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Abstract

The lasso and elastic net linear regression models impose a double-exponential
prior distribution on the model parameters to achieve regression shrinkage and
variable selection, allowing the inference of robust models from large data sets.
However, there has been limited success in deriving estimates for the full posterior
distribution of regression coefficients in these models, due to a need to evaluate
analytically intractable partition function integrals. Here, the Fourier transform
is used to express these integrals as complex-valued oscillatory integrals over
“regression frequencies”. This results in an analytic expansion and stationary
phase approximation for the partition functions of the Bayesian lasso and elastic
net, where the non-differentiability of the double-exponential prior has so far
eluded such an approach. Use of this approximation leads to highly accurate
numerical estimates for the expectation values and marginal posterior distributions
of the regression coefficients, and allows for Bayesian inference of much higher
dimensional models than previously possible.

1 Introduction

Statistical modelling of high-dimensional data sets where the number of variables exceeds the
number of experimental samples may result in over-fitted models that do not generalize well to
unseen data. Prediction accuracy in these situations can often be improved by shrinking regression
coefficients towards zero [1]. Bayesian methods achieve this by imposing a prior distribution on
the regression coefficients whose mass is concentrated around zero. For linear regression, the most
popular methods are ridge regression [2], which has a normally distributed prior; lasso regression [3],
which has a double-exponential or Laplace distribution prior; and elastic net regression [4], whose
prior interpolates between the lasso and ridge priors. The lasso and elastic net are of particular interest,
because in their maximum-likelihood solutions, a subset of regression coefficients are exactly zero.
However, maximum-likelihood solutions only provide a point estimate for the regression coefficients.
A fully Bayesian treatment that takes into account uncertainty due to data noise and limited sample
size, and provides posterior distributions and confidence intervals, is therefore of great interest.

Unsurprisingly, Bayesian inference for the lasso and elastic net involves analytically intractable
partition function integrals and requires the use of numerical Gibbs sampling techniques [5–8].
However, Gibbs sampling is computationally expensive and, particularly in high-dimensional settings,
convergence may be slow and difficult to assess or remedy [9–12]. An alternative to Gibbs sampling
for Bayesian inference is to use asymptotic approximations to the intractable integrals based on
Laplace’s method [13, 14]. However, the Laplace approximation requires twice differentiable log-
likelihood functions, and cannot be applied to the lasso and elastic net models as they contain a
non-differentiable term proportional to the sum of absolute values (i.e. `1-norm) of the regression
coefficients.
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Alternatives to the Laplace approximation have been considered for statistical models where the Fisher
information matrix is singular, and no asymptotic approximation using normal distributions is feasible
[15, 16]. However, in `1-penalized models, the singularity originates from the prior distributions
on the model parameters, and the Fisher information matrix remains positive definite. Here we
show that in such models, approximate Bayesian inference is in fact possible using a Laplace-like
approximation, more precisely the stationary phase or saddle point approximation for complex-valued
oscillatory integrals [17]. This is achieved by rewriting the partition function integrals in terms
of “frequencies” instead of regression coefficients, through the use of the Fourier transform. The
appearance of the Fourier transform in this context should not come as a big surprise. The stationary
phase approximation can be used to obtain or invert characteristic functions, which are of course
Fourier transforms [18]. More to the point of this paper, there is an intimate connection between the
Fourier transform of the exponential of a convex function and the Legendre-Fenchel transform of
that convex function, which plays a fundamental role in physics by linking microscopic statistical
mechanics to macroscopic thermodynamics and quantum to classical mechanics [19]. In particular,
convex duality [20, 21], which maps the solution of a convex optimization problem to that of its
dual, is essentially equivalent to writing the partition function of a Gibbs probability distribution in
coordinate or frequency space (Appendix A).

Convex duality principles have been essential to characterize analytical properties of the maximum-
likelihood solutions of the lasso and elastic net regression models [22–27]. This paper shows that
equally powerful duality principles exist to study Bayesian inference problems.

