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Supplementary material

Proof of Theorem 1

Theorem. Given a joint distribution over the protected attribute A, the true label Y , and some

features X1, . . . , Xn, in which we have already specified the resolving variables, no observational

criterion can generally determine whether the Bayes optimal unconstrained predictor or the Bayes

optimal equal odds predictor exhibit unresolved discrimination.

Proof. Let us consider the two graphs in Figure 2. First, we show that these graphs can generate the
same joint distribution P(A, Y,X1, X2, R

⇤) for the Bayes optimal unconstrained predictor R⇤.

We choose the following structural equations for the graph on the left1

• A = Ber(1/2)

• X1 is a mixture of Gaussians N (A + 1, 1) with weight �(2A) and N (A � 1, 1) with
weight �(�2A)

• Y = Ber(�(2X1))

• X2 = X1 �A

• R

⇤ = X1

• (R̃ = X2)

where the Bernoulli distribution Ber(p) without a superscript has support {�1, 1}.

For the graph on the right, we define the structural equations

• A = Ber(1/2)

• Y = Ber(�(2A))

• X2 = N (Y, 1)

1
�(x) = 1/(1 + e

�x)
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• X1 = A+X2

• R

⇤ = X1

• (R̃ = X2)

First we show that in both scenarios R⇤ is actually an optimal score. In the first scenario Y ??A |X1

and Y ??X2 |X1 thus the optimal predictor is only based on X1. We find
Pr(Y = y |X1 = x1) = �(2x1y) , (1)

which is monotonic in x1. Hence optimal classification is obtained by thresholding a score based
only on R

⇤ = X1.

In the second scenario, because Y ??X1 | {A,X2} the optimal predictor only depends on A,X2.
We compute for the densities

P(Y |X2, A) =
P(Y,X2, A)

P(X2, A)
(2a)

=
P(X2, A |Y )P(Y )

P(X2, A)
(2b)

=
P(X2 |Y )P(A |Y )P(Y )

P(X2, A)
(2c)

=
P(X2 |Y )P(Y |A)P(A)

P(Y ) P(Y )

P(X2, A)
(2d)

=
P(X2 |Y )P(Y |A)P(A)

P(X2, A)
, (2e)

where for the third equal sign we use A??X2 |Y . In the numerator we have
P(X2 |Y = y)(x2)P(Y |A = a)(y)P(A)(a) = f

N (y,1)(x2)fBer(�(2a))(y)fBer(1/2)(a) , (3)
where fD is the probability density function of the distribution D. The denominator can be computed
by summing up (15) for y 2 {�1, 1}. Overall this results in

Pr(Y = y |X2 = x2, A = a) = �(2y(a+ x2)) .

Since by construction X1 = A+X2, the optimal predictor is again R

⇤ = X1. If the joint distribu-
tion P(A, Y,R

⇤) is identical in the two scenarios, so are the joint distributions P(A, Y,X1, X2, R
⇤),

because of X1 = R

⇤ and X2 = X1 �A.

To show that the joint distributions P(A, Y,R

⇤) = P(Y |A,R

⇤)P(R⇤ |A)P(A) are the same, we
compare the conditional distributions in the factorization.

Let us start with P(Y |A,R

⇤). Since R⇤ = X1 and in the first graph Y ??A |X1, we already found
the distribution in (13). In the right graph, P(Y |R⇤

, A) = P(Y |X2+A,A) = P(Y |X2, A) which
we have found in (14) and coincides with the conditional in the left graph because of X1 = A+X2.

Now consider R

⇤ |A. In the left graph we have P(R⇤ |A) = P(X1 |A) and the distribu-
tion P(X1 |A) is just the mixture of Gaussians defined in the structural equation model. In the
right graph R

⇤ = A+X2 = Y +N (A, 1) and thus P(R⇤ |A) = N (A± 1) for Y = ±1. Because
of the definition of Y in the structural equations of the right graph, following a Bernoulli distribution
with probability �(2A), this is the same mixture of Gaussians as the one we found for the left graph.

Clearly the distribution of A is identical in both cases.

Consequently the joint distributions agree.

When X1 is an resolving variable, the optimal predictor in the left graph does not exhibit unresolved
discrimination, whereas the graph on the right does.

The proof for the equal odds predictor R̃ is immediate once we show R̃ = X2. This can be seen
from the graph on the right, because here X2 ??A |Y and both using A or X1 would violate the
equal odds condition. Because the joint distribution in the left graph is the same, R̃ = X2 is also the
optimal equal odds score.
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Proof of Proposition 1

Proposition. If there is no directed path from a proxy to a feature, unawareness avoids proxy dis-

crimination.

