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Abstract

Inferring directional couplings from the spike data of networks is desired in var-
ious scientific fields such as neuroscience. Here, we apply a recently proposed
objective procedure to the spike data obtained from the Hodgkin–Huxley type
models and in vitro neuronal networks cultured in a circular structure. As a result,
we succeed in reconstructing synaptic connections accurately from the evoked ac-
tivity as well as the spontaneous one. To obtain the results, we invent an analytic
formula approximately implementing a method of screening relevant couplings.
This significantly reduces the computational cost of the screening method em-
ployed in the proposed objective procedure, making it possible to treat large-size
systems as in this study.

1 Introduction

Recent advances in experimental techniques make it possible to simultaneously record the activity
of multiple units. In neuroscience, multi-electrodes and optical imaging techniques capture large-
scale behaviors of neuronal networks, which facilitate a deeper understanding of the information
processing mechanism of nervous systems beyond the single neuron level [1-6]. This preferable
situation, however, involves technical issues in dealing with such datasets because they usually con-
sist of a large amount of high-dimensional data which are difficult to be handled by naive usages of
conventional statistical methods.

A statistical-physics-based approach for tackling these issues was presented using the Ising model
[7]. Although the justification to use the Ising model for analyzing neuronal systems is not com-
pletely clear [8,9,10], its performance was empirically demonstrated [7], which triggered further
applications [11-22]. An advantage of using the Ising model is that several analytical techniques for
inverse problems are available [23-29], which allows us to infer couplings between neurons with a
feasible computational cost. Another advantage is that it is straightforward to introduce variants of
the model. Beyond the conventional data analysis, an important variant is the kinetic Ising model,
which is more suitable to take into account the correlations in time, since this extended model re-
moves the symmetric-coupling constraint of the Ising model. A useful mean-field (MF) inverse
formula for the kinetic Ising model has been presented in [25,26].

Two problems arise when treating neuronal systems’ data in the framework of the Ising models.
The first problem is how to determine an appropriate size of time bins when discretizing original
signals in time; the appropriate size differs from the intrinsic time-scale of the original neuronal sys-
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tems because the Ising models are regarded as a coarse-grained description of the original systems.
Hence, the way of the transformation to the models of this type is nontrivial. The second problem
is extracting relevant couplings from the solution of the inverse problem; unavoidable noises in ex-
perimental data contaminate the inferred couplings, and hence, we need to screen the relevant ones
among them.

In a previous study [30], an information-theoretic method and a computational-statistical technique
were proposed for resolving the aforementioned first and second problems, respectively. Those
methods were validated in two cases: in a numerical simulation based on the Izhikevich models and
in analyzing in vitro neuronal networks. The result is surprisingly good: their synaptic connections
are reconstructed with fairly high accuracy. This finding motivates us to further examine the methods
proposed in [30].

Based on this motivation, this study applies these methods to the data from the Hodgkin–Huxley
model, which describes the firing dynamics of a biological neuron more accurately than the Izhike-
vich model. Further, we examine the situation where responses of neuronal networks are evoked by
external stimuli. We implement this situation both in the Hodgkin–Huxley model and in a cultured
neuronal network of a previously described design [31], and test the methods in both the cases.
Besides, based on the previously described MF formula of [25,26], we derive an efficient formula
implementing the previous method of screening relevant couplings within a significantly smaller
computational cost. In practice, the naive implementation of the screening method is computation-
ally expensive, and can be a bottleneck when applied to large-scale networks. Hence, we exploit
the simplicity of the model, and use the advanced statistical processing with reasonable time in
this work. Below, we address those three points by employing the simple kinetic Ising model, to
efficiently infer synaptic couplings in neuronal networks.