2 Analytic results

We consider the usual setup for linear regression where there are n observations of p predictor
variables and one response variable, and the effects of the predictors on the response are to be
determined by minimizing the least squares cost function ‖y−Ax‖2 subject to additional constraints,
where y ∈ Rn are the response data, A ∈ Rn×p are the predictor data, x ∈ Rp are the regression
coefficients which need to be estimated and ‖v‖ = (

∑n
i=1 |vi|2)1/2 is the `2-norm. Without loss of

generality, it is assumed that the response and predictors are centred and standardized,
n∑
i=1

yi =

n∑
i=1

Aij = 0 and
n∑
i=1

y2i =

n∑
i=1

A2
ij = n for j ∈ {1, 2, . . . , p}. (1)

In a Bayesian setting, a hierarchical model is assumed where each sample yi is drawn independently
from a normal distribution with mean Ai•x and variance σ2, where Ai• denotes the ith row of A, or
more succintly,

p(y | A, x) = N (Ax, σ21), (2)

where N denotes a multivariate normal distribution, and the regression coefficients x are assumed to
have a prior distribution

p(x) ∝ exp
[
− n

σ2

(
λ‖x‖2 + 2µ‖x‖1

)]
, (3)

where ‖x‖1 =
∑p
j=1 |xj | is the `1-norm, and the prior distribution is defined upto a normalization

constant. The apparent dependence of the prior distribution on the data via the dimension paramater
n only serves to simplify notation, allowing the posterior distribution of the regression coefficients to
be written, using Bayes’ theorem, as

p(x | y,A) ∝ p(y | x,A)p(x) ∝ e−
n
σ2
L(x|y,A), (4)

where

L(x | y,A) =
1

2n
‖y −Ax‖2 + λ‖x‖2 + 2µ‖x‖1 (5)

= xT
(ATA

2n
+ λ1

)
x− 2

(AT y
2n

)T
x+ 2µ‖x‖1 +

1

2n
‖y‖2 (6)

is minus the posterior log-likelihood function. The maximum-likelihood solutions of the lasso (λ = 0)
and elastic net (λ > 0) models are obtained by minimizing L, where the relative scaling of the penalty
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parameters to the sample size n corresponds to the notational conventions of [28]1. In the current
setup, it is assumed that the parameters λ ≥ 0, µ > 0 and σ2 > 0 are given a priori.

To facilitate notation, a slightly more general class of cost functions is defined as

H(x | C,w, µ) = xTCx− 2wTx+ 2µ‖x‖1, (7)

where C ∈ Rp×p is a positive-definite matrix, w ∈ Rp is an arbitrary vector and µ > 0. After
discarding a constant term, L(x | y,A) is of this form, as is the so-called “non-naive” elastic net,
where C = ( 1

2nA
TA + λ1)/(λ + 1) [4]. More importantly perhaps, eq. (7) also covers linear

mixed models, where samples need not be independent [29]. In this case, eq. (2) is replaced by
p(y | A, x) = N (Ax, σ2K), for some covariance matrix K ∈ Rn×n, resulting in a posterior minus
log-likelihood function with C = 1

2nA
TK−1A+ λ1 and w = 1

2nA
TK−1y. The requirement that C

is positive definite, and hence invertible, implies that H is strictly convex and hence has a unique
minimizer. For the lasso (λ = 0) this only holds without further assumptions if n ≥ p [26]; for the
elastic net (λ > 0) there is no such constraint.

The Gibbs distribution on Rp for the cost function H(x | C,w, µ) with inverse temperature τ is
defined as

p(x | C,w, µ) =
e−τH(x|C,w,µ)

Z(C,w, µ)
.

