Rigorous Dynamics and Consistent Estimation in Arbitrarily Conditioned Linear Systems

Part of Advances in Neural Information Processing Systems 30 (NIPS 2017)

Bibtex Metadata Paper Reviews

Authors

Alyson K. Fletcher, Mojtaba Sahraee-Ardakan, Sundeep Rangan, Philip Schniter

Abstract

The problem of estimating a random vector x from noisy linear measurements y=Ax+w with unknown parameters on the distributions of x and w, which must also be learned, arises in a wide range of statistical learning and linear inverse problems. We show that a computationally simple iterative message-passing algorithm can provably obtain asymptotically consistent estimates in a certain high-dimensional large-system limit (LSL) under very general parameterizations. Previous message passing techniques have required i.i.d. sub-Gaussian A matrices and often fail when the matrix is ill-conditioned. The proposed algorithm, called adaptive vector approximate message passing (Adaptive VAMP) with auto-tuning, applies to all right-rotationally random A. Importantly, this class includes matrices with arbitrarily bad conditioning. We show that the parameter estimates and mean squared error (MSE) of x in each iteration converge to deterministic limits that can be precisely predicted by a simple set of state evolution (SE) equations. In addition, a simple testable condition is provided in which the MSE matches the Bayes-optimal value predicted by the replica method. The paper thus provides a computationally simple method with provable guarantees of optimality and consistency over a large class of linear inverse problems.