2 Inference procedure

The kinetic Ising model consists of N units, {si}Ni=1, and each unit takes bipolar values as si(t) =
±1. Its dynamics is governed by the so-called Glauber dynamics:

P (s(t+ 1)|s(t); {Jij , θi(t)}) =
N∏
i=1

exp [si(t+ 1)Hi(t; {Jij , θi(t)})]
exp [Hi(t; {Jij , θi(t)})] + exp [−Hi(t; {Jij , θi(t)})]

, (1)

where Hi(t) is the effective field, defined as Hi(t) = θi(t) +
∑N

j=1 Jijsj(t), θi(t) is the external
force, and Jij is the coupling strength from j to i. This model also corresponds to a generalized
McCulloch–Pitts model in theoretical neuroscience and logistic regression in statistics. When ap-
plying this to spike train data, we regard the state si(t) = 1 (-1) as the firing (non-firing) state.
The inference framework we adopt here is the standard maximum-likelihood (ML) framework. We
repeat R experiments and denote a firing pattern {s∗ir(t)}Ni=1 for t = 1, 2, · · · ,M in an experiment
r(= 1, 2, · · · , R). The ML framework requires us to solve the following maximization problem on
the variable set {Jij , θi(t)}:

{Ĵij , θ̂i(t)} = argmax
{Jij ,θi(t)}

{
1

R

R∑
r=1

M∑
t=1

logP (s∗r(t+ 1)| s∗r(t); {Jij , θi(t)})

}
. (2)

This cost function is concave with respect to {Jij , θi(t)}, and hence, a number of efficient solvers
are available [32]. However, we do not directly maximize eq. (2) in this study but instead we
employ the MF formula proposed previously [25,26]. The MF formula is reasonable in terms of
the computational cost and sufficiently accurate when the dataset size R is large. Moreover, the
availability of an analytic formula enables us to construct an effective approximation to reduce the
computational cost in the post-processing step, as shown in Sec. 2.3.

Unfortunately, in many experimental settings, it is not easy to conduct a sufficient number of inde-
pendent experiments [33,34], as in the case of Sec. 4. Hence, below we assume the stationarity of
any statistics, and ignore the time dependence of θ(t). This allows us to identify the average over
time as the ensemble average, which significantly improves statistics. We admit this assumption is
not always valid, particularly in the case where time-dependent external forces are present, although
we treat such cases in Sec. 3.2 and Sec. 4.2. Despite this limitation, we still stress that the present
approach can extract synaptic connections among neurons accurately, although the existence of the
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time-dependent inputs may decrease its performance. Possible directions to overcome this limitation
are discussed in Sec. 5.

2.1 Pre-processing: Discretization of time and binarization of state

In the pre-processing step, we have to decide the duration of the interval that should be used to
transform the real time to the unit time ∆τ in the Ising scheme. We term ∆τ the bin size. Once the
bin size is determined, the whole real time interval [0, T ] is divided into the set of time bins that are
labelled as {t}M=T /∆τ

t=1 . Given this set of the time bins, we binarize the neuron states: if there is no
spike train of the neuron i in the time bin with a label t, then s∗i (t) = −1; otherwise s∗i (t) = 1. This
is the whole pre-processing step we adopt, and is a commonly used approach [7].

Determination of the bin size ∆τ can be a crucial issue: different values of ∆τ may lead to dif-
ferent results. To determine it in an objective way, we employ an information-theory-based method
proposed previously [30]. Following this method, we determine the bin size as

∆τopt = argmax
∆τ


(

T
∆τ

− 1

)∑
i̸=j

Î∆τ (si(t+ 1); sj(t))

 , (3)

where I∆τ (si(t+ 1); sj(t)) denotes the mutual information between si(t + 1) and sj(t) in the
coarse-grained series with ∆τ , and Î∆τ (si(t+ 1); sj(t)) is its plug-in estimator. The explicit for-
mula is

Î∆τ (si(t+ 1); sj(t)) =
∑

(α,β)∈{+,−}2

rαβ(i, t+ 1; j, t) log
rαβ(i, t+ 1; j, t)

rα(i, t+ 1)rβ(j, t)
, (4)

where r++(i, t + 1; j, t) denotes the realized ratio of the pattern (si(t + 1), sj(t)) = (+1,+1),
r++(i, t+1; j, t) ≡ (1/(M − 1))#{(si(t+1), sj(t)) = (+1,+1)}, and the other double-subscript
quantities {r+−, r−+, r−−} are defined similarly. Single-subscript quantities are also the realized
ratios of the corresponding state, for example, r+(j, t) ≡ (1/M)#{sj(t) = +1}.

