing the causal properties in the data, and are therefore important for
planning future outcomes. To learn such a model, we follow the InfoGAN idea [5], and add to the
GAN training loss a term that maximizes the mutual information between the observation pairs and
the transitions that induced them.

The CIGAN model can be trained using random exploration data from the system. After learn-
ing, given an observation of an initial configuration and a goal configuration, it can generate a
“walkthrough” sequence of feasible observations that lead from the initial state to the goal. This
walkthrough can be later used as a reference signal for a controller to execute the task in the real
system. We demonstrate convincing walkthrough generation on synthetic tasks and real image data
collected by Nair et al. [29] of a robot randomly poking a rope.

2 Preliminaries and Problem Formulation
Let H denote the entropy of a random variable, and I denote the mutual information between two
random variables [8].

GAN and InfoGAN: Deep generative models aim to generate samples from the real distribution
of observations, Pdata. In this work we build on the GAN framework [15], which is composed of a
generator, G(z) = o, mapping a noise input z ∼ Pnoise(z) to an observation o, and a discriminator,
D(o), mapping an observation to the probability that it was sampled from the real data. The GAN
training optimizes a game between the generator and discriminator,

min
G

max
D

V (G,D) = min
G

max
D

Eo∼Pdata [logD(o)] + Ez∼Pnoise [log (1−D(G(z)))] .

One can view the noise vector z in the GAN as a representation of the observation o. In GAN training,
however, there is no incentive for this representation to display any structure at all, making it difficult
to interpret, or use in a downstream task. The InfoGAN method [5] aims to mitigate this issue. The
idea in InfoGAN is to add to the generator input an additional ‘state’4 component s ∼ P (s), and
add to the GAN objective a loss that induces maximal mutual information between the generated
observation and the state. The InfoGAN objective is given by:

min
G

max
D

V (G,D)− λI (s;G(z, s)) , (1)

where λ > 0 is a weight parameter, and V (G,D) is the GAN loss above. Intuitively, this objective
induces the state to capture the most salient properties of the observation. Optimizing the objective
in (1) directly is difficult without access to the posterior distribution P (s|o), and a variational
lower bound was proposed in [5]. Define an auxiliary distribution Q(s|o) to approximate the
posterior P (s|o). Then, I (s;G(z, s)) ≥ Es∼P (s),o∼G(z,s) [logQ(s|o)] + H(s). Using this bound,
the InfoGAN objective (1) can be optimized using stochastic gradient descent.

4In [5], s is referred to as a code. Here we term it as a state, to correspond with our subsequent development
of structured GAN input from a dynamical system.
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Problem Formulation: We consider a fully observable and deterministic dynamical system, ot+1 =
f(ot, ut), where ot and ut denote the observation and action at time t, respectively. The function
f is assumed to be unknown. We are provided with data D in the form of N trajectories of
observations

{
oi1, u

i
1 . . . , o

i
Ti

}
i∈1,...,N , generated from f , where the actions are generated by an

arbitrary exploration policy.5

We say that two observations o, o′ are h-reachable if there exists a sequence of actions that takes the
system from o to o′ within h steps or less. We consider the problem of generating a walkthrough – a
sequence of reachable observations along a feasible path between the start and the goal:

Problem 1 Walkthrough Planning: Given D, h, and two observations ostart, ogoal, generate a
sequence of observations ostart, . . . , ogoal such that every two consecutive observations in the
sequence are h-reachable. If such a sequence does not exist, return ∅.
The motivation to solve problem 1 is that it breaks the long horizon planning problem (from ostart to
ogoal) into a sequence of short h-horizon planning problems which can be later solved effectively
using other methods such as inverse dynamics or model-free RL [29]. This concept of temporal
abstraction has been fundamental in AI planning (e.g., [11, 42]). Since we are searching for a
sequence of way point observations, the actions are not relevant for our problem, and in the sequel
we omit them from the discussion.

