
A Waist Inequality and Isoperimetric Inequality

Theorem 7 (Waist Inequality, Akopyan and Karasev [1]). Let m ≤ n and f be a continuous map
from the ball BnR of radius R to Rm. Then there exists some y ∈ Rm such that

Voln−m
(
f−1(y)

)
≥ Voln−m

(
Bn−mR

)
.7

Moreover, for all ε > 0:

Voln
(
f−1(y)⊕ ε

)
≥ 1

2πR
Voln−m+1

(
Sn−m+1
R

)
Volm (Bm1 ) pm(ε), (6)

where pm(ε) is εm (1 + o(1)), i.e. lim
ε→0

pm(ε)

εm
= 1, and f−1(y)⊕ ε denotes the set of points x ∈ BnR

such that d(x, f−1(y)) < ε, Sn−m+1
R is the (n+m-1)-dimensional sphere of radius R, and Bm1 is the

unit m ball.
Remark 4. When m = 1, Waist Inequality generalizes classic concentration of measure on BnR,
which says most volume of a high dimensional ball concentrates around its equator slab, as n→∞.
When m > 1, we can roughly interpret the theorem as f−1(y)⊕ ε is big in n−m dimensions in the
sense of volume, thus it generalizes concentration of measure when m > 1.

Intuitively the Waist inequality states that a higher dimensional space is too big in the sense of volume
that we cannot hope to squeeze it continuously into lower dimensional spaces, without collapsing
in some direction(s). In other words, if an input domain is higher dimensional and thus in some
sense large, then it must be large in at least one direction. Waist inequality is a precise quantitative
version of the topological invariance of dimension, which states balls of different dimensions cannot
be homeomorphically mapped to each other. It is this mis-match between high and low dimensional
nature of volumes that motivates us to formulate and prove the imperfection between precision and
recall. A recent survey of the inequality can be found in [15].
Theorem 8 (Isoperimetric Inequality). Suppose U ⊂ Rn is a bounded (Hausdorff) measurable set,
with (Hausdorff) n− 1 measurable boundary, denoted as Voln−1∂U . Then:

Voln(U) = Voln(Bn1 ) =⇒ Voln−1(∂U) ≥ Voln−1(∂Bn1 )

Stated differently,

Voln(U) ≤ 1

n
n
n−1 Voln(B1)

1
n−1

Voln−1(∂U)
n
n−1

The first way of looking at the isoperimetric inequality is from an optimization viewpoint. It states
that Euclidean balls are optimal sets in terms of minimizing the n− 1 hypersurface volume, with a
constraint on their n volume. The second (equivalent) inequality is from an inequality angle. It allows
us to control the n volume of a set in terms of its boundary’s n− 1 volume. For more information
about this fundamental inequality, we refer the reader to [28].

Among all equal volume sets on the plane, the isoperimetric inequality says that the disc has the least
perimeter. This statement compares all domains to balls. The waist inequality is its close cousin with
perhaps stronger topological flavor. This is a statement about all continuous maps f : BnR → Rm: we
can find f−1(y) such that Voln−m(f−1(y)) ≥ Voln−mBn−mR . This compares all continuous maps’s
volume-maximal fiber to balls. See Fig. 3 for an illustration in 3D.

B Precision, Recall, One-To-One, and Continuity

We extend the definitions of continuity and injectivity to allow exceptions on a measure zero set. For
a dimensionality reduction map f : Rn → Rm, we say it is essentially one-to-one if its ‘injectivity’ is
essentially no more than the reduction part. The manifold setting f :Mn → Rm is handled naturally
by using coordinates and parametrization by open sets in Rn, as in classical differential topology and
differential geometry.

7It is natural to consider n−m dimensional volume for f−1(y), due to Sard’s theorem [14] and implicit
function theorem: since almost every y ∈ f(Bn) is a regular value, f−1(y) is an n−m dimensional submanifold,
for such regular y. For an arbitrary continuous function, Voln−m =Mn−m

∗ is the lower Minkowski content,
where the Waist Inequality is established [2]. For n−m rectifiable sets, Voln−m =Mn−m

∗ = Hn−m.

12



Figure 3: The above pictorial illustration compares f−1(y) - the pancake surface living in a 3-ball to
a disc living in the 3-ball. We see that f−1(y) has bigger or equal area than the corresponding disc.

Definition 2 (Essential Continuity). f is essentially continuous at x, if for any ε > 0, there exists
r > 0, such that for all the neighbourhood U 3 x satisfying diam(U) ≤ r,

Voln ({u ∈ U : |f(u)− f(x)| > ε}) = 0.

We say f is essentially continuous on a set W if f is essentially continuous at every w ∈W .
Definition 3 (Essential Injectivity). f is essentially one-to-one or essentially injective at x, if for
y = f(x) ∈ Rm, Voln−m

(
f−1(y)

)
= 08. f is essentially one-to-one on a set W if f is essentially

one-to-one at every w ∈W .

Note that the definition of essential continuity (one-to-one, respectively) strictly generalizes the
definition of continuity (one-to-one, respectively). In other words, every continuous function is
essentially continuous, and there exists discontinuous functions that are essentially continuous. The
following lemma shows that if f is essentially continuous on an open set W , then f is continuous on
W .
Lemma 1 (Essential continuity in a neighborhood). Essential continuity in a neighborhood and
continuity in a neighborhood are equivalent.

Proof. It is sufficient to prove that if f is essentially continuous on an open set W , then f is
continuous on W . Assume that f is not continuous on W , i.e., there exists η > 0, w ∈ W and
a sequence {w1, . . . , wn, . . .} such that limn→∞ wn = w, but |f(wn) − f(w)| ≥ η. Since f is
essentially continuous on W , there exists a neighbourhood of w, U ⊂W , such that Voln(EU ) = 0,
where EU = {u ∈ U : |f(u) − f(w)| > η/3}. Note that for large enough M , wM ∈ EU .
Moreover, since f is also essentially continuous at wM , for a small neighbourhood V of wM ,
Voln({v ∈ V : |f(v)− f(wM )| ≤ η/3}) = Voln(V ) > 0. However, note that this positive measure
set {v ∈ V : |f(v) − f(wM )| ≤ η/3} is a subset of EU by the definition of EU , contradicting
Voln(EU ) = 0.

We next prove the equivalence between perfect recall and essential continuity.
Proposition 3. For any map f :M ⊂ RN → Rm, f achieves perfect recall in an open set W , if
and only if f is essentially continuous on W .

Proof. (Perfect Recall ⇒ Essential Continuity) For any x ∈ W , any ε > 0, let V = {f(v) ∈
Rm : |f(v) − f(x)| ≤ ε}. Since f achieves perfect recall at x, there exists r > 0, such that
Voln(f−1(V ) ∩Br(x)) = Voln(Br(x)). Therefore, for any U such that U ⊂ Br(x),

Voln ({u ∈ U : |f(u)− f(x)| > ε}) ≤ Voln
(
{u ∈ U : u /∈ f−1(V ) ∩Br(x)}

)
= 0.