The meaning of eq. (3) is clear: the formula inside the brace brackets of the right-hand side, hereafter
termed gross mutual information, is merely the likelihood of a (null) hypothesis that si(t + 1) and
sj(t) are firing without any correlation. The optimal value ∆τopt is chosen to reject this hypothesis
most strongly. This can also be regarded as a generalization of the chi-square test.

2.2 Inference algorithm: The MF formula

The previously derived MF formula [25,26] is given by

ĴMF = A−1DC−1, (5)

where 
µi(t) = ⟨si(t)⟩ ,
Aij(t) =

(
1− µ2

i (t)
)
δij ,

Cij(t) = ⟨si(t)sj(t)⟩ − µi(t)µj(t),
Dij(t) = ⟨si(t+ 1)sj(t)⟩ − µi(t+ 1)µj(t).

(6)

Note that the estimate ĴMF seemingly depends on time, but it is known that the time dependence is
very weak and ignorable. Once given ĴMF, the MF estimate of the external field is given as

θ̂MF
i (t) = tanh−1 (µi(t+ 1))−

∑
j

ĴMF
ij µj(t), (7)

although we focus on the couplings between neurons and do not estimate the external force in this
study. The literal meaning of the brackets is the ensemble average corresponding to (1/R)

∑R
r=1 in

eq. (2), but here we identify it as the average over time. Here, we use the time-averaged statistics of
{µ, C,D,θ}, as declared above.
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2.3 Post-processing: Screening relevant couplings and its fast approximation

The basic idea of our screening method is to compare the coupling estimated from the original
data with the one estimated from randomized data in which the time series of firing patterns of
each neuron is randomly independently permuted. We do not explain the detailed procedures here
because similar methods have been described previously [7,30]. Instead, here we state the essential
point of the method and derive an approximate formula implementing the screening method in a
computationally efficient manner.

The key of the method is to compute the probability distribution of Ĵij , P (Ĵij), when applying our
inference algorithm to the randomized data. Once we obtain the probability distribution, we can
judge how unlikely our original estimate is as compared to the estimates from the randomized data.
If the original estimate is sufficiently unlikely, we accept it as a relevant coupling; otherwise, we
reject it.

Evaluation of the above probability distribution is not easy in general, and hence, it is common to
have recourse to numerical sampling, which can be a computational burden. Here, we avoid this
problem by computing it in an analytical manner under a reasonable approximation.

For the randomized data, we may assume that two neurons si and sj fire independently with fixed
means µi and µj , respectively. Under this assumption, by the central limit theorem, each diagonal
component of C converges to Cii = 1 − µ2

i = Aii, while its non-diagonal component becomes a
zero-mean Gaussian variable whose variance is proportional to 1/(M − 1), and is thus, small. All
the components of D behave similarly to the non-diagonal ones of C. This consideration leads to
the expression

Ĵ ran
ij =

∑
k

(A−1)iiDik(C
−1)kj ≈ (A−1)iiDij(A

−1)jj =
1

(1− µ2
i )(1− µ2

j )
Dij . (8)

By the independence between si and sj , the variance of Dij becomes (1 − µ2
i )(1 − µ2

j )/(M − 1).

Hence the probability P
(
|Ĵ ran

ij | ≥ Φth

)
is obtained as

P
(
|Ĵ ran

ij | ≥ Φth

)
≈ 1− erf

Φth

√
(1− µ2

i )(1− µ2
j )(M − 1)

2

 , (9)

where erf(x) is the error function defined as

erf(x) ≡ 2√
π

∫ x

0

dy e−y2

. (10)

Inserting the absolute value of the original estimate of Ĵij in Φth, we obtain its likelihood, and can
judge whether it should be accepted. Below, we set the significance level pth associated with (Φth)ij
as

(Φth)ij =

√
2

(1− µ2
i )(1− µ2

j )(M − 1)
erf−1 (1− pth) (11)

and accept only Ĵij such that |Ĵij | > (Φth)ij .

