Convergent Block Coordinate Descent for Training Tikhonov Regularized Deep Neural Networks

Part of Advances in Neural Information Processing Systems 30 (NIPS 2017)

Bibtex Metadata Paper Reviews

Authors

Ziming Zhang, Matthew Brand

Abstract

By lifting the ReLU function into a higher dimensional space, we develop a smooth multi-convex formulation for training feed-forward deep neural networks (DNNs). This allows us to develop a block coordinate descent (BCD) training algorithm consisting of a sequence of numerically well-behaved convex optimizations. Using ideas from proximal point methods in convex analysis, we prove that this BCD algorithm will converge globally to a stationary point with R-linear convergence rate of order one. In experiments with the MNIST database, DNNs trained with this BCD algorithm consistently yielded better test-set error rates than identical DNN architectures trained via all the stochastic gradient descent (SGD) variants in the Caffe toolbox.