8If the dimension of f−1(y) is greater than n−m, we define its volume to be∞
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Thus f is essentially continuous at x.

(Essential Continuity ⇒ Perfect Recall) By Lemma 1, f is continuous on W . For any x ∈ W ,
assume f(x) = y. For any rV > 0, f−1(BrV (y)) is an open set inM. Therefore, there exists small
enough rU such that BrU (x) ⊂ f−1(V ), thus Recallf (BrU (x), BrV (y)) = 1.

Based on this proposition, we can further prove that if f is (essentially) continuous on W , then f has
neither perfect precision nor essential injectivity property on W .

Proposition 4. Let f : Mn ⊂ RN → Rm, with m < n. If f is (essentially) continuous with
approximate differential well defined on an open set W almost everywhere, 9, then f possesses
neither perfect precision nor essential injectivity on W .

Proof. (Continuous in neighborhood ⇒ Not Essentially Injective) We first prove that if f is
continuous on W ⊂ Rn, then f is not essentially one-to-one on W . To prove that f does not
have perfect precision, it is sufficient to prove that the perfect precision of f implies f being
essentially one-to-one. We handle the manifold case at the end of the proof, by coordination:
φ : U ⊂Mn → V ⊂ Rn, and parametrization φ−1 : V ⊂ Rn → U ⊂Mn.

Assume f is essentially one-to-one on W , thus for any y ∈ f(W ) ⊂ Rm,

Voln−m(f−1(y)) =

∫
f−1(y)

dVoln−m(p) = 0.

Since W ⊂ Rn is open, there is an open ball Bnτ ⊂W such that we can consider the restriction of f
onto Bnτ . Now Theorem 7 guarantees the existence of yτ ∈ f(Bnτ ) such that

Voln−m(f−1(yτ )) ≥ Voln−m(Bnτ ) > 0.

This contradiction completes the proof in the Euclidean case.

Now, for a map f : W ⊂ Mn → Rm. We consider the restriction of f on U ⊂ W where U is
homeomorphic to Rn. Then the composite map: f ◦ φ−1 → Rm is again a map between Euclidean
spaces. The argument above applies and we complete this part of the proof.

(Perfect Precision⇒ Essential One-to-one) Assume that f is not essentially one-to-one onW , thus
f is not one-to-one on W . Therefore, there exist y, z1, and z2 such that f(z1) = f(z2) = y. Without
loss of generality, assume d(z1, z2) = 1. Since f has perfect precision, picking U = Bm0.4(z1),
there exists rV,1, such that Voln

(
f−1(Bmr (y)) ∩Bm0.4(z1)

)
= Voln

(
f−1(Bmr (y))

)
for r ≤ rV,1.

Similarly, there exists rV,2, such that Voln
(
f−1(Bmr (y)) ∩Bm0.4(z2)

)
= Voln

(
f−1(Bmr (y))

)
for

r ≤ rV,2. Further note that Bm0.4(z1) ∩Bm0.4(z2) = ∅. For r ≤ min{rV,1, rV,2}, then

Voln(f−1(Bmr (y))) ≥ Voln(f−1(Bmr (y)) ∩Bm0.4(z1)) + Voln(f−1(Bmr (y)) ∩Bm0.4(z2))

= 2 ∗ Voln(f−1(Bmr (y))).

Therefore, Voln(f−1(Bmr (y))) = 0. Now since f is continuous, f−1(Bmr (y)) is an open set inM,
thus Voln(f−1(Bmr (y))) cannot be 0, a contradiction.

Based on Propositions 3 and 4, the proof of Theorem 1 is straightforward.

Proof of Theorem 1. It is sufficient to prove that if f achieves perfection recall at W , then f cannot
achieve perfect precision atW . Since f achieves perfect recall atW , by Proposition 3 f is continuous,
thus by Proposition 4 f cannot achieve perfect precision at W .

C Proof of Theorem 2

We present the proof of Theorem 2 in this section. The following proposition develops a lower bound
for the volume of the inverse image of f on a particular small open set.

9This is a weaker condition than Lipschitz, including functions of bounded variation. A Lipschitz function is
differentiable almost everywhere.
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Proposition 5. If f is a continuous function with Lipschitz constant L, then for any y ∈ Rm and
ε > 0,

Voln
(
f−1(Bmε (y))

)
≥ Voln

(
f−1(y)⊕ ε

L

)
.

Proof. Since f is Lipschitz, for any x such that d(x, f−1(y)) ≤ ε
L , |f(x)− f(y)| ≤ ε. Thus

f−1(y)⊕ ε
L

= {x ∈M : d(x, f−1(y)) ≤ ε

L
} ⊂ {x ∈M : |f(x)−f(y)| ≤ ε

L
} = f−1 (Bmε (y)) .

Therefore,
Voln

(
f−1(y ⊕ ε)

)
≥ Voln

(
f−1(y)⊕ ε

L

)
.

Proof of Theorem 2. By Theorem 7, there exists y ∈ Rm such that

Voln
(
f−1(y)⊕ ε

)
≥ 1

2πR
Voln−m+1

(
Sn−m+1
R

)
Volm (Bm1 ) εm (1 + o(1)) .

For any x ∈ f−1(y), rU , rV > 0, recall that Precisionf (U, V ) = Voln(f−1(V )∩U)
Voln(f−1(V )) ≤ Voln(U)

Voln(f−1(V )) ,

thus a lower bound of Voln(f−1(V )) leads to an upper bound for Precisionf (U, V ). Further note
that

Voln(f−1(V )) = Voln
(
f−1(y ⊕ rV )

)
≥ Voln

(
f−1(y)⊕ (rV /L)

)
≥ 1

2πR
Voln−m+1(Sn−m+1)Volm(Bm1 )Rn−m+1pm(rV /L)

=
π(n−m)/2

Γ(n−m2 + 1)

πm/2

Γ(m2 + 1)
Rn−mpm(rV /L) , (7)

where the first inequality is due to Proposition 5, the second inequality is due to the Waist Inequality
Equation (6), and pm(x) = xm (1 + o(1)). Combining the volume calculation on U ,

Precisionf (U, V ) ≤
πn/2

Γ(n2 +1)r
n
U

πn−m/2

Γ(n−m2 +1)
πm/2

Γ(m2 +1)R
n−mpm(rV /L)

≤
Γ(n−m2 + 1)Γ(m2 + 1)

Γ(n2 + 1)
(
rU
R

)n−m
rmU

pm(rV /L)
.