3 Causal InfoGAN
A natural approach for solving the walkthrough planning problem in Section 2 is learning some model
of the dynamics f from the data, and searching for a plan within that model. This leads to a trade-off.
On the one hand, we want to be expressive, and learn all the transitions possible from every o within
a horizon h. When o is a high dimensional image observation, this typically requires mapping the
image to an extensive feature space [30, 12]. On the other hand, however, we want to plan efficiently,
which generally requires either low dimensional state spaces or well-structured representations. We
approach this challenge by proposing Causal InfoGAN – an expressive generative model with a
structured representation that is compatible with planning algorithms. In this section we present the
Causal InfoGAN generative model, and in Section 4 we explain how to use the model for planning.

Let o and o′ denote a pair of sequential observations from the dynamical system f , and let Pdata(o, o
′)

denote their probability, as displayed in the data D. We posit that a generative model that can
accurately learn Pdata(o, o

′) has to capture the features that are important for representing the causality
in the data – what next observations o′ are reachable from the current observation o. Naturally, such
features would be useful later for planning.

We build on the GAN framework [15]. Applied to our setting, a vanilla GAN would be composed
of a generator, o, o′ = G(z), mapping a noise input z ∼ Pnoise(z) to an observation pair, and a
discriminator, D(o, o′), mapping an observation pair to the probability that it was sampled from the
real data D and not from the generator. One can view the noise vector z in such a GAN as a feature
vector, containing some representation of the transition to o′ from o. The problem, however, is that the
structure of this representation is not necessarily easy to decode and use for planning. Therefore, we
propose to design a generator with a structured input that can be later used for planning. In particular,
we propose a GAN generator that is driven by states sampled from a parametrized dynamical system.

LetM denote a dynamical system with state space S, which we term the set of abstract-states, and
a parametrized, stochastic transition function TM(s′|s): s′ ∼ TM(s′|s), where s, s′ ∈ S are a pair
of consecutive abstract states. We denote by PM(s) the prior probability of an abstract state s. We
emphasize that the abstract state space S can be different from the space of real observations o. For
reasons that will become clear later on, we termM as the latent planning system.

We propose to structure the generator as taking in a pair of consecutive abstract states s, s′ in addition
to the noise vector z. The GAN objective in this case is therefore (cf. Section 2):

V (G,D) = Eo,o′∼Pdata [logD(o, o′)] + Ez∼Pnoise,s∼PM(s),s′∼TM(s) [log (1−D(G(z, s, s′)))] . (2)

The idea is that s and s′ would represent the abstract features that are important for understanding the
causality in the data, while z would model variations that are less informative, such as pixel level
details. To learn such representations, we follow InfoGAN [5], and add to the GAN objective a term
that maximizes mutual information between the generated pair of observations and the abstract states.

5In this work, we do not concern the problem of how to best generate the exploration data.
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We propose the Causal InfoGAN objective:

min
M,G

max
D

V (G,D)−λI (s, s′; o, o′) , s.t. o, o′ ∼ G(z, s, s′); s ∼ PM; s′ ∼ TM(s), (3)

where λ > 0 is a weight parameter, and V (G,D) is given in (2). Intuitively, this objective induces the
abstract model to capture the most salient possible changes that can be effected on the observation.

Optimizing the objective in (3) directly is difficult, since we do not have access to the posterior
distribution, P (s, s′|o, o′), when using an expressive generator function. Following InfoGAN [5],
we optimize a variational lower bound of (3). Define an auxiliary distribution Q(s, s′|o, o′) to
approximate the posterior P (s, s′|o, o′). We have, following a similar derivation to [5]:

I ((s, s′);G(z, s, s′)) ≥ Es∼PM,s′∼TM(s),
o,o′∼G(z,s,s′)

[logQ(s, s′|o, o′)] +H(s, s′)
.
= IV LB(G,Q). (4)

To encourage the same mapping between s, o and s′, o′, we propose the disentangled posterior
approximation, Q(s, s′|o, o′) = Q(s|o)Q(s′|o′) (see Appendix B.)