3 Hodgkin–Huxley networks

We first evaluate the accuracy of our methods using synthetic systems consisting of the Hodgkin–
Huxley neurons. The dynamics of the neurons are given by

C
dVi

dτ
= −ḡKn

4
i (Vi − EK)− ḡNam

3
ihi (Vi − ENa)− ḡL (Vi − EL) + Iex

i , (12)

dni

dτ
= αn (Vi) (1− ni)− βn (Vi)ni, (13)

dmi

dτ
= αm (Vi) (1−mi)− βm (Vi)mi, (14)

dhi

dτ
= αh (Vi) (1− hi)− βh (Vi)hi, (15)
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where Vi is the membrane potential of ith neuron, ni is the activation variable that represents the
ratio of the open channels for K+ ion, and mi and hi are the activation and inactivation variables
for Na+ ion, respectively. All parameters, except the external input term Iex

i , are set as described in
[35]. The input forces are given by

Iex
i = ci(τ) +

N∑
j=1

KijVjΘ(Vj − Vth) + a
∑
k

δ
(
τ − τki

)
, (16)

where ci(t) represents the environmental noise with a Poisson process, the second term represents
the couplings with the threshold voltage Vth = 30mV and the Heaviside step function Θ(·), and
the last term denotes the impulse stimulations with the delta function. Here, we consider no-delay
simple couplings, which we term the synaptic connections, and aim to reconstruct their structure
with the excitatory/inhibitory signs using our methods. We use N = 100 neuron networks, where
the 90 neurons are excitatory and have positive outgoing couplings while the others are inhibitory.
The rate and strength of the Poisson process are set as λ = 180Hz and b = 2mV, respectively,
for all neurons. We generate their time series, integrating (12)-(15) by the Euler method with dτ =
0.01ms, where we suppose a neuron is firing when its voltage exceeds Vth, and use the spike train
data with the whole period T = 106 ms for our inference.

3.1 Spontaneous activity case

At first, we consider a system on a chain network in which each neuron has three synaptic connec-
tions to adjoint neurons in one direction. The connection strength Kij is drawn from the uniform
distributions in [0.015, 0.03] for the excitatory and in [−0.06,−0.03] for the inhibitory neurons, re-
spectively. Here, we set a = 0mV to study the spontaneous activity. An example of the spike
trains generated during 3 seconds is shown in Fig. 1 (a), where the spike times and correspond-
ing neuronal indices are plotted. Subsequently, using the whole spike train data, we calculate the
gross mutual information for different ∆τ , and the result is indicated by the red curve in Fig. 1
(b). The curve has the unimodal feature, which implies the existence of the optimal time bin size of
approximately ∆τ = 3ms, although the original system does not have the delay. We suppose that
inputs must accumulate sufficiently to generate a spike, which costs some time scale, and this is a
possible reason for the emergence of the nontrivial time-scale. To validate our approximation (8),
we randomize the coarse-grained series with ∆τ = 3ms in the time direction independently, rescale
Ĵ ran
ij by multiplying

√
(1− µ2

i )(1− µ2
j )(M − 1), and compare the results of 1000 randomized data

with the standard Gauss distribution in Fig. 1 (c), which shows their good correspondence. Using
∆τ = 3ms to make the spike trains coarse-grained, we apply the inverse formula to the series and
screen relevant couplings with pth = 10−3, which leads to the estimated coupling matrix shown in
Fig. 1 (e), while the one used to generate the data is shown in Fig. 1 (d). The asymmetric network
structure is recovered sufficiently with the discrimination of the signs of the couplings. The con-
ditional ratios of the correctness are shown in Fig. 1 (f), where the inference results obtained with
different values of ∆τ are also shown. This demonstrates the fairly accurate reconstruction result
obtained using our inference procedure. We also show the receiver operating characteristic (ROC)
curves obtained by gradually changing the value pth in Fig. 1 (g), with the different values of ∆τ .
We conclude that using non-optimal time bins drastically decreases the accuracy of the inference
results.