Proof. An unaware predictor R is given by R = r(X) for some function r and features X . If
there is no directed path from proxies P to X , i.e. P /2 ta

G(X), then R = r(X) = r(taG(X)) =
r(taGP (X)). Thus P(R | do(P = p)) = P(R) for all p, which avoids proxy discrimination.

Proof of Theorem 2

Theorem. Let the influence of P on X be additive and linear, i.e.

X = fX(P, taGP (X)) = gX(taGP (X)) + µXP

for some function gX and µX 2 R. Then any predictor of the form

R = r(X � E[X | do(P )])

for some function r exhibits no proxy discrimination.

Proof. It suffices to show that the argument of r is constant w.r.t. to P , because then R and thus P(R)
are invariant under changes of P . We compute

E[X | do(P )] = E[gX(taGP (X)) + µXP | do(P )]

= E[gX(taGP (X)) | do(P )]
| {z }

=0

+ E[µXP | do(P )]

= µXP .

Hence,
X � E[X | do(P )] = gX(taGP (X))

is clearly constant w.r.t. to P .

Proof of Corollary 1

Corollary. Under the assumptions of Theorem 2, if all directed paths from any ancestor of P to X in

the graph G are blocked by P , then any predictor based on the adjusted features X̃ := X�E[X |P ]
exhibits no proxy discrimination and can be learned from the observational distribution P(P,X, Y )
when target labels Y are available.

Proof. Let Z denote the set of ancestors of P . Under the given assumptions Z \ ta

G(X) = ;,
because in G all arrows into P are removed, which breaks all directed paths from any variable
in Z to X by assumption. Hence the distribution of X under an intervention on P in G̃, where the
influence of potential ancestors of P on X that does not go through P would not be affected, is the
same as simply conditioning on P . Therefore E[X | do(P )] = E[X |P ], which can be computed
from the joint observational distribution, since we observe X and P as generated by G̃.

Proof of Proposition 3

Proposition. Any predictor of the form R = �(X � E[X | do(P )]) + c for linear �, c 2 R exhibits

no proxy discrimination in expectation.

Proof. We directly test the definition of proxy discrimination in expectation using the linearity of
the expectation

E[R | do(P = p)] = E[�(X � E[X | do(P )]) + c | do(P = p)]

= �(E[X | do(P = p)]� E[X | do(P = p)]) + c

= c .

This holds for any p, hence proxy discrimination in expectation is achieved.
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Additional statements

Here we provide an additional statement that is a first step towards the “opposite direction” of The-
orem 2, i.e. whether we can infer information about the structural equations, when we are given a
predictor of a special form that does not exhibit proxy discrimination.
Theorem. Let the influence of P on X be additive and linear and let the influence of P on the

argument of R be additive linear, i.e.

fX(taG(X)) = gX(taGP (X)) + µXP

fR(P, ta
G

P (X)) = h(gR(ta
G

P (X)) + µRP )

for some functions gX , gR, real numbers µX , µR and a smooth, strictly monotonic function h. Then

any predictor that avoids proxy discrimination is of the form

R = r(X � E[X | do(P )])

for some function r.

Proof. From the linearity assumptions we conclude that

f̂R(P,X) = h(gX(taGP (X)) + µXP + µ̂RP ) ,

with µ̂R = µR � µP and thus gX = gR. That means that both the dependence of X on P along
the path P ! · · · ! X as well as the direct dependence of R on P along P ! R are additive and
linear.

To avoid proxy discrimination, we need

P(R | do(P = p)) = P(h(gR(taGP (X)) + µRp)) (4a)
!
= P(h(gR(taGP (X)) + µRp

0)) = P(R | do(P = p

0)) . (4b)

Because h is smooth an strictly monotonic, we can conclude that already the distributions of the
argument of h must be equal, otherwise the transformation of random variables could not result in
equal distributions, i.e.

P(gR(taGP (X)) + µRp)
!
= P(gR(taGP (X)) + µRp

0) .

Since, up to an additive constant, we are comparing the distributions of the same random vari-
able gR(ta

G

P (X)) and not merely identically distributed ones, the following condition is not only
sufficient, but also necessary for (16)

gR(ta
G

P (X)) + µRp
!
= gR(ta

G

P (X)) + µRp
0

.

This holds true for all p, p0 only if µR = 0, which is equivalent to µ̂R = �µP .

Because as in the proof of 2
E[X | do(P )] = µXP,

under the given assumptions any predictor that avoids proxy discrimination is simply

R = X + µRP = X � E[X | do(P )] .
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