We plug the lower bound (4) in Eq. (3) to obtain the following loss function:

min
G,Q,M

max
D

V (G,D)− λIVLB(G,Q), (5)

where λ > 0 is a constant. The loss in (5) can be optimized effectively using stochastic gradient
descent, and we provide a detailed algorithm in Appendix C.
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Figure 1: The Causal InfoGAN framework. (a) Generative model (cf. Section 3). First, an abstract
state s is sampled from a prior PM(s). Given s, the next state s′ is sampled using the transition
model TM(s′|s). The states s, s′ are fed, together with a random noise sample z, into the generator
which outputs o, o′. The discriminator D maps an observation pair to the probability of the pair being
real. Finally, the approximate posterior Q maps from each observation to the distribution of the state
it associates with. The causal InfoGAN loss function in Equation (5) encourages Q to predict each
state accurately from each observation. (b) Planning paradigm (cf. Section 4). Given start and
goal observations, we first map them to abstract states, and then we apply planning algorithms using
the modelM to search for a path from sstart to sgoal. Finally, from the plan in abstract states, we
generate back a sequence of observations.

4 Planning with Causal InfoGAN models
In this section, we discuss how to use the Causal InfoGAN model for planning goal directed
trajectories. We first present our general methodology, and then propose several model configurations
for which (5) can be optimized efficiently, and the latent planning system is compatible with efficient
planning algorithms. We then describe how to combine these ideas for solving the walkthrough
planning problem in various domains.

4.1 General Planning Paradigm
Our general paradigm for goal directed planning is described in Figure 1b. We start by training a
Causal InfoGAN model from the data, as described in the previous section. Then, we perform the
following 3 steps, which are detailed in the rest of this section:

1. Given a pair of observations ostart, ogoal, we first encode them into a pair of corresponding
states sstart, sgoal. This is described in Section 4.2.
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Type Values s Prior PM(s) Transition TM(s′|s) Planning algorithms
Discrete – one-hot [N ] U{1, . . . , N} s′ ∼ Softmax(s>θ) Dijkstra
Discrete – binary {0, 1}N U{0, 1}N See eq. 6 Dijkstra

Continuous RN U(−1, 1)N s′ ∼ N (s,Σθ(s)) Linear interpolation

Table 1: Various latent planning systems. In all cases, N is the state dimension. The parameters θ of
the transition TM depending on the state type. In the one-hot case, θ is a matrix in RN×N . In the
binary case, θ denotes parameters in a stochastic neural network; see Eq. (6). In the continuous case
θ represents the parameters of a neural network that controls the variance of the transition.

2. Using the transition probabilities in the planning modelM, we plan a feasible state trajectory
from sstart to sgoal: sstart, s1, . . . , sm, sgoal. This is described in Section 4.3.

3. Finally, we decode the state trajectory into a corresponding trajectory of observations
ostart, o1, . . . , om, ogoal. This is described in Section 4.4.

The specific method for each step in the planning paradigm can depend on the problem at hand. For
example, some systems are naturally described by discrete abstract states, while others are better
described by continuous states. In the following, we describe several models and methods that
worked well for us, under the general planning paradigm described above. This list is by no means
exhaustive. On the contrary, we believe that the Causal InfoGAN framework provides a basis for
further investigation of deep generative models that are compatible with planning.

4.2 Encoding an Observation to a State
For mapping an observation to a state, we can simply use the disentangled posterior Q(s|o). We
found this approach to work well in low-dimensional observation spaces. However, for high-
dimensional image observations we found that the learned Q(s|o) was accurate in classifying
generated observations (by the generator), but inaccurate for classifying real observations. This
is explained by the fact that in Causal InfoGAN, Q is only trained on generated observations,
and can overfit to generated images. For images, we therefore opted for a different approach.
Following [45], we performed a search over the latent space to find the best latent state mapping
s∗(o): s∗(o) = arg mins mins′,z ‖o−G(s, s′, z)‖2.Another approach, which could scale to complex
image observations, is to add to the GAN training an explicit encoding network [10, 49]. In our
experiments, the simple search approach worked well and we did not require additional modifications
to the GAN training.

4.3 Latent Planning Systems
We now present several latent planning systems that are compatible with efficient planning algorithms.
Table 1 summarizes the different models. In all cases, optimizing the model parameters with respect to
the expectation in the loss (4) is done using the reparametrization trick (following [20] for continuous
states, and [16] for discrete states).

