Online Learning of Optimal Bidding Strategy in Repeated Multi-Commodity Auctions

Part of Advances in Neural Information Processing Systems 30 (NIPS 2017)

Bibtex Metadata Paper Reviews Supplemental

Authors

M. Sevi Baltaoglu, Lang Tong, Qing Zhao

Abstract

We study the online learning problem of a bidder who participates in repeated auctions. With the goal of maximizing his T-period payoff, the bidder determines the optimal allocation of his budget among his bids for $K$ goods at each period. As a bidding strategy, we propose a polynomial-time algorithm, inspired by the dynamic programming approach to the knapsack problem. The proposed algorithm, referred to as dynamic programming on discrete set (DPDS), achieves a regret order of $O(\sqrt{T\log{T}})$. By showing that the regret is lower bounded by $\Omega(\sqrt{T})$ for any strategy, we conclude that DPDS is order optimal up to a $\sqrt{\log{T}}$ term. We evaluate the performance of DPDS empirically in the context of virtual trading in wholesale electricity markets by using historical data from the New York market. Empirical results show that DPDS consistently outperforms benchmark heuristic methods that are derived from machine learning and online learning approaches.