Theorem 2 generalizes as long as there is a corresponding waist theorem for that space. And roughly
the condition of having a waist theorem is that a space is ‘truly’ n dimensional. We therefore
conjecture that Theorem 2 holds in various settings in machine learning where we are dealing with
truly n dimensional data. In the rest of this section, we are going to prove analogues of Theorem 2
under the non-Euclidean norm.

We define the necessary concepts first. In the non-Eucldiean case, the generalized unit ball is a convex
body.

Definition 4 (Generalized Unit Ball, e.g. Wang [36]). Let p1, p2, . . . , pn ≥ 1. A generalized unit n
ball is defined as the following convex body:

Bp1,p2,...,pn = {(x1, x2, . . . , xn) : |x1|p1 + . . .+ |xn|pn ≤ 1} (8)

Theorem 9 (Volume of Generalized Ball, Wang [36]).

VolnBp1,p2,...,pn = 2n
Γ(1 + 1/p1) . . .Γ(1 + 1/pn)

Γ(1 + 1/p1 + . . .+ 1/pn)
(9)
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Definition 5 (Log-Concave Measure). A Borel measure µ on Rn is log-concave if for any compacts
sets A ⊂ Rn and B ⊂ Rn, and for any 0 < λ < 1:

µ(λA⊕ (1− λ)B) ≥ µ(A)λµ(B)1−λ (10)

Theorem 10 (Brunn-Minkowski Inequality). Let Voln denote Lebesgue measure on Rn. Let A and
B be two nonempty compact subsets of Rn. Then:

[Voln(A⊕B)]1/n ≥ [Voln(A)]1/n + [Voln(B)]1/n (11)

The following lemma is well known in concentration of measure and convex geometry. We prove it
here for completeness.

Lemma 2 (Lebesgue Measure on Convex Sets is Log-Concave). Let Voln denote Lebesgue measure
on Rn. The (induced) restricted measure, Voln, by restricting Voln to any convex sets is log-concave.

Proof. Plugging λA and (1− λ)B to theorem 10, we have:

Vol1/nn (λA⊕ (1− λ)B) ≥Vol1/nn (λA) + Vol1/nn ((1− λ)B) (12)

=λVol1/nn (A) + (1− λ)Vol1/nn (B) (13)

≥Volλ/nn (A)Vol(1−λ)/n
n (B) (14)

where the first equality follows because the λ (or 1 − λ respectively) is scaled be a factor or λn
and taking nth root gives the equality, and the last inequality follows from the weighted arithmetic-
geometric mean inequality. Raising to the nth power, we get:

Voln(λA⊕ (1− λ)B) ≥ Volλn(A)Vol(1−λ)
n (B) (15)

To finish the proof, we note that for any A and B as nonempty compact subsets of a convex set
K ⊂ Rn in the Euclidean space, the Lebesgue measures restricted on K, Voln(A) and Voln(B) can
be written as Lebegues measures on A and B. Convexity of K ensures λA⊕ (1− λ)B is still in the
set K.

To deduce an analogue of Theorem 2, we need the following waist inequality for log-concave
measures.

Theorem 11 (Waists of Arbitrary Norms, Theorem 5.4 of Akopyan and Karasev [2]). Suppose
K ⊂ Rn is a convex body, µ a finite log-concave measure supported on K, and f : K −→ Rm is
continuous. Then for any ε ∈ [0, 1] there exists y ∈ Rm such that:

µ(f−1(y)⊕ εK) ≥ εmµ(K) (16)

Proposition 6 (Precision on Arbitrarilly Normed Balls). Let m < n. Let f : BR;p1,p2,...,pn −→ Rm
be a L-Lipschtiz continuous map defined on a generalized n ball with radius R from Definition 4. Let
rU and rV be radii of two generalized balls, with dimensions n and m respectively. Then there exists
y depending on rV such that:

Precf (U, V ) ≤ (
rU
R

)n−m(
rU
rV /L

)m (17)

Proof. We would like to apply theorem 11. Since BR;p1,p2,...,pn is a convex body, Lebesgue meaure
Voln on BR;p1,p2,...,pn is log-concave by Lemma 2. Then by Theorem 11, for rV /L, there exists
y ∈ Rm such that:

Voln(f−1(y)⊕ rV
L
K) ≥ (

rV
L

)mVoln(K) (18)

where K = BR;p1,p2,...,pn . Now by Proposition 5,

Voln(f−1(V )) = Voln(f−1(BrV ;p1,p2,...,pn)) ≥ (
rV
L

)mVoln(K) (19)
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Therefore:

Precf (U, V ) ≤ Voln(U)

Voln(f−1(V ))
(20)

≤ Voln(BrU ;p1,p2,...,pn)

Voln(BR;p1,p2,...,pn)( rVL )m
(21)

=
2n Γ(1+1/p1)...Γ(1+1/pn)

Γ(1+1/p1+...+1/pn) rn−mU rmU

2n Γ(1+1/p1)...Γ(1+1/pn)
Γ(1+1/p1+...+1/pn) Rn−m( rVL )m

(22)

= (
rU
R

)n−m(
rU
rV /L

)m (23)

D Proof of Theorem 3

The proof of Theorem 3 is based on the idea that the fibers of certain type of continuous DR maps
are mostly ‘large’. A map f has a large fiber at y if f−1(y)’s volume is lower bounded by that of
a linear map. This concept of ‘large’ fiber is actually an essential concept in the proof of the waist
inequality. The intuition we try to capture is that fibers of f are considered big if their n−m volumes
are comparable to that of a surjective linear map.

The next two theorems show that for either of the following cases:

• m = 1; or
• f : BnR → Rm be a k-layer neural network map with Lipschitz constant L, whose linear

layers are surjective.

the fibers of f are mostly ‘large’.
Theorem 12 (Average Waist Inequality for Balls, m = 1). Let f be a continuous map from BnR to R,
and τ = Voln+1

(
Proj−1(y)⊕ ε

)
for an arbitrary y ∈ Proj(Sn+1

R ), then for all ε > 0

Voln

({
z ∈ BnR : Voln

(
f−1 (f(z))⊕ ε

)
≥ 1

2πR
τ

})
≥ 1

2πR
Voln+1

({
x ∈ Sn+1

R : Voln+1

(
Proj−1 (Proj(x))⊕ ε

)
≥ τ

})
.

Proposition 7. Let f be a k layer neural network with nonlinear activations (ReLu, LeakyReLu,
tanh, etc.) from BnR to (0, 1)m and Proj be an arbitrary linear projection on BnR. Then for any τ the
following inequality holds,

Voln
({
x ∈ BnR : Voln

(
f−1 (f(x))⊕ ε

)
≥ τ

})
≥Voln

({
x ∈ BnR : Voln

(
Proj−1 (Proj(x))⊕ ε

)
≥ τ

})
.