Discrete Abstract States – One-Hot Representation. We start from a simple abstract state repre-
sentation, in which each s ∈ S is represented as a N−dimensional one-hot vector. We denote by θ ∈
RN×N the model parameters, and compute transition probabilities as: TM(s′|s) = Softmax(s>θ).

Discrete Abstract States – Binary Representation. We present a more expressive abstract state
representation using binary states. Binary state representations are common in AI planning, where
each binary element is known as a predicate, and corresponds to a particular object property being
true or false [34]. Using Causal InfoGAN, we learn the predicates directly from data.

We propose a parametric transition model that is suitable for binary representations. Let s ∈ {0, 1}N
be an N−dimensional binary vector, drawn from PM(s). We generate the next state s′ by first
drawing a random action vector a ∈ {0, 1}M with some probability PM(a) 6. Let li denote a
feed-forward neural network with sigmoid output parametrized by θ that maps the state s and action
a to the Bernoulli’s parameter of s′i|s, a. Thus, the probability of the next state s′ is finally given by:

TM(s′ = v|s) = Ea

[∏
i

TM(s′i = vi|s, a)

]
= Ea

[∏
i

li(s, a)
vi(1− li(s, a))

(1−vi)

]
. (6)

We emphasize that there is not necessarily any correspondence between the action vector a and the
real actions that generated the observation pairs in the data. The action a is simply a means to induce
stochasticity to the state transition network.

6See Appendix B.2 Binary States for experimental choices.
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For planning with discrete models, we interpret the stochastic transition model TM as providing the
possible state transitions, i.e., for every s′ such that TM(s′|s) > ε there exists a possible transition
from s to s′. For planning, we require abstract state representations that are compatible with efficient
AI planning algorithms. The one-hot and binary representations above can be directly plugged in to
graph-planning algorithms such as Dijkstra’s shortest-path algorithm [34].

Continuous Abstract States. For some domains, such as the rope manipulation in our experiments, a
continuous abstract state is more suitable. We consider a model where an s ∈ S is anN−dimensional
continuous vector. Planning in high-dimensional continuous domains, however, is hard in general.

Here, we propose a simple and effective solution: we will learn a latent planning system such that
linear interpolation between states makes for feasible plans. To bring about such a model, we consider
transition probabilities TM(s′|s) given as Gaussian perturbations of the state: s′ = s + δ, where
δ ∼ N (0,Σθ(s)) and Σθ is a diagonal covariance matrix, represented by a MLP with parameters
θ. The key idea here is that, if only small local transitions are possible in the system, then a linear
interpolation between two states sstart, sgoal has a high probability, and therefore represents a feasible
trajectory in the observation space. To encourage such small transitions, we add an L2 norm of the
convariance matrix to the loss function (5): Lcont(M) = Es∼PM ‖Σθ(s)‖2 . The prior probability
PM for each element of s is uniform in [−1, 1].

4.4 Decoding a State Trajectory to an Observation Walkthrough Trajectory
We now discuss how to generate a feasible sequence of observations from the planned state trajectory.
Here, as before, we separate the discussion for systems with low-dimensional observations and
systems with image observations, as we found that different practices work best for each.

For low-dimensional observations, we structure the GAN generator G to have an observation-
conditional form: o = G1(z, s, s′), o′ = G2(z, o, s, s′). Using this generator form, we can
sequentially generate observations from a state sequence s1, . . . , sT . We first use G1 to generate o1
from s1, s2, and then, for each 2 ≤ t < t, use G2 to generate ot+1 from st, st+1, and ot.

For high-dimensional image observations, the sequential generator does not work well, since small
errors in the image generation tend to get accumulated when fed back into the generator. We therefore
follow a different approach. To generate the i’th observation in the trajectory oi, we use the generator
with the input si, si+1, and a noise z that is fixed throughout the whole trajectory. The generator
actually outputs a pair of sequential images, but we discard the second image in the pair.

