Learning ReLUs via Gradient Descent

Part of Advances in Neural Information Processing Systems 30 (NIPS 2017)

Bibtex Metadata Paper Reviews


Mahdi Soltanolkotabi


In this paper we study the problem of learning Rectified Linear Units (ReLUs) which are functions of the form $\vct{x}\mapsto \max(0,\langle \vct{w},\vct{x}\rangle)$ with $\vct{w}\in\R^d$ denoting the weight vector. We study this problem in the high-dimensional regime where the number of observations are fewer than the dimension of the weight vector. We assume that the weight vector belongs to some closed set (convex or nonconvex) which captures known side-information about its structure. We focus on the realizable model where the inputs are chosen i.i.d.~from a Gaussian distribution and the labels are generated according to a planted weight vector. We show that projected gradient descent, when initialized at $\vct{0}$, converges at a linear rate to the planted model with a number of samples that is optimal up to numerical constants. Our results on the dynamics of convergence of these very shallow neural nets may provide some insights towards understanding the dynamics of deeper architectures.