To illustrate the robustness of the optimality of the time bin, in Fig. 1 (i) we plot the means and
standard deviations of the gross mutual information through the 10 different simulations, showing
that the variance is small enough and the result is well robust.

To consider a more general situation, we also employ a Hodgkin–Huxley system on a random net-
work. The directional synaptic connection between every pair of neurons is generated with the
probability 0.1, and the excitatory and inhibitory couplings are drawn from the uniform distribu-
tions within [0.01, 0.02] and [−0.04,−0.02], respectively. The corresponding inference results for
its spontaneous activity are shown by green curves in Figs. 1 (b) and (f). The ROC curves for the
three different three values of ∆τ are also shown in (h). We confirm that the inference is sufficiently
effective in the random-network system as well as in the chain system.
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Figure 1: Application of the proposed approach to the Hodgkin–Huxley models. (a) Spontaneous
spike trains during 3 seconds. (b) Gross mutual information v.s. time bin size ∆τ . The red curve
shows the chain network while the green curve shows the random network. (c) Histogram of rescaled
Ĵ ran
ij obtained by randomizing the original series, and the standard Gauss distribution. (d) An exam-

ple of the chain networks that we used, where the red and blue elements indicate the excitatory and
inhibitory couplings, respectively. (e) Corresponding inferred coupling network with ∆τ = 3ms.
(f) Conditional correctness ratios for the existence, absence, excitatory coupling, and inhibitory cou-
pling, where the standard deviations of 10 different simulations are shown with the error bars. (g,h)
Receiver operating characteristic curves for different coarse-grained series in the systems (g) on the
chain and (h) on the random network, where the error bars indicate the standard deviations of 10
different simulations. The marked points indicate pth = 10−3 used in (e) and (f). (i) The mean
and standard deviation of the gross mutual information for 10 independent simulations of the chain
systems. The result is shown to be robust.

3.2 Evoked activity case

We next investigate performance in systems where responses are evoked by impulse stimuli. The
model parameters, except for a, are the same as those in the chain model in Sec. 3.1. The strength of
the external force is set as a = 5.3mV, and the stimulations are injected to all neurons with interval
1 s. In Fig. 2 (a) we show the spike trains, where we observe that most of the neurons fire at the
injection times τ = 0.5, 1.5, 2.5 s. The gross mutual information against ∆τ is shown in Fig. 2 (b).
Although the curve feature is modified due to the existence of the impulse inputs, we observe that
its peak is located at a similar value of ∆τ . Therefore, we use the same value ∆τ = 3ms. Applying
our inference procedure with ∆τ = 3ms and pth = 10−3, we obtain the inferred couplings which
are shown in Fig. 2 (c), where the original network is in Fig. 1 (d). On comparing Fig. 2 (c) with
Fig. 1 (e), while the inference detects the existence of the synaptic connections, we observe more
false couplings in the evoked case. The conditional ratios in Fig. 2 (d) indicate that the existence
of the external inputs may increase the false positive rate with the same pth. The ROC curves are
shown in Fig. 2 (f).
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Figure 2: Application of the proposed approach to the evoked activity in the Hodgkin–Huxley
models. (a) Evoked spike trains during 3 seconds, where the red line expresses the injection times
of the stimuli. (b) Gross mutual information v.s. time bin size. (c) Inferred coupling matrix with
the red excitatory and blue inhibitory elements using ∆τ = 3ms, where the generative network is
the one shown in Fig. 1 (b). (d) Conditional correctness ratios. (e) Receiver operating characteristic
curves for different coarse-grained series, where the points denoting pth = 10−3 are marked. (f)
The mean and standard deviation of the gross mutual information for 10 independent simulations.
The result is shown to be robust.

4 Cultured neuronal networks

We apply our inference methods to the real neuronal systems introduced in a previous study [31],
where rat cortical neurons were cultured in micro wells. The wells had a circular structure, and con-
sequently the synapses of the neurons were likely to form a physically asymmetric chain network,
which is similar to the situation in the Hodgkin–Huxley models we used in Sec. 3. The activity of
the neurons was recorded by the multi-electrode array with 40µs time resolution, and the Efficient
Technology of Spike sorting method [36] was used to identify the spike events of individual neurons.
We study the spontaneous and evoked activities here.