To further improve the planning result we generate K random trajectories with different random
noise z, and select the best trajectory by using a discriminator D to provide a confidence score for
each trajectory. In the low-dimensional case, we use the GAN discriminator. In the high-dimensional
case, however, we find that the discriminator tends to overfit to the generator. Therefore, we trained
an auxiliary discriminator for novelty detection, as described in the Experiment Section 6.2.

5 Related Work
Combining deep generative models with structured dynamical systems has been explored in the
context of variational autoencoders (VAEs), where the latent space was continuous [6, 17]. Watter
et al. [46] used such models for planning, by learning latent linear dynamics, and using a linear
quadratic Gaussian control algorithm. Disentangled video prediction [9] separates object content and
position, but has not been used for planning. Very recently, Corneil et al. [7] suggested Variational
State Tabulation (VaST) – a VAE-based approach for learning latent dynamics over binary state
representations, and planning in the latent space using prioritized sweeping to speed up RL. Causal
InfoGAN shares several similarities with VaST, such as using Gumbel-Softmax to backprop through
transitions of discrete binary states, and leveraging the structure of the binary states for planning.
However, VaST is formulated to require the agent actions, and is thus limited to single time step
predictions. More generally, our work is developed under the GAN formulation, which, to date, has
several benefits over VAEs such as superior quality of image generation [19]. Causal InfoGAN can
also be used with continuous abstract states.

The semiparametric topological memory (SPTM) [37] is another recent approach for solving problems
such as Problem 1, by planning in a graph where every observation in the data is a node, and
connectivity is decided using a learned similarity metric between pairs of observations. SPTM
has shown impressive results on image-based navigation. However, Causal InfoGAN’s parametric
approach of learning a compact, model for planning has the potential to scale up to more complex
problems, in which the increasing amount of data required would make the nonparametric SPTM
approach difficult to apply.

6



Learning state aggregation and state representation has a long history in RL. Methods such as in
[27, 38] exploit the value function for measuring state similarity, and are therefore limited to the
task defined by the reward. Methods for general state aggregation have also been proposed, based
on spectral clustering [26, 40, 25, 24], and variants of K-means [3]. All these approaches rely in
some form on the Euclidean distance as a metric between observation features. As we show in our
experiments, the Euclidean distance can be unsuitable even on low-dimensional continuous domains.
Recent work in deep RL explored learning goal-conditioned value functions and policies [2, 32], and
policies with an explicit planning computation [43, 31, 39]. These approaches require a reward signal
for learning (or supervision from an expert [39]). In our work, we do not require a reward signal, and
learn a general model of the dynamical system, which is used for goal-directed planning.

Our work is also related to learning models of intuitive physics. Previous work explored feedforward
neural networks for predicting outcomes of physical experiments [22], neural networks for modelling
relations between objects [47, 36], and prediction based on physics simulators [4, 48]. To the best of
our knowledge, these approaches cannot be used for planning. However, related ideas would likely
be required for scaling our method to more complex domains, such as manipulating several objects.

In the planning literature, most studies relied on manually designed state representations. In a
recent work, Konidaris et al. [21] automatically extracted state representations from raw observations,
but relied on a prespecified set of skills for the task. In our work, we automatically extract state
representations by learning salient features that describe the causal structure of the data.

6 Experiments
In our experiments, we aim to (1) visualize the abstract states and planning in CIGAN; (2) compare
CIGAN with recent state-aggregation methods in the literature; (3) show that CIGAN can produce
realistic visual plans in a complex dynamical system; and (4) show that CIGAN significantly
outperforms baseline methods. We begin our investigation with a set of toy tasks, specifically
designed to demonstrate the benefits of CIGAN, where we can also perform an extensive quantitative
evaluation. We later present experiments on a real dataset of robotic rope manipulation.

6.1 Illustrative Experiments
In this section we evaluate CIGAN on a set of 2D navigation problems. These problems abstract away
the challenges of learning visual features, allowing an informative comparison on the task of learning
causal structure in data, and using it for planning. For details of the training data see Appendix ??.