The proof of Theorem 12 is postponed to Appendix D.1, while the proof of Proposition 7 is postponed
to Appendix D.2. We are now ready to derive a bound on DR maps’ average-case performance
over the domain based on Theorem 12 and Proposition 7.

Proof of Theorem 3. We only present the proof when f : BnR → Rm is a k-layer neural network map
with Lipschitz constant L by Proposition 7. The other case can be proved similarly by Theorem 12.

Given any y ∈ Proj(BnR), pick τ = Voln
(
Proj−1(y)⊕ ε

)
. By Proposition 7 for all ε > 0,

Voln
({
x ∈ BnR : Voln

(
f−1 (f(x))⊕ ε

)
≥ Voln

(
Proj−1(y)⊕ ε

)})
(24)

≥Voln
({
x ∈ BnR : Voln

(
Proj−1 (Proj(x))⊕ ε

)
≥ Voln

(
Proj−1(y)⊕ ε

)})
.

Since Proj is a linear map, we have

Voln
({
x ∈ BnR : Voln

(
Proj−1 (Proj(x))⊕ ε

)
≥ Voln

(
Proj−1(y)⊕ ε

)})
= Voln

({
x ∈ BnR : Voln−m

(
Proj−1 (Proj(x))

)
≥ Voln−m

(
Proj−1(y)

)})
.
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Further note that Proj−1(y) is an n−m ball with radius r(y) =

√
R2 − ‖y‖2. Thus,

Voln
({
x ∈ BnR : Voln−m

(
Proj−1 (Proj(x))

)
≥ Voln−m

(
Proj−1(y)

)})
=

∫
Bm‖y‖

Voln−m(Proj−1(t))dt.

Therefore,

Voln
({
x ∈ BnR : Voln

(
f−1 (f(x))⊕ ε

)
≥ Voln

(
Proj−1(y)⊕ ε

)})
≥
∫
Bm‖y‖

Voln−m(Proj−1(t))dt.

(25)

Lastly, pick y such that ‖y‖ =
√
R2 − r2

U − δ2, so Proj−1(y) has radius
√
r2
U + δ2. Let E denote

the event Voln
(
f−1 (f(x))⊕ ε

)
≥ Voln

(
Bn−m√

r2U+δ2
⊕ ε
)

, thus

P(E) ≥

∫
Bm√

R2−u2−δ2
Voln−mProj−1(t)dt

Voln(BnR)
.

The remaining proof is almost identical to the proof of Theorem 2. Under the event E ,
Voln(f−1(V )) = Voln

(
f−1(y ⊕ rV )

)
≥ Voln

(
f−1(y)⊕ (rV /L)

)
≥ Voln−m(Bn−m1 )Volm(Bm1 )(

√
r2
U + δ2)n−m(rV /L)m

=
π(n−m)/2

Γ(n−m2 + 1)

πm/2

Γ(m2 + 1)

√
r2
U + δ2

n−m
(rV /L)m , (26)

where the first inequality is due to Proposition 5, the second inequality is due to the event E .
Combining the volume calculation on U ,

Precisionf (U, V ) ≤
πn/2

Γ(n2 +1)r
n
U

πn−m/2

Γ(n−m2 +1)
πm/2

Γ(m2 +1)

√
r2
U + δ2

n−m
(rV /L)m

≤
Γ(n−m2 + 1)Γ(m2 + 1)

Γ(n2 + 1)
(

rU√
r2
U + δ2

)n−m
rmU

(rV /L)m
.

D.1 Proof of Theorem 12

The proof uses the following average waist inequality for spheres. Let P : Sn+1
R −→ BnR be the

orthogonal projection, σR and νR denote the corresponding Hausdorff measures on Sn+1
R and BnR.

Further, let Proj : Sn+1
R → R be the restriction to Sn+1

R of a surjective linear map P̂roj : Rn+2 → R.

Theorem 13 (Average Waist Inequality for Spheres [3]). Let f be a continuous map from Sn+1
R to R,

then for all y ∈ Proj(Sn+1
R ), we have:

Voln+1{x ∈ Sn+1
R : Voln+1(f−1(f(x))⊕ ε) ≥ Voln+1(Proj−1(y)⊕ ε)}

≥
Voln+1{x ∈ Sn+1

R : Voln+1(Proj−1(Proj(x))⊕ ε) ≥ Voln+1(Proj−1(y)⊕ ε)},
where

Voln+1

(
Proj−1(y)⊕ ε

)
= 2πVoln

(
SnRProj−1(y)

)
Vol1

(
B1

1

) (
p1(ε)

)
,

p1(ε) is ε (1 + o(1)), i.e. lim
ε→0

p1(ε)

ε
= 1, and f−1(y) ⊕ ε denotes the set of points x ∈ Sn+1

R such

that d(x, f−1(y)) < ε, SnR is the n-dimensional sphere of radius R, and SnRProj−1(y)
is the sphere with

radius RProj−1(y) depending on where y is taken in f(Sn+1
R ), i.e. R2

Proj−1(y) = R2 − y2.
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We are going to adapt the proof technique of theorem 1 from [1], by replacing the existential waist
inequality (7) with its average version - theorem 13. We need the following lemma:

Lemma 3 ( Orthogonal Projection e.g. Akopyan and Karasev [1] ). Let P : Sn+1
R −→ BnR be the

orthogonal projection. Then P is 1 - Lipschitz and P#σR = 2πRνR. In other words, P sends the
uniform Hausdorff measure σ in Sn+1

R to the uniform Lebesgue measure νn in BnR up to constant
2πR.

Proof of Theorem 12. Given a map f : BnR −→ R, consider f̂ = f ◦P : Sn+1
R → R, where P is the

orthogonal projection. By Lemma 3, P is 1-Lipschitz, thus for any y ∈ R,

P−1
(
f−1(y)

)
⊕ε ⊂ P−1

(
f−1(y)⊕ ε

)
⇒ Voln+1

(
f̂−1(y)⊕ ε

)
≤ Voln+1

(
P−1

(
f−1(y)⊕ ε

))
.