For ease of notation we will henceforth drop explicit reference to C, w and µ. The normalization
constant Z =

∫
Rp e

−τH(x)dx is called the partition function. There is no known analytic solution
for the partition function integral. However, in the posterior distribution (4), the inverse temperature
τ = n

σ2 is large, firstly because we are interested in high-dimensional problems where n is large
(even if it may be small compared to p), and secondly because we assume a priori that (some
of) the predictors are informative for the response variable and that therefore σ2, the amount of
variance of y unexplained by the predictors, must be small. It therefore makes sense to seek an
analytic approximation to the partition function for large values of τ . However, the usual approach
to approximate e−τH(x) by a Gaussian in the vicinity of the minimizer of H and apply a Laplace
approximation [17] is not feasible, because H is not twice differentiable. Instead we observe that
e−τH(x) = e−2τf(x)e−2τg(x) where

f(x) =
1

2
xTCx− wTx (8)

g(x) = µ

p∑
j=1

|xj |. (9)

Using Parseval’s identity for Fourier transforms (Appendix A.1), it follows that (Appendix A.3)

Z =

∫
Rp
e−2τf(x)e−2τg(x)dx =

1

(πτ)
p
2

√
det(C)

∫
Rp
e−τ(k−iw)TC−1(k−iw)

p∏
j=1

µ

k2j + µ2
dk.

(10)
After a change of variables z = −ik, Z can be written as a p-dimensional complex contour integral

Z =
(−iµ)p

(πτ)
p
2

√
det(C)

∫ i∞

−i∞
· · ·
∫ i∞

−i∞
eτ(z−w)TC−1(z−w)

p∏
j=1

1

µ2 − z2j
dz1 . . . dzp. (11)

Cauchy’s theorem [30, 31] states that this integral remains invariant if the integration contours are
deformed, as long as we remain in a domain where the integrand does not diverge (Appendix A.4).
The analogue of Laplace’s approximation for complex contour integrals, known as the stationary
phase, steepest descent or saddle point approximation, then states that an integral of the form (11) can
be approximated by a Gaussian integral along a steepest descent contour passing through the saddle
point of the argument of the exponential function [17]. Here, the function (z − w)TC−1(z − w)
has a saddle point at z = w. If |wj | < µ for all j, the standard stationary phase approximation can
be applied directly, but this only covers the uninteresting situation where the maximum-likelihood
solution x̂ = argminxH(x) = 0 (Appendix A.5). As soon as |wj | > µ for at least one j, the standard

1To be precise, in [28] the penalty term is written as λ̃( 1−α
2

‖x‖22 + α‖x‖1), wich is obtained from (5) by
setting λ̃ = 2(λ+ µ) and α = µ

λ+µ
.

3



argument breaks down, since to deform the integration contours from the imaginary axes to parallel
contours passing through the saddle point z0 = w, we would have to pass through a pole (divergence)
of the function

∏
j(µ

2 − z2j )−1 (Figure S1). Motivated by similar, albeit one-dimensional, analyses
in non-equilibrium physics [32, 33], we instead consider a temperature-dependent function

H∗τ (z) = (z − w)TC−1(z − w)− 1

τ

p∑
j=1

ln(µ2 − z2j ), (12)

which is well-defined on the domain D = {z ∈ Cp : |<zj | < µ, j = 1, . . . , p}, where < denotes
the real part of a complex number. This function has a unique saddle point in D, regardless whether
|wj | < µ or not (Figure S1). Our main result is a steepest descent approximation of the partition
function around this saddle point.

Theorem 1 Let C ∈ Rp×p be a positive definite matrix, w ∈ Rp and µ > 0. Then the complex
function H∗τ defined in eq. (12) has a unique saddle point ûτ that is real, ûτ ∈ D ∩ Rp, and is a
solution of the set of third order equations

(µ2 − u2j )[C−1(w − u)]j −
uj
τ

= 0 , u ∈ Rp, j ∈ {1, . . . , p}. (13)

For Q(z) a complex analytic function of z ∈ Cp, the generalized partition function

Z[Q] =
1

(πτ)
p
2

√
det(C)

∫
Rp
e−τ(k−iw)TC−1(k−iw)Q(−ik)

p∏
j=1

µ

k2j + µ2
dk.

can be analytically expressed as

Z[Q] =
( µ√

τ

)p
eτ(w−ûτ )

TC−1(w−ûτ )
p∏
j=1

1√
µ2 + û2τ,j

1√
det(C +Dτ )

exp
{ 1

4τ2
∆τ

}
eRτ (ik)Q(ûτ + ik)