Our toy domains involve a particle moving in a 2-dimensional continuous domain with impenetrable
obstacles, as depicted in Figure 2, and Figure 5. in Appendix A.1. The observations are the (x, y)
coordinates of the particle in the plane, and, in the door-key domain, also a binary indicator for
holding the key. We generate data trajectories by simulating a random motion of the particle, started
from random initial points. We consider the following various geometrical arrangements of the
domain, chosen to demonstrate the properties of our method.

1. Tunnels: the domain is partitioned into two unconnected rooms (top/bottom), where in each
room there is an obstacle, positioned such that transitioning between the left/right quadrants
is through a narrow tunnel.

2. Door-key: two rooms are connected by a door. The door can be traversed only if the agent
holds the key, which is obtained by moving to the red-marked area in the top right corner of
the upper room. Holding the key is represented as a binary 0/1 element in the observation.

3. Rescaled door-key: Same as door key domain, but the key observation is rescaled to be a
small ε when the agent is holding the key, and 0 otherwise.

Our domains are designed to distinguish when standard state aggregation methods, which rely on
the Euclidean metric, can work well. In the tunnel domain, the Euclidean metric is not informative
about the dynamics in the task – two points in different rooms inside the tunnel can be very close
in Euclidean distance, but not connected, while points in the same room can be more distant but
connected. In the door-key domain, the Euclidean distance is informative if observations with key and
without key are very distant in Euclidean space, as in the 0/1 representation (compared to the domain
size which is in [−1, 1]). In the rescaled door-key, we make the Euclidean distance less informative
by changing the key observation to be 0/ε.

We compare CIGAN with several recent methods for aggregating observation features into states for
planning. Note that in these simple 2D domains, feature extraction is not necessary as the observations
are already low dimensional vectors. The simplest baseline is K-means, which relies on the Euclidean
distance between observations. In [3], a variant of K-means for temporal data was proposed, using a
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window of consecutive observations to measure a smoothed Euclidean distance to a cluster centroids.
We refer to this method as temporal K-means. In [26], and more recently [40] and [25], spectral
clustering (SC) was used to cluster observations. For continuous observations, SC requires a distance
function to build a connectivity graph, and previous studies [26, 40, 25] relied on the Euclidean
distance, using either nearest neighbor to connect nodes, or exponentiated-distance weighted edges.

In Figure 2, we show the CIGAN classification of observations to abstract states,Q(s|o), and compare
with the K-means baseline; the other baselines gave qualitatively similar results. Note that CIGAN
learned a clustering that is related to the dynamical properties of the domain, while the baselines,
which rely on a Euclidean distance, learned clusters that are not informative about the real possible
transitions. As a result, CIGAN clearly separates abstract states within each room, while the K-means
baseline clusters observations across the wall. This demonstrates the potential of CIGAN to learn
meaningful state abstractions without requiring a distance function in observation space. Similarly,
the results for door-key domains are shown in Appendix A.1.

To evaluate planning performance, we hand-coded an oracle function that evaluates whether an
observation trajectory is feasible or not (e.g., does not cross obstacles, correctly reports ∅ when a
trajectory does not exist). For CIGAN, we ran the planning algorithm described in Section 4. For
baselines, we calculated cluster transitions from the data, and generated planning trajectories in
observation space by using the cluster centroids. We chose algorithm parameters and stopping criteria
by measuring the average feasibility score on a validation set of start/goal observations, and report
the average feasibility on a held out test set of start/goal observations. Our results in Table 2 show
that by learning more informative clusters, CIGAN resulted in significantly better planning.

(a) (b) (c) (d)

Figure 2: 2D particle results on tunnel domain. (a) The domain - top/bottom rooms are not connected.
Left/right quadrants are connected through a narrow tunnel. An example of several random walk
trajectories are shown. (b) Clustering found by CIGAN. (c) Clustering found by K-means. (d)
Example walkthrough trajectories generated by CIGAN, from a point at the top right to five other
locations on the map, marked by colored circles. For trajectories that were not found only the target
is shown. Note that CIGAN learned clusters that correspond to the possible dynamics of the particle
in the task, and was therefore able to generate reasonable planning trajectories.