(27)
Further, since P#σR = 2πRνR,

Voln+1

(
P−1

(
f−1(y)⊕ ε

))
= 2πRVoln

(
f−1(y)⊕ ε

)
. (28)

Combining Equations (27) and (28), for τ ∈ R,{
x ∈ Sn+1

R : f̂(x) = y,Voln+1

(
f̂−1(y)⊕ ε

)
≥ τ

}
⊂
{
x ∈ Sn+1

R : f̂(x) = y,Voln
(
f−1(y)⊕ ε

)
≥ τ

2πR

}
. (29)

Similarly, by P#σR = 2πRνR,

Voln+1

({
x ∈ Sn+1

R : f̂(x) = y,Voln
(
f−1(y)⊕ ε

)
≥ τ

2πR

})
= 2πRVoln

({
z ∈ BnR : f(z) = y,Voln

(
f−1(y)⊕ ε

)
≥ τ

2πR

})
. (30)

Thus by combining Equations (29) and (30), we have

Voln+1

({
x ∈ Sn+1

R : f̂(x) = y,Voln+1

(
f̂−1(y)⊕ ε

)
≥ τ

})
≤ 2πRVoln

({
z ∈ BnR : f(z) = y,Voln

(
f−1(y)⊕ ε

)
≥ τ

2πR

})
Finally, note that f̂ meets the condition in theorem 13. Thus for all y ∈ Proj(Sn+1

R ):

Voln+1

({
x ∈ Sn+1

R : Voln+1

(
Proj−1 (Proj(x))⊕ ε

)
≥ Voln+1

(
Proj−1(y)⊕ ε

)})
≤Voln+1

({
x ∈ Sn+1

R : Voln+1

(
f̂−1

(
f̂(x)

)
⊕ ε
)
≥ Voln+1

(
Proj−1(y)⊕ ε

)})
≤2πRVoln

({
z ∈ BnR : Voln

(
f−1 (f(z))⊕ ε

)
≥ 1

2πR
Voln+1

(
Proj−1(y)⊕ ε

)})
.

D.2 Proof of Proposition 7

We first prove that Proposition 7 holds for any surjective linear map.

Proposition 8. Let f be any surjective linear map (PCA, linear neural networks) from BnR to Rm,
and Proj be an arbitrary surjective linear projection from BnR to Rm. Then for any τ the following
inequality holds,

Voln
({
x ∈ BnR : Voln

(
f−1 (f(x))⊕ ε

)
≥ τ

})
≥Voln

({
x ∈ BnR : Voln

(
Proj−1 (Proj(x))⊕ ε

)
≥ τ

})
.

Proof. By the singular value decomposition, any linear dimension reduction map f can be decom-
posed as a composition or unitary operators (Um and Vn), signed dialation of full rank (Σ), and
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projection operator of rank m (P̂roj), where P̂roj linearly projects from Rn to Rm (or more commonly
Σ ◦ P̂roj is called rectangular diagonal matrix map): f = Um ◦ Σ ◦ P̂roj ◦ V ∗n . The set{

x ∈ BnR : Voln
(
f−1 (f(x))⊕ ε

)
≥ τ

}
=
{
x ∈ BnR : Voln

(
(Um ◦ Σ ◦ P̂roj ◦ V ∗n )−1

(
Um ◦ Σ ◦ P̂roj ◦ V ∗n (x)

)
⊕ ε
)
≥ τ

}
=
{
x ∈ BnR : Voln

(
(V ∗n )−1 ◦ P̂roj

−1
◦ Σ−1 ◦ U−1

m ◦ Um ◦ Σ
(

P̂roj ◦ V ∗n (x)
)
⊕ ε
)
≥ τ

}
=
{
x ∈ BnR : Voln

(
(V ∗n )−1 ◦ P̂roj

−1
◦
(

P̂roj ◦ V ∗n (x)
)
⊕ ε
)
≥ τ

}
=
{
x ∈ BnR : Voln

(
Vn ◦ P̂roj

−1
◦
(

P̂roj ◦ V ∗n (x)
)
⊕ ε
)
≥ τ

}
=
{
x ∈ BnR : Voln

(
Vn ◦ P̂roj

−1
◦
(

P̂roj(x)
)
⊕ ε
)
≥ τ

}
=
{
x ∈ BnR : Voln

(
P̂roj

−1
◦ P̂roj(x)⊕ ε

)
≥ τ

}
,

where the last two equalities follow because unitary operator V ∗n and Vn don’t affect volumes because
they are linear isometries. We note this shows the distribution of fiber volume is the same for any
surjective linear map. Finally, note that by symmetry,{
x ∈ BnR : Voln

(
P̂roj

−1
◦ P̂roj(x)⊕ ε

)
≥ τ

}
=
{
x ∈ BnR : Voln

(
Proj−1 ◦ Proj(x)⊕ ε

)
≥ τ

}
.

Lemma 4 (Monotonicity of Fiber Volume under Compositions). Let f : BnR −→ X and g : X −→
Rm be any maps for some set X . Then for any τ we have the following inequality:

Voln
({
x ∈ BnR : Voln

(
(f ◦ g)−1 (f ◦ g(x))⊕ ε

)
≥ τ

})
≥Voln

({
x ∈ BnR : Voln

(
f−1 (f(x))⊕ ε

)
≥ τ

})
.

Proof. Consider: a ∈
{
x ∈ BnR : Voln

(
f−1 (f(x))⊕ ε

)
≥ τ

}
and we let b = f(a). We obviously

have b ∈ g−1 ◦ g(b). Therefore a ∈ f−1(b) ⊂ f−1 ◦ g−1 ◦ g(f(a)). Thus,{
x ∈ BnR : Voln

(
f−1 (f(x))⊕ ε

)
≥ τ

}
⊂

{
x ∈ BnR : Voln

(
(f ◦ g)−1 (f ◦ g(x))⊕ ε

)
≥ τ

}
.

Proof of Proposition 7. We proceed by induction on k. When k = 1, it is given by lemma 4, by
noting a one layer net is a composition of any activation with a surjective linear map, L1. Assume
this is true for a k layer neural net, fk, with k layers such that k ≥ 1. So we have:

Voln
({
x ∈ BnR : Voln

(
f−1
k (fk(x))⊕ ε

)
≥ τ

})
≥Voln

({
x ∈ BnR : Voln

(
Proj−1 (Proj(x))⊕ ε

)
≥ τ

})
.

We need to check a neural net fk+1 with k + 1 layers: fk+1 = tanh ◦Lk+1 ◦ fk. But this is again a
composition between functions and we can apply Lemma 4. This completes the proof.

In light of Proposition 8, we can characterize Proj−1
1 (t) and Proj−1

2 (t) explicitly. Since the bound
holds for any surjective linear map, we can choose in particular Proj−1

1 (t) and Proj−1
2 (t) to be the

coordinate projection from Rn to Rm (with all eigenvalues equal to 1). Then t = (t1, · · · , tm) ∈ BmR ,
Proj−1

1 (t) = Sn−m+1
<1

and Proj−1
2 (t) = Bn−m<2

, where <1 = <2 =
√
R2 −

∑m
i=1 t

2
i .

E Proofs for Section 3

This section is devoted to the proofs for Section 3. We first present the proof of Theorem 4.
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Proof of Theorem 4. By Equation (7),

Voln(f−1(V )) ≥ πn/2

Γ(n−m2 + 1)Γ(m2 + 1)
Rn−mpm(rV /C).