∣∣∣∣
k=0

, (14)

where Dτ is a diagonal matrix with diagonal elements

(Dτ )jj =
τ(µ2 − û2τ,j)2

µ2 + û2τ,j
, (15)

∆τ is the differential operator

∆τ =

p∑
i,j=1

[
τDτ (C +Dτ )−1C

]
ij

∂2

∂ki∂kj
(16)

and

Rτ (z) =

p∑
j=1

∑
m≥3

1

m

[ 1

(µ− ûτ,j)m
+

(−1)m

(µ+ ûτ,j)m

]
zmj . (17)

This results in an analytic approximation

Z[Q] ∼
( µ√

τ

)p
eτ(w−ûτ )

TC−1(w−ûτ )
p∏
j=1

1√
µ2 + û2τ,j

Q(ûτ )√
det(C +Dτ )

. (18)

The analytic expression in eq. (14) follows by changing the integration contours to pass through
the saddle point ûτ , and using a Taylor expansion of H∗τ (z) around the saddle point along the
steepest descent contour. However, because ∆τ and Rτ depend on τ , it is not a priori evident
that (18) holds. A detailed proof is given in Appendix B. The analytic approximation in eq. (18)
can be simplified further by expanding ûτ around its leading term, resulting in an expression that
recognizably converges to the sparse maximum-likelihood solution (Appendix C). While eq. (18)
is computationally more expensive to calculate than the corresponding expression in terms of the
maximum-likelihood solution, it was found to be numerically more accurate (Section 3).
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Various quantities derived from the posterior distribution can be expressed in terms of generalized
partition functions. The most important of these are the expectation values of the regression coeffi-
cients, which, using elementary properties of the Fourier transform (Appendix A.6), can be expressed
as

E(x) =
1

Z

∫
Rp
x e−τH(x) =

Z
[
C−1(w − z)

]
Z

∼ C−1(w − ûτ ).

The leading term,
x̂τ ≡ C−1(w − ûτ ), (19)

can be interpreted as an estimator for the regression coefficients in its own right, which interpolates
smoothly (as a function of τ ) between the ridge regression estimator x̂ridge = C−1w at τ = 0 and
the maximum-likelihood elastic net estimator x̂ = C−1(w − û) at τ =∞, where û = limτ→∞ ûτ
satisfies a box-constrained optimization problem (Appendix C).

The marginal posterior distribution for a subset I ⊂ {1, . . . , p} of regression coefficients is defined as

p(xI) =
1

Z(C,w, µ)

∫
R|Ic|

e−τH(x|C,w,µ)dxIc

where Ic = {1, . . . , p} \ I is the complement of I , |I| denotes the size of a set I , and we have
reintroduced temporarily the dependency on C, w and µ as in eq. (7). A simple calculation shows
that the remaining integral is again a partition function of the same form, more precisely:

p(xI) = e−τ(x
T
I CIxI−2w

T
I xI+2µ‖xI‖1)Z(CIc , wIc − xTI CI,Ic , µ)

Z(C,w, µ)
, (20)

where the subscripts I and Ic indicate sub-vectors and sub-matrices on their respective coordinate
sets. Hence the analytic approximation in eq. (14) can be used to approximate numerically each term
in the partition function ratio and obtain an approximation to the marginal posterior distributions.

The posterior predictive distribution [1] for a new sample a ∈ Rp of predictor data can also be written
as a ratio of partition functions:

p(y) =

∫
Rp
p(y | a, x)p(x | C,w, µ) dx =

( τ

2πn

) 1
2

e−
τ
2ny

2 Z
(
C + 1

2naa
T , w + y

2na, µ
)

Z(C,w, µ)
,

where C ∈ Rp×p and w ∈ Rp are obtained from the training data as before, n is the number of
training samples, and y ∈ R is the unknown response to a with distribution p(y). Note that

E(y) =

∫
R
yp(y)dy =

∫
Rp

[∫
R
p(y | a, x)dy

]
p(x | C,w, µ) dx

=

∫
Rp
aTxp(x | C,w, µ) dx = aTE(x) ∼ aT x̂τ . (21)

3 Numerical experiments

To test the accuracy of the stationary phase approximation, we implemented algorithms to solve the
saddle point equations and compute the partition function and marginal posterior distribution, as well
as an existing Gibbs sampler algorithm [8] in Matlab (see Appendix E for algorithm details, source
code available from https://github.com/tmichoel/bayonet/). Results were first evaluated
for independent predictors (or equivalently, one predictor) and two commonly used data sets: the
“diabetes data” (n = 442, p = 10) [34] and the “leukemia data” (n = 72, p = 3571) [4] (see
Appendix F for further experimental details and data sources).