Tunnels Door-key Rescaled
door-key

CIGAN 98% 98% 97%
K-means 12.25% 100% 0.0%

Temporal K-means 7.0% 100% 0.0%
Spectral 8.75% 60% 20.0%

clustering

Table 2: Planning results for 2D tasks.
Table shows average feasibility of plans
(higher is better) generated by the dif-
ferent algorithms. Note that CIGAN
significantly outperforms baselines in
domains where the Euclidean distance
is not informative for planning.

6.2 Rope Manipulation
In this section we demonstrate CIGAN on the task of generating realistic walkthroughs of robotic
rope manipulation. Then, we show that CIGAN generates significantly better trajectories than those
generated by the state-of-the-art generative model baselines both visually and quantitatively.

The rope manipulation dataset [29] contains sequential images of rope manipulated in a self-
supervised manner, by a robot randomly choosing a point on the rope and perturbing it slightly.
Using these data, the task is to manipulate the rope in a goal-oriented fashion, from one configuration
to another, where a goal is represented as an image of the desired rope configuration. In the original
study, Nair et al. [29] used the data to learn an inverse dynamics model for manipulating the rope
between two images of similar rope configurations. Then, to solve long-horizon planning, Nair
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Figure 3: Rope walkthroughs generated from CIGAN, InfoGAN, and DCGAN. Red crosses show
unfeasible one-step transitions with respect to the data. See more plans in Appendix A.2.
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trained a classifier to predict whether two observations are sequen-
tial or not (1=sequential, 0=not sequential), and compare the average
classification score for different generative models. Note that CIGAN
significantly outperforms the baselines, in alignment with the qualitative
results of Figure 3.

et al. required a human to provide the walkthrough sequence of rope poses, and used the learned
controller to execute the short-horizon transitions within the plan. In our experiment, we show that
CIGAN can be used to generate walkthrough plans directly from data for long-horizon tasks, without
requiring additional human guidance. We train a CIGAN model on the rope manipulation data of [29].
We pre-processed the data by removing the background, and applying a grayscale transformation. We
chose the continuous abstract state representation with the linear interpolation planner as described
in Section 4. Note that, as described in Section 4, the encoding, planning, and decoding methods
in this case are not specific to CIGAN, and can be used with a GAN or InfoGAN generative model,
allowing a fair comparison with alternative representation learning methods. In Figure 3, we generate
walkthroughs using CIGAN, InfoGAN, and DCGAN Noticeably, Causal InfoGAN resulted in a
smooth latent space where linear interpolation indeed corresponds to plausible trajectories.

To numerically evaluate planning performance we propose a visual fidelity score, inspired by the
Inception score for evaluating GANs [35], we train a binary classifier to classify whether two images
are sequential in the data or not7. For an image pair, the classifier output therefore provides a score
between 0 and 1 for the feasibility of the transition. We then compute the trajectory score – the
average classifier score of image pairs in the trajectory. Note that this classifier is trained independent
of the generative models, making for an impartial metric. For each start and goal, we pick the best
trajectory score out of 400 samples of the noise variable z.8 As shown in Figure 4, Causal InfoGAN
achieved a significantly higher trajectory score averaged over 57 task configurations.

7 Conclusion
We presented Causal InfoGAN, a framework for learning deep generative models of sequential
data with a structured latent space. By choosing the latent space to be compatible with efficient
planning algorithms, we developed a framework capable of generating goal-directed trajectories from
high-dimensional dynamical systems.

Our results for generating realistic manipulation plans of rope suggest promising applications in
robotics, where designing models and controllers for manipulating deformable objects is challenging.

The binary latent models we explored provide a connection between deep representation learning and
classical AI planning, where Causal InfoGAN can be seen as a method for learning object predicates
directly from data. In future work we intend to investigate this direction further, and incorporate
object-oriented models, which are a fundamental component in classical AI.

7The positive data are the pairs of rope images that are 1 step apart and the negative data are randomly chosen
pairs that are from different runs which are highly likely to be farther than 1 step apart.

8This selection process is applied the same way to the DCGAN and InfoGAN baselines.
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