Let Br# be the ball with the same volume as Voln(f−1(V )) and a common center with U . Thus

r# ≥ r = (
Γ(n2 + 1)

Γ(n−m2 + 1)Γ(m2 + 1)
)

1
nR

n−m
n (pm(rV /C))

1
n . (31)

By Theorem 5,

W 2
2 (PU ,Pf−1(V )) ≥W 2

2 (PU ,PB
r#

) =

∫
Br(u)

|x− T (x)|2 dPB
r#

(x),

thus it is sufficient to lower bound the last term. Under the condition that Voln(f−1(V )) ≥ Voln(U),∫
B
r#

|x− T (x)|2 dPB
r#

(x) =

∫
B
r#

|x− rU
r#

x|2 dPB
r#

(x)

=
(

1− rU
r#

)2
∫
B
r#

|x|2 dPB
r#

(x).

Further, ∫
B
r#

|x|2 dPB
r#

(x) =

∫ r#

0

r2 1

Voln(f−1(V ))
dSn−1(r)dr

=
1

Voln(f−1(V ))

2πn/2

Γ(n2 )

∫ r#

0

rn+1dr

=
n

n+ 2
(r#)2.

Therefore,

W 2
2 (PU ,Pf−1(V )) ≥

(
1− rU

r#

)2 n

n+ 2
(r#)2 =

n

n+ 2
(r# − rU )2.

Note that the above lower bound is monotonically increasing with respect to r# for r# > rU . There-
fore from Equation (31), when r > rU , replacing r# by r gives a lower bound for W 2

2 (PU ,Pf−1(V )).

Further, note that as n→∞, r → R, we have:

W 2
2 (PU ,Pf−1(V )) = Ω

(
(R− rU )2

)
.

The rest of this section is to prove Theorem 5. The key step is to show the following lemma.
Lemma 5 (Reduction to Optimal Partial Transport). Given f(x) = 1/V ≤ 1/Vol(Br), the optimal
distribution fM for the optimal transport problem

min
P : P is dominated by f

W2(P,PBr ) (32)

is the uniform distribution over Br# where r# is the radius such that Vol(Br#) = V .

By Lemma 5, let f(x) = 1/V , the optimal solution for the problem

inf
W : Voln(W )=V

W2(PU ,PW ) = W2(PU ,PBr )

is the same as support of the optimizer of Equation (32), thus proving the first statement of Theorem 5.

The proof of Lemma 5 is based on the uniqueness of the optimal transport map for the optimal partial
transport problem [9, 11]. We summarize the statements in [11]10 as a theorem here for completeness.

10The Brenier theorem is not stated in the paper, but it holds under standard derivation.
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Theorem 14 (Figalli [11]). Let f, g ∈ L1(BnR) be two nonnegative functions, and denote by Ξ≤(f, g)
the set of nonnegative finite Borel measures on BnR ×BnR whose first and second marginals are domi-
nated by f and g respectively, i.e. ξ(A×BnR) ≤

∫
A
f(x)dx and ξ(BnR×A) ≤

∫
A
g(y)dy, for all Borel

A ⊂ BnR. Denote M (ξ) :=
∫
BnR×BnR

dξ and fix M ∈ [‖min(f(x), g(x))‖L1
,min(‖f‖L1

, ‖g‖L1
)].

Then there exists a unique optimizer ξM 11 to the following optimal partial transport problem:

inf
ξ∈Ξ≤(f,g);M (ξ)=M

C(ξ) = inf
ξ∈Ξ≤(f,g);M (ξ)=M

∫
BnR×BnR

|x− y|2dξ(x, y)

Moreover, there exist Borel sets A1, A2 ⊂ BnR such that ξM has left and right marginals whose
densities fM = 1A1f and gM = 1A2g are given by the restrictions of f and g to A1 and A2

respectively, where 1A denotes characteristic function on the set A.

Finally, there exists a unique optimal transport map T 12, such that

min
ξ∈Ξ≤(f,g);M (ξ)=M

C(ξ) =

∫
BnR

|T (x)− x|2dfM (x),

where fM is the marginal of ξM over the first BnR.

We will prove Lemma 5 in two different ways. The first is based on calculus and reducing the
problem to one dimensional optimal transport. The second one utilizes the extreme points property
that characterizes the densities fM = 1A1

f and gM = 1A2
g (Proposition 3.2 and Theorem 3.3 in

[18]). 13

Proof of Lemma 5, first approach. Let V = Vol(W ), define f(x) = 1/V be a constant function on
BnR and g(x) = 1

Vol(Br) if x ∈ Br and 0 otherwise. Also, let M = 1. solving the problem

min
P : P is dominated by f

W2(P,PBr ) (33)

is equivalent to solving the following optimal partial transport problem

inf
ξ∈Ξ≤(f,g);M (ξ)=1

C(ξ) = inf
ξ∈Ξ≤(f,g);M (ξ)=1

∫
BnR×BnR

|x− y|2dξ(x, y). (34)

In particular, since Vol(BnR) ≥ V > Vol(Br), it is straightforward to see that
‖min(f(x), g(x))‖L1 = Vol(Br)/V < 1, and min (‖f(x)‖L1 , ‖g(x)‖L1) ≥ 1. By Theorem 14, the
optimization problem infξ∈Ξ≤(f,g);M (ξ)=1 C(ξ) has a unique solution ξ∗. Now given ξ∗, the optimal
solution P∗ of Equation (33) and PBr are the first and the second marginals of ξ∗. Thus it is sufficient
to prove that the first marginal of ξ∗ is a uniform distribution.

Let fM be the first marginal of ξ∗ and gM = g be the second marginal. We first show that fM is
rotationally invariant. To see that, for any rotation map R, note that R(BnR) = BnR, R(Br) = Br,
f ◦ R = f , and g ◦ R = g. Therefore, fM ◦ R is the unique optimal solution for the optimization
problem

inf
ξ∈Ξ≤(f◦R,g◦R);M (ξ)=1

∫
R(BnR)×R(BnR)

|x−y|2dξ(x, y) = inf
ξ∈Ξ≤(f,g);M (ξ)=1

∫
BnR×BnR

|x−y|2dξ(x, y).

Thus, fM ◦R = fM , i.e. fM is rotationally invariant, up to a measure zero set. For a density function
to be rotationally invariant, it is straightforward that its support S is also rotationally invariant, thus is
a union of (n− 1) spheres. Similarly, one can also prove that T is equivariant under rotations.