First we tested the rate of convergence in the asymptotic relation (see Appendix C)

lim
τ→∞

−1

τ
logZ = Hmin = min

x∈Rp
H(x).

For independent predictors (p = 1), the partition function can be calculated analytically using
the error function (Appendix D), and rapid convergence to Hmin is observed (Figure 1a). After
scaling by the number of predictors p, a similar rate of convergence is observed for the stationary
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Figure 1: Convergence to the minimum-energy solution. Top row: (− 1
τ logZ −Hmin)/p vs. τ and

µ for the exact partition function for independent predictors (p = 1) (a), and for the stationary phase
approximation for the diabetes (b) and leukemia (c) data. Bottom row: ‖x̂τ − x̂‖∞ for the exact
expectation value for independent predictors (d), and using the stationary phase approximation for
the diabetes (e) and leukemia (f) data. Parameter values were C = 1.0, w = 0.5, and µ ranging from
0.05 to 5 in geometric steps (a), and λ = 0.1 and µ ranging from 0.01µmax upto, but not including,
µmax = maxj |wj | in geometric steps (b,c).
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Figure 2: Marginal posterior distributions for the diabetes data (λ = 0.1, µ = 0.0397, τ = 682.3) (a–
c) and leukemia data (λ = 0.1, µ = 0.1835, τ = 9943.9) (d–f;). In blue, Gibbs sampling histogram
(104 samples). In red, stationary phase approximation for the marginal posterior distribution of
selected predictors. In yellow, maximum-likelihood-based approximation for the same distributions.
The distributions for a zero, transition and non-zero maximum-likelihood predictor are shown (from
left to right). The ∗ on the x-axes indicate the location of the maximum-likelihood and posterior
expectation value.
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phase approximation to the partition function for both the diabetes and leukemia data (Figure 1b,c).
However, convergence of the posterior expectation values x̂τ to the maximum-likelihood coefficients
x̂, as measured by the `∞-norm difference ‖x̂τ − x̂‖∞ = maxj |x̂τ,j − x̂j | is noticeably slower,
particularly in the p� n setting of the leukemia data (Figure 1d–f).

Next, the accuracy of the stationary phase approximation at finite τ was determined by comparing
the marginal distributions for single predictors [i.e. where I is a singleton in eq. (20)] to results
obtained from Gibbs sampling. For simplicity, representative results are shown for specific hyper-
parameter values (Appendix F.2). Application of the stationary phase approximation resulted in
marginal posterior distributions which were indistinguishable from those obtained by Gibbs sampling
(Figure 2). In view of the convergence of the log-partition function to the minimum-energy value
(Figure 1), an approximation to eq. (20) of the form

p(xI) ≈ e−τ(x
T
I CIxI−2w

T
I xI+2µ‖xI‖1)e−τ [Hmin(CIc ,wIc−xTI CI,Ic ,µ)−Hmin(C,w,µ)] (22)

was also tested. However, while eq. (22) is indistinguishable from eq. (20) for predictors with zero
effect size in the maximum-likelihood solution, it resulted in distributions that were squeezed towards
zero for transition predictors, and often wildly inaccurate for non-zero predictors (Figure 2). This
is because eq. (22) is maximized at xI = x̂I , the maximum-likelihood value, whereas for non-zero
coordinates, eq. (20) is (approximately) symmetric around its expectation value E(xI) = x̂τ,I . Hence,
accurate estimations of the marginal posterior distributions requires using the full stationary phase
approximations [eq. (18)] to the partition functions in eq. (20).

