Process-constrained batch Bayesian optimisation

Part of Advances in Neural Information Processing Systems 30 (NIPS 2017)

Bibtex Metadata Paper Reviews Supplemental


Pratibha Vellanki, Santu Rana, Sunil Gupta, David Rubin, Alessandra Sutti, Thomas Dorin, Murray Height, Paul Sanders, Svetha Venkatesh


Abstract Prevailing batch Bayesian optimisation methods allow all control variables to be freely altered at each iteration. Real-world experiments, however, often have physical limitations making it time-consuming to alter all settings for each recommendation in a batch. This gives rise to a unique problem in BO: in a recommended batch, a set of variables that are expensive to experimentally change need to be fixed, while the remaining control variables can be varied. We formulate this as a process-constrained batch Bayesian optimisation problem. We propose two algorithms, pc-BO(basic) and pc-BO(nested). pc-BO(basic) is simpler but lacks convergence guarantee. In contrast pc-BO(nested) is slightly more complex, but admits convergence analysis. We show that the regret of pc-BO(nested) is sublinear. We demonstrate the performance of both pc-BO(basic) and pc-BO(nested) by optimising benchmark test functions, tuning hyper-parameters of the SVM classifier, optimising the heat-treatment process for an Al-Sc alloy to achieve target hardness, and optimising the short polymer fibre production process.