We next prove that fM is a uniform distribution. Note that gM is a uniform distribution over Br.
Define Ĝ(t) to be the the cumulative distribution ĝ for gM in the polar coordinate marginalized on
the sphere, i.e.,

Ĝ(t) =

∫ t

0

1

VolnBnr
Voln−1(Sn−1

u )du,

11up to a measure zero set
12up to a measure zero set
13Such property can also be deduced from earlier work, e.g. Theorem 4.3 and Corollary 2.11 from [9]. But

[18] is perhaps more direct and accessible.
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for every 0 ≤ t ≤ r, and G(t) = 1 for t > r. Similarly, since fM is also rotationally invariant, we
can also define its cumulative distribution in the polar coordinate marginalized on the sphere. Note
that dµfM = fM (x)dSn−1

r dr, let f̂(r) =
∫
fM (x)dSn−1

r , thus

F (Bt) =

∫
Bt

fM (x)dSn−1
u du =

∫ t

0

∫
fM (x)dSn−1

u du =

∫ t

0

f̂(u)du = F̂ (t).

Finally, note that T is also rotationally invariant, thus W2(fM ,PBr ) = W2(f̂ , ĝ). It is sufficient
to prove that f̂(u) = Voln−1(Sn−1

u )/V , thus by rotationally invariant fM (x) = 1/V is a uniform
distribution.

Note that F̂ (t) ≤ Ĝ(t) and f̂(u) =
∫
fM (x)dSn−1

u ≤
∫
f(x)dSn−1

u = Voln−1(Sn−1
u )/V . By a

reformulation of the one dimensional Wasserstein distance [45]:

W2(f̂ , ĝ) =

∫ 1

0

|F̂−1(t)− Ĝ−1(t)|2dt

=

∫ r#

0

|x− Ĝ−1
(
F̂ (x)

)
|2dF̂ (x), (35)

which is just the area between between the graphs of F̂ (r) and Ĝ(r). It is straightforward that
the optimal f̂ will maximize the growth rate of F̂ in order to minimize the area, i.e. f̂(u) =∫
f(x)dSn−1

u = 1/VVoln−1(Sn−1
u ). Therefore, fM (x) = 1/V is a uniform distribution over Br#

where r# is the radius of Br# such that Vol(Br#) = V .

Proof of Lemma 5, second approach. The proof starts in exactly the same way as in the first approach,
up to the rotational invariance part. Instead of using the polar coordinate argument, we directly apply
by invoking the second statement in Theorem 14, so fM = 1A1f . But we know that f(x) = 1/V is a
uniform distribution, and the claim follows.

Further note that by Equation (35), the optimal transport from F̂ to Ĝ is

T̂ (u) = Ĝ−1
(
F̂ (u)

)
= Ĝ−1

(
1

V
Voln(Bnu )

)
=

(
Voln(BrU )

V

)1/n

u =
rU
rV
r,

for 0 ≤ r ≤ rM . Note that T is rotationally symmetric, thus the optimal transport T (x) = rU
rV
x, for

x ∈ BrV
Lastly, it remains to prove

inf
W : Voln(W )≥V

W2(PU ,PW ) = inf
W : Voln(W )=V

W2(PU ,PW ),

which follows the next lemma.

Lemma 6 (Monotonicity of Volume Comparison). Given two balls Br1 and Br2 such that
Vol(Br1) ≥ Vol(Br2), then for any A ⊂ Rn such that Vol(A) ≥ Vol(Br1),

W2(P(A),P(Br2)) ≥W2(P(Br1),P(Br2)).

Proof of Lemma 6. We have shown that W2(P(A),P(Br2)) ≥W2(P(BrA),P(Br2)), where BrA is
a ball with Volume Vol(A). It remains to prove that

W2(P(BrA),P(Br2)) ≥W2(P(Br1),P(Br2))
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Let TA(x) = r2
rA
x, and T1(x) = r2

r1
x. By Theorem 14,

W 2
2 (P(BnrA),P(Bnr2)) =

∫
BnR

|x− TA(x)|2dPBnrA

=

∫
BnR

∣∣∣∣x− r2

rA
x

∣∣∣∣2 dPBnrA

=

∫
BnR

(
1− r2

rA

)2

|x|2 dPBnrA

≥
∫
BnR

(
1− r2

r1

)2

|x|2 dPBnrA

=

∫
BnR

|x− T1(x)|2dPBnrA

= W 2
2 (P(Bnr1),P(Bnr2))

To make Theorem 5 complete, it remains to investigate the remaining cases when 0 < V < Voln(U).

Proof. We claim that when 0 < V < Vol(U), infW : Voln(W )=VW2(PU ,PW ) = 0, and it is not
attained by any set. Let Voln(Wk) = V and keep Wk ⊂ U such that the mass of Wk is evenly
distributed among the intersection between successively finer rectangular grids and U . Inside each
intersection, the two distributions have the same probability mass. Since both are uniform probability
distributions, their densities scale inversely proportional to their support sizes inside the intersection.
Each little intersection is inside a little cube with width 2R

k . We take ξ to be the product measure
between P(U) and P(W ). Now, when we compute:

W2(PU ,PW ) = inf
ξ∈Ξ(PU ,PW )

E(a,b)∼ξ[‖a− b‖22]1/2 ≤ E(a,b)∼ξ[‖a− b‖22]1/2.

The integrand ‖a − b‖22 ≤
√
n 2R
k . By letting k → ∞ (finer grids), we see that

infW : Voln(W )=VW2(PU ,PW ) = 0.

However, the infimum is not attained by any set W with Voln(W ) = V < Voln(U). Without loss of
generality, we assume W ⊂ U . Then Voln(U −W ) > 0. So W2(PU ,PW ) > 0.

F Proofs for Section 4

We prove the proposition 2 here. We begin with a lemma.

Lemma 7 (One-To-One =⇒ Perfect Precision). LetM be a Riemannian manifold. Let f :M→
Rm be an open map. Then f achieves perfect precision.

Proof. f is an open map, mapping open sets to open sets. For every U ⊂M, f(U) is open in Rm.
Since f(U) is open and contains y = f(x), there exists rV > 0 such that V ⊂ f(U). This implies
f−1(V ) ⊂ U . But then Precisionf (U, V ) = Voln(f−1(V )∩U)

Voln(f−1(V )) = 1 for such V and U .

Proof of Proposition 2. Let M be an n-dimensional Riemannian manifold and m ≥ 2n be the
embedding dimension. By the Whitney embedding theorem, there exists a smooth map f such that
f(M) embeds into Rm. Thus f is an open map fromM to f(M). We now apply lemma 7 to arrive
at the conclusion.
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G Wasserstein many-to-one, discontinuity and cost

In general, we do not have theoretical lower bound for W2 measure. It is natural to use the sample
based Wassertein distances as substitutes. We perform some preliminary study of this heuristics
below.