4.1 Spontaneous activity case

We first use the spontaneous activity data recorded during 120 s. The spike sorting identified 100
neurons which generated the spikes. The spike raster plot during 3 seconds is displayed in Fig.
3 (a). We calculate the gross mutual information as in case of the Hodgkin–Huxley models, and
the obtained optimal bin size is approximately ∆τ = 5ms. We also confirm that the inferred
couplings are similar to the results described previously [30], and this supports the validity of our
novel approximation method introduced in Sec. 2.3. We show the inferred network in Figs. 3 (b-
d) with different values pth = 10−3, 10−6, 10−9, where we locate the nodes denoting the neurons
on a circle following the experimental design [31]. A more strict threshold provides us with clear
demonstration of the relevant couplings here.

4.2 Evoked activity case

We next study an evoked neuronal system, where an electrical pulse stimulation is injected from
an electrode after every 3 seconds, and the other experimental settings are similar to those of the
spontaneous case. In this case the activity of 149 neurons were identified by the spike sorting. The
example of the spike trains is shown in Fig. 4 (a). The gross mutual information is shown in Fig. 4
(b), where we can see the peak around ∆τ = 10ms. Setting ∆τ = 10ms and pth = 10−3, 10−6,
we obtain the estimated coupling matrices in Figs. 4 (c,d). In these cases, we can also observe
the bold diagonal elements representing the asymmetric chain structure, although with the lower
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Figure 3: Application of the proposed approach to a cultured-neuronal system. (a) Spike trains
during 3 seconds. (b-d) Inferred networks, where the nodes are located on the circle corresponding to
the experimental design. The different significant levels used are: (b) 10−3, (c) 10−6, and (d) 10−9.
The red and blue directional arrows represent the excitatory and inhibitory couplings, respectively.
(e) The gross mutual information for the 1st and 2nd halves of the data. The figure shows the
robustness of the result.

significant level some far-diagonal elements emerge due to the existence of the external inputs,
which is a situation similar to that in the Hodgkin–Huxley simulation in Sec. 3.2. The inferred
network with the strict threshold pth = 10−9 is displayed in Fig. 4 (e), where some long-range
couplings are still estimated while physical connections corresponding to them do not exist because
of the experimental design.

5 Conclusion and discussion

We propose a systematic inference procedure for extracting couplings from point-process data. The
contribution of this study is three-fold: (i) invention of an analytic formula to screen relevant cou-
plings in a computationally efficient manner; (ii) examination in the Hodgkin–Huxley model, with
and without impulse stimuli; (iii) examination in an evoked cultured neuronal network.

The applications to the synthetic data, with and without the impulse stimuli, demonstrate the fairly
accurate reconstructions of synaptic connections by our inference methods. The application to the
real data of the spontaneous activity in the cultured neuronal system also highlights the effectiveness
of the proposed methods in detecting the synaptic connections.

From the comparison between the analyses of the spontaneous and evoked activities, we found that
the inference accuracy becomes degraded by the external stimuli. One of the potential origins is
the breaking of our stationary assumption of the statistics {µ, C,D} because of the time-varying
external force θ. To overcome this, certain techniques resolving the insufficiency of samples, such
as regularization, will be helpful. A promising approach might be the introduction of an ℓ1 regular-
ization into eq. (2), which enables us to automatically screen out irrelevant couplings. Comparing it
with the present approach based on computational statistics will be an interesting future work.
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Figure 4: Application of the proposed approach to an evoked cultured-neuronal system. (a) Spike
trains during 3 seconds, where the red line indicates the injection time. (b) Gross mutual information
v.s. time bin size. (c,d) Inferred coupling matrices for (c) pth = 10−3 and (d) pth = 10−6. (e)
Inferred network with pth = 10−9. (f) The gross mutual information for the 1st and 2nd halves of
the data. The figure shows the robustness of the result.
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