The stationary phase approximation can be particularly advantageous in prediction problems, where
the response value ŷ ∈ R for a newly measured predictor sample a ∈ Rp is obtained using regression
coefficients learned from training data (yt, At). In Bayesian inference, ŷ is set to the expectation
value of the posterior predictive distribution, ŷ = E(y) = aT x̂τ [eq. (21)]. Computation of the
posterior expectation values x̂τ [eq. (19)] using the stationary phase approximation requires solving
only one set of saddle point equations, and hence can be performed efficiently across a range of
hyper-parameter values, in contrast to Gibbs sampling, where the full posterior needs to be sampled
even if only expectation values are needed.

To illustrate how this benefits large-scale applications of the Bayesian elastic net, its prediction
performance was compared to state-of-the-art Gibbs sampling implementations of Bayesian horseshoe
and Bayesian lasso regression [35], as well as to maximum-likelihood elastic net and ridge regression,
using gene expression and drug sensitivity data for 17 anticancer drugs in 474 human cancer cell lines
from the Cancer Cell Line Encyclopedia [36]. Ten-fold cross-validation was used, using p = 1000 pre-
selected genes and 427 samples for training regression coefficients and 47 for validating predictions
in each fold. To obtain unbiased predictions at a single choice for the hyper-parameters, µ and
τ were optimized over a 10 × 13 grid using an additional internal 10-fold cross-validation on the
training data only (385 samples for training, 42 for testing); BayReg’s lasso and horseshoe methods
sample hyper-parameter values from their posteriors and do not require an additional cross-validation
loop (see Appendix F.3 for complete experimental details and data sources). Despite evaluating
a much greater number of models (in each cross-validation fold, 10× cross-validation over 130
hyper-parameter combinations vs. 1 model per fold), the overall computation time was still much
lower than BayReg’s Gibbs sampling approach (on average 30 sec. per fold, i.e. 0.023 sec. per model,
vs. 44 sec. per fold for BayReg). In terms of predictive performance, Bayesian methods tended to
perform better than maximum-likelihood methods, in particular for the most ‘predictable’ responses,
with little variation between the three Bayesian methods (Figure 3a).

While the difference in optimal performance between Bayesian and maximum-likelihood elastic net
was not always large, Bayesian elastic net tended to be optimized at larger values of µ (i.e. at sparser
maximum-likelihood solutions), and at these values the performance improvement over maximum-
likelihood elastic net was more pronounced (Figure 3b). As expected, τ acts as a tuning parameter
that allows to smoothly vary from the maximum-likelihood solution at large τ (here, τ ∼ 106) to the
solution with best cross-validation performance (here, τ ∼ 103 − 104) (Figure 3c). The improved
performance at sparsity-inducing values of µ suggests that the Bayesian elastic net is uniquely able to
identify the dominant predictors for a given response (the non-zero maximum-likelihood coefficients),
while still accounting for the cumulative contribution of predictors with small effects. Comparison
with the unpenalized (µ = 0) ridge regression coefficients shows that the Bayesian expectation
values are strongly shrunk towards zero, except for the non-zero maximum-likelihood coefficients,
which remain relatively unchanged (Figure 3d), resulting in a double-exponential distribution for
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Figure 3: Predictive accuracy on the Cancer Cell Line Encyclopedia. a. Median correlation coefficient
between predicted and true drug sensitivities over 10-fold cross-validation, using Bayesian posterior
expectation values from the analytic approximation for elastic net (red) and from BayReg’s lasso
(blue) and horseshoe (yellow) implementations, and maximum-likelihood elastic net (purple) and
ridge regression (green) values for the regression coefficients. See main text for details on hyper-
parameter optimization. b. Median 10-fold cross-validation value for the correlation coefficient
between predicted and true sensitivities for the compound PD-0325901 vs. µ, for the Bayesian elastic
net at optimal τ (red), maximum-likelihood elastic net (blue) and ridge regression (dashed). c. Median
10-fold cross-validation value for the correlation coefficient between predicted and true sensitivities
for PD-0325901 for the Bayesian elastic net vs. τ and µ; the black dots show the overall maximum
and the ML maximum. d. Scatter plot of expected regression coefficients in the Bayesian elastic net
for PD-0325901 at µ = 0.055 and optimal τ = 3.16 · 103 vs. ridge regression coefficient estimates;
coefficients with non-zero maximum-likelihood elastic net value at the same µ are indicated in red.
See Supp. Figures S2 and S3 for the other 16 compounds.

the regression coefficients. This contrasts with ridge regression, where regression coefficients are
normally distributed leading to over-estimation of small effects, and maximum-likelihood elastic net,
where small effects become identically zero and don’t contribute to the predicted value at all.