Recall Wasserstein distance is the minimal cost for mass-preserving transportation between regions.
The Wasserstein L2 distance is:

W2(Pa,Pb) = inf
ξ∈Ξ(Pa,Pb)

E(a,b)∼ξ[‖a− b‖22]1/2 (36)

where Ξ(Pa,Pb) denotes all joint distributions ξ(a, b) whose marginal distributions are Pa and Pb.
Intuitively, among all possible ways of transporting the two distributions, it looks for the most
efficient one. With the same intuition, we use Wasserstein distance between U and f−1(V )14 to
measure precision (See Section 3.2). This not only captures similar overlapping information as the
setwise precision: V oln(f−1(V )∩U)

V oln(f−1(V )) , but also captures the shape differences and distances between
U and f−1(V ). Similarly, Wasserstein distance between f(U) and V may capture the degree of
discontinuity. W2(Pf(U),PV ) captures continuity and W2(PU ,Pf−1(V )) captures injectivity.

In practice, we calculate Wasserstein distances between two groups of samples, {ai} and {bj}, using
algorithms from [6]15. Specifically, we solve

min
m

∑
i

∑
j

di,jmi→j ,

such that : mi→j ≥ 0,
∑
i

mi→j = 1,
∑
j

mi→j = 1,
(37)

where di,j is the distance between ai and bj andmi→j is the mass moved from ai to bj . When {ai} ⊂
U and {bj} ⊂ f−1(V ), it is Wasserstein many-to-one. When {ai} ⊂ f(U) and {bj} ⊂ V , it is
Wasserstein discontinuity. High many-to-one likely implies low precision, and high discontinuity
likely implies low recall. The average of many-to-one and discontinuity is Wasserstein cost. An
implementation of these measures can be found at github.com/BorealisAI/eval_dr_by_wsd.

We note that our measures bypass some practical difficulties on using precision and recall as evaluation
measures. The first issue was discussed in Section 3.2, where we discussed that precision and recall are
always equal when computed naively. This defeats their very purpose for capture both continuity and
injectivity. Computing them based on Equation (4) and Equation (5) is more sensible, but it introduces
another difficulty in practice due to high dimensionality: the radii rU and/or rV need to be quite
large in order for some (outlier data point) x to have a reasonable number of neighboring data points.
Some x ends up having many neighboring points, while others have very few16. This introduces
a high variance on the number of neighboring data points across x. Our Wasserstein measures
bypass both practical issues: having a fixed number of neighbors won’t make W2(Pf(U),PV ) and
W2(PU ,Pf−1(V )) equal. In our experiments, we choose 30 neighboring points for all of U , f−1(V ),
f(U) and V .

G.1 Preliminary experiments on Wasserstein Measures, Compare Visualization Maps

In this section, we show preliminary results on using Wasserstein measures directly (instead of its
lower bound) to choose between dimensionality reduction algorithms. We may interpret this as
choosing between different information retrieval systems in the DR visualization context. Figure 4
and 5 show the visualization results of 5 different methods on the S-curve and Swiss roll toy datasets
respectively. These include PCA, multidimensional scaling (MDS) [39], locally linear embedding
(LLE) [43], Isomap [33] and t-SNE [22]. In the results of PCA and MDS, the mappings squeeze
the original data into narrower regions in the 2D projection space. Squeezing naturally implies
high degree of many-to-one. At the same time, PCA mapping is linear, the MDS mapping in this
case is close to linear, which makes both PCA and MDS has a low discontinuity. For S-curve and

14The regions U and f−1(V ) are given uniform distribution, i.e. their densities are 1
V oln(U)

and 1
V oln(f−1(V ))

15In our experiments we use POT: Python Optimal Transport library [12] to compute the Wasserstein distances.
16 This issue was also discussed in [22].
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Figure 4: quality of different methods on S-curve

Swiss roll, LLE, Isomap and t-SNE all works well in the sense that they successfully unwrapped the
manifold. However, when local compression or stretch happens, the Wasserstein discontinuity and
many-to-one will will increase slightly. For example, in the S-curve LLE results, the right side of
data is compressed. Therefore it has a slightly higher many-to-one value, while the discontinuity is
still low.

Figure 6 shows the visualization results on MNIST digits. As a linear map, PCA still has a relatively
lower discontinuity and higher degree of many-to-one. MDS preserve global distances, at the cost of
sacrificing local distances. thus can map nearby points to far away locations, at the same time mapping
far a way points together has poor local one-to-one property. So it has both high discontinuity and
many-to-one on MNIST digits. Compared with the previous toy example, LLE and Isomap both have
a significant performance drop. Among all the methods, t-SNE still have the best local properties for
MNIST digits, due to its neighborhood preservation objective.
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Figure 5: quality of different methods on Swiss roll

G.2 Preliminary experiments precision and recall (continuity v.s. injectivity) tradeoff

Theorem 1 suggests there is a trade-off between precision and recall, or equivalently continuity v.s.
injectivity, via Proposition 1. In this section, we attempt to illustrate this tradeoff phenomenon by
altering the degree of continuity of a DR algorithm in a practical situation. We choose t-SNE on
MNIST because: 1) Heuristically t-SNE’s perplexity parameter controls the degree of continuity:
a higher perplexity means more neighboring data points will contract together and contraction is a
continuous map (respectively, lower perplexity creates more tearing and spliting); 2) the tradeoff
may be best seen through DR algorithms that operate at the optimal tradeoff level. t-SNE has proved
itself as the de facto standard for visualization in various datasets; 3) As a practical dataset, MNIST
visualization is still simple enough that humans can inspect and diagnose.

Fig. 7 shows visualizations with different t-SNE perplexity parameter. Each row is indexed by a
different perplexity (perp = 2, 8, · · · , 1024), with the intuition that the t-SNE DR map becomes
more continuous with larger perplexity. The middle two columns are colored by our Wasserstein
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Figure 6: quality of different methods on MNIST

measures, with lower discontinuity costs representing more continuous maps (higher recall) and lower
many-to-one costs indicating more injective (higher precision) maps. The precision and recall tradeoff
can be observed in the perplexity ranging from 32 to 128. As t-SNE becomes more continuous, it is
also less injective. In this range, inspection by eye suggests t-SNE gives good visualizations.

Outside of the range of (32, 128) both precision and recall become worse. We interpret this as t-SNE
is giving relatively bad visualizations for these choices of parameter, as can be inspected by eye.
For example, when perplexity = 512 and 1024, t-SNE actually tends to have lower recall while
precision worsens. When perplexity < 32, it is less clear whether it is due to: 1) there is a tradeoff
but our measures do not capture it. Our neighborhood size is also 30 (comparable or bigger than the
perplexity), so the scale may not be fair (on the other hand, choosing neighborhood size smaller than
30 may introduce very high variance in the estimation); 2) t-SNE actually performances worse on
both continuity and injectivity, reflected by our measures. By inspection on the visualization, we
believe it is probably because t-SNE isn’t performing at any optimal level, so tradeoff cannot be seen.
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Figure 7: quality of t-SNE with different perplexities on MNIST
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