
A Supplementary Material

We now provide proofs of the theoretical results stated in the main text.

Proof of Proposition 1

Proof. Start with a p-term k-DNF defined over a set of n Boolean variables. Encode the j ’th term in
the DNF formula by a vector wj 2 f�1; 0; 1gn, where

wj;l D

8<:1 l’th variable appears as positive
�1 l’th variable appears as negative
0 l’th variable doesn’t appear

: (14)

Notice that the resulting vector is k-sparse. Next, let x 2 f�1; 1gn encode the Boolean assignment of
the input variables, where xl D 1 encodes that the l’th variable is true and xl D �1 encodes that it is
false. Note that the j ’th term of the DNF is satisfied if and only if wj � x � k. Moreover, note that
the entire DNF is satisfied if and only if

max
j2Œp�

wj � x � k ; (15)

where we use Œp� as shorthand for the set f1; : : : ; pg. We relax this definition by allowing the input x
to be an arbitrary vector in Rn and allowing each wj to be any k-sparse vector in Rn. By construction,
the class of models of this form is at least as powerful as the original class of p-term k-DNF Boolean
formulae. Therefore, learning this class of models is a form of improper learning of k-DNFs.

Note that once we allow x and wj to take arbitrary real values, the threshold k in (15) becomes
somewhat arbitrary, so we replace it with zero in our decision rule.

Proof of Proposition 2

Proof. By definition, the Fenchel conjugate

u?.s/ D sup
t2Rp

 
pX
kD1

sktk � log

 
1C

pX
kD1

exp.�tk/

!!
:

Equating the partial derivative with respect to each tk to 0, we get

sk D �
exp.�t�

k
/

1C
Pp
cD1 exp.�t�c /

; (16)

or equivalently,

t�k D � log

 
�sk

 
1C

pX
cD1

exp.�t�c /

!!
:

We note from (16) that
1

1C
Pp
cD1 exp.�t�c /

D 1C s>1 :

Using the convention 0 log 0 D 0, the form of the conjugate function in (9) can be obtained by
plugging t� D .t�1 ; : : : ; t

�
r / into u?.s/ and performing some simple algebraic manipulations.

Proposition 2 follows directly from the form of u?, especially the constraint set Si for i 2 I�. For
i 2 IC, we notice that the conjugate of `.z/ D log.1C exp.�z// is

`�.ˇ/ D .�ˇ/ log.�ˇ/C .1C ˇ/ log.1C ˇ/; ˇ 2 Œ�1; 0�:

Then we can let the j.i/th entry of si 2 Rp be ˇ 2 Œ�1; 0� and all other entries be zero. Then we can
express `� through u? as shown in the proposition.
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Proof of Proposition 3

Proof. Recall that

ˆ.W; �; S/D
1

m

X
i2Œm�

�
yis

T
i .W ˇ �/xi � u

?.si /
�
C
�

2
jjW jj2F :

Then

rWˆ.W; �; S/D
1

m

X
i2Œm�

yi
�
six

T
i

�
ˇ � C �W :

The proof is complete by setting rWˆ.W; �; S/ D 0, and solving for W .

Proof of Proposition 4

Proof. In order to project a 2 Rn onto

Ej , f�j 2 Rn W �j i 2 Œ0; 1�; k�j k1 � kg;

we need to solve the following problem:

min
x2Rn

1

2
jjx � ajj2

s.t.
Pd
iD1 xi � k

8i 2 Œn� W 0 � xi � 1 :

Our approach is to form a Lagrangian and then invoke the KKT conditions. Introducing Lagrangian
parameters � 2 RC and u; v 2 RdC, we get the Lagrangian L.x; �; u; v/

D
1

2
jjx � ajj2 C �

 
nX
iD1

xi � k

!
�

nX
iD1

uixi

C

nX
iD1

vi .xi � 1/

D
1

2
jjx � ajj2 C

nX
iD1

xi .� � ui C vi /

� �k �

nX
iD1

vi :

Therefore,
rx�L D 0 H) x� D a � .�1 � uC v/ : (17)

We note that g.�; u; v/ , L.x�; �; u; v/

D �
1

2
jj�1 � uC vjj2 C a>.�1 � uC v/ � �K � 1>v:

Using the notation b � t to mean that each coordinate of vector b is at least t , our dual is

max
��0;u�0;v�0

g.�; u; v/ : (18)
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We now list all the KKT conditions:

8i 2 Œn� W xi > 0 H) ui D 0

8i 2 Œn� W xi < 1 H) vi D 0

8i 2 Œn� W ui > 0 H) xi D 0

8i 2 Œn� W vi > 0 H) xi D 1 :

8i 2 Œn� W uivi D 0
nX
iD1

xi < k H) � D 0

� > 0 H)

nX
iD1

xi D k

We consider the two cases, (a)
Pn
iD1 x

�
i < k, and (b)

Pn
iD1 x

�
i D k separately.

First consider
Pn
iD1 x

�
i < k. Then, by KKT conditions, we have the corresponding � D 0. Consider

all the sub-cases. Using (17), we get

1. x�i D 0 H) ai D � � ui C vi D �ui � 0 (since x�i < 1, therefore, by KKT conditions,
vi D 0).

2. x�i D 1 H) ai D 1C � � ui C vi D 1C vi � 1 (since x�i > 0, therefore, ui D 0 by
KKT conditions).

3. 0 < x�i < 1 H) ai D x
�
i C � � ui C vi D x

�
i .

Now consider
Pn
iD1 x

�
i D k. Then, we have � � 0. Again, we look at the various sub-cases.

1. x�i D 0 H) ai D � � ui C vi D � � ui H) ui D �.ai � �/. Here, ui denotes the
amount of clipping done when ai is negative.

2. x�i D 1 H) ai D 1C � � ui C vi D 1C �C vi H) vi D �.1C � � ai /. Here, vi
denotes the amount of clipping done when ai > 1. Also, note that ai � 1 in this case.

3. 0 < x�i < 1 H) ai D x�i C � � ui C vi D x�i C � H) x�i D ai � �. In order to
determine the value of �, we note that since

Pn
iD1 x

�
i D k, therefore,

nX
iD1

.ai � �/ D k H)

nX
iD1

ai � n� D k

H) � D
1

n

nX
iD1

ai �
k

n
� max

i
ai �

k

n
:

Algorithm 2 implements all the cases and thus accomplishes the desired projection. The algorithm is
a bisection method, and thus converges linearly to a solution within the specified tolerance tol .
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