Part of Advances in Neural Information Processing Systems 30 (NIPS 2017)
Shinji Ito, Daisuke Hatano, Hanna Sumita, Akihiro Yabe, Takuro Fukunaga, Naonori Kakimura, Ken-Ichi Kawarabayashi
Online sparse linear regression is the task of applying linear regression analysis to examples arriving sequentially subject to a resource constraint that a limited number of features of examples can be observed. Despite its importance in many practical applications, it has been recently shown that there is no polynomial-time sublinear-regret algorithm unless NP$\subseteq$BPP, and only an exponential-time sublinear-regret algorithm has been found. In this paper, we introduce mild assumptions to solve the problem. Under these assumptions, we present polynomial-time sublinear-regret algorithms for the online sparse linear regression. In addition, thorough experiments with publicly available data demonstrate that our algorithms outperform other known algorithms.