4 Conclusions

The application of Bayesian methods to infer expected effect sizes and marginal posterior distributions
in `1-penalized models has so far required the use of computationally expensive Gibbs sampling
methods. Here it was shown that highly accurate inference in these models is also possible using
an analytic stationary phase approximation to the partition function integrals. This approximation
exploits the fact that the Fourier transform of the non-differentiable double-exponential prior dis-
tribution is a well-behaved exponential of a log-barrier function, which is intimately related to the
Legendre-Fenchel transform of the `1-penalty term. Thus, the Fourier transform plays the same role
for Bayesian inference problems as convex duality plays for maximum-likelihood approaches.

For simplicity, we have focused on the linear regression model, where the invariance of multivariate
normal distributions under the Fourier transform greatly facilitates the analytic derivations. Prelim-
inary work shows that the results can probably be extended to generalized linear models (or any
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model with convex energy function) with L1 penalty, using the argument sketched in Appendix A.2.
In such models, the predictor correlation matrix C will need to be replaced by the Hessian matrix
of the energy function evaluated at the saddle point. Numerically, this will require updates of the
Hessian during the coordinate descent algorithm for solving the saddle point equations. How to
balance the accuracy of the approximation and the frequency of the Hessian updates will require
further in-depth investigation. In principle, the same analysis can also be performed using other non-
twice-differentiable sparse penalty functions, but if their Fourier transform is not known analytically,
or not twice differentiable either, the analysis and implementation will become more complicated
still.

A limitation of the current approach may be that values of the hyper-parameters need to be specified
in advance, whereas in complete hierarchical models, these are subject to their own prior distributions.
Incorporation of such priors will require careful attention to the interchange between taking the limit
of and integrating over the inverse temperature parameter. However, in many practical situations
`1 and `2-penalty parameters are pre-determined by cross-validation. Setting the residual variance
parameter to its maximum a-posteriori value then allows to evaluate the maximum-likelihood solution
in the context of the posterior distribution of which it is the mode [8]. Alternatively, if the posterior
expectation values of the regression coefficients are used instead of their maximum-likelihood values
to predict unmeasured responses, the optimal inverse-temperature parameter can be determined by
standard cross-validation on the training data, as in the drug response prediction experiments.

No attempt was made to optimize the efficiency of the coordinate descent algorithm to solve the
saddle point equations. However, comparison to the Gibbs sampling algorithm shows that one cycle
through all coordinates in the coordinate descent algorithm is approximately equivalent to one cycle
in the Gibbs sampler, i.e. to adding one more sample. The coordinate descent algorithm typically
converges in 5-10 cycles starting from the maximum-likelihood solution, and 1-2 cycles when starting
from a neighbouring solution in the estimation of marginal distributions. In contrast, Gibbs sampling
typically requires 103-105 coordinate cycles to obtain stable distributions. Hence, if only the posterior
expectation values or the posterior distributions for a limited number of coordinates are sought, the
computational advantage of the stationary phase approximation is vast. On the other hand, each
evaluation of the marginal distribution functions requires the solution of a separate set of saddle point
equations. Hence, computing these distributions for all predictors at a very large number of points
with the current algorithm could become equally expensive as Gibbs sampling.

In summary, expressing intractable partition function integrals as complex-valued oscillatory integrals
through the Fourier transform is a powerful approach for performing Bayesian inference in the lasso
and elastic net regression models, and `1-penalized models more generally. Use of the stationary
phase approximation to these integrals results in highly accurate estimates for the posterior expectation
values and marginal distributions at a much reduced computational cost compared to Gibbs sampling.
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