
Adaptive Batch Size for Safe Policy Gradients

Matteo Papini
DEIB

Politecnico di Milano, Italy
matteo.papini@polimi.it

Matteo Pirotta
SequeL Team

Inria Lille, France
matteo.pirotta@inria.fr

Marcello Restelli
DEIB

Politecnico di Milano, Italy
marcello.restelli@polimi.it

Abstract

Policy gradient methods are among the best Reinforcement Learning (RL) tech-
niques to solve complex control problems. In real-world RL applications, it is
common to have a good initial policy whose performance needs to be improved and
it may not be acceptable to try bad policies during the learning process. Although
several methods for choosing the step size exist, research paid less attention to
determine the batch size, that is the number of samples used to estimate the gradient
direction for each update of the policy parameters. In this paper, we propose a set
of methods to jointly optimize the step and the batch sizes that guarantee (with
high probability) to improve the policy performance after each update. Besides
providing theoretical guarantees, we show numerical simulations to analyse the
behaviour of our methods.

1 Introduction

In many real-world sequential decision-making problems (e.g., industrial robotics, natural resource
management, smart grids), engineers have developed automatic control policies usually derived
from modelling approaches. The performance of such policies strictly depends on the model
accuracy that for some tasks (e.g., financial applications) may be quite poor. Furthermore, even when
accurate models are available and good control policies are obtained, their performance may degrade
over time due to the non-stationary dynamics of the problem, thus requiring human intervention
to adjust the policy parameters (think about equipment wear in smart manufacturing). In such
scenarios, Reinforcement Learning (RL) techniques represent an interesting solution to get an online
optimization of the control policies and to hinder the performance loss caused by unpredictable
environment changes, thus allowing to improve the autonomy of the control system.

In the last years, several RL studies [1, 2, 3, 4, 5, 6, 7] have shown that policy-search methods can
effectively be employed to solve complex control tasks (e.g., robotic ones) due to their capabilities to
handle high-dimensional continuous problems, face uncertain and partial observations of the state,
and incorporate prior knowledge about the problem by means of the definition of a proper policy
model whose parameters need to be optimized (refer to [8, 9] for recent surveys). This last property is
particularly appealing when the reinforcement learning algorithm needs to operate online in scenarios
where bad exploratory policies may damage the system. A proper design of the policy model may
allow excluding such policies. On the other hand, in order to speed up the learning process, most RL
methods need to explore the policy space by executing policies that may be worse than the initial
one. This is not acceptable in many relevant applications. Under this perspective, we are interested in
developing RL methods that are (in high probability) monotonically improving.

Inspired by the conservative policy iteration approach [10], recently, new advances have been done
in the field of approximate policy iteration algorithms [11, 12], obtaining methods that can learn
faster while still giving statistical guarantees of improvement after each policy update [13, 14]. These
methods are usually referred to as conservative, monotonically improving, or safe (as we do in this
paper). These ideas have been exploited also for deriving novel safe policy-search approaches [15, 16,

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

mailto:matteo.papini@polimi.it
mailto:matteo.pirotta@inria.fr
mailto:marcello.restelli@polimi.it

17, 18, 19] that have obtained significant empirical results. In particular, policy-gradient methods are
among the most commonly used RL techniques to solve complex high-dimensional tasks. Up to now,
works on safe policy gradients [15, 16] have focused mainly on the choice of the step size, a parameter
that significantly affects the speed and stability of gradient methods. By adopting small enough step
sizes, one can limit oscillations and avoid worsening updates, but the consequent reduction of the
learning rate is paid on the long term as a poor overall performance. On the other hand, as we will
show in this paper, there is another parameter that plays an important role in the definition of safe
policy gradient approaches: the batch size (i.e., the number of samples used to estimate the gradient).
So far, the optimization of the batch size has not been considered in the RL literature. The batch size,
besides conditioning the optimal step size, has a non-negligible impact on the speed of improvement
when samples are trajectories performed on the actual system. In the present paper, we inquire the
relationship between the step size and the batch size, showing an interesting duality. Focusing on
Gaussian policies, we make a first attempt at developing practical methods aimed at achieving the best
average performance in the long term, by jointly optimizing both meta-parameters. After providing
some background in Section 2, in Section 3 we improve an existing adaptive step-size method [15].
Building on this result, in Section 4 we derive the main result on the batch size, proposing jointly
adaptive methods. Finally, in Section 5 we empirically analyse the behaviour of the proposed methods
on a simple simulated control task.

2 Preliminaries

A discrete-time continuous Markov decision process (MDP) is a tuple 〈S,A,P,R, γ, µ〉, where S is
the continuous state space,A is the continuous action space, P is a Markovian transition model where
P(s′|s, a) defines the transition density between states s and s′ under action a,R : S×A → [−R,R]
is the reward function, such thatR(s, a) is the expected immediate reward for the state-action pair
(s, a) and R is the maximum absolute reward value, γ ∈ [0, 1) is the discount factor for future
rewards and µ is the initial state distribution. A policy is defined as a density distribution π(·|s) that,
for each state s, specifies the density distribution over action space A. We consider infinite horizon
problems where the future rewards are exponentially discounted with γ. For each state-action pair
(s, a), the utility of taking action a in state s and then following a stationary policy π is defined as:

Qπ(s, a) = R(s, a) + γ

∫
S
P(s′|s, a)

∫
A
π(a′|s′)Qπ(s′, a′)da′ds′.

Policies can be ranked by their expected discounted reward starting from initial state distribution µ:

Jπµ =

∫
S
µ(s)

∫
A
π(a | s)Qπ(s, a)dads =

∫
S
dπµ(s)

∫
A
π(a|s)R(s, a)dads,

where dπµ(s) = (1− γ)
∑∞
t=0 γ

tPr(st = s|π, µ) is the γ-discounted future state distribution for a
starting state distribution µ [2]. In the following, we will often refer to Jπµ as the performance of
policy π. Solving an MDP means finding a policy π∗ maximizing Jπµ . We consider the problem of
finding a policy that maximizes the expected discounted reward over a class of parametrized policies
Πθ = {πθ : θ ∈ Rm}. A particular class of parametrized policies is the Gaussian policy model with
standard deviation σ and mean linear in the state features φ(·):

π(a|s,θ) =
1√

2πσ2
exp

−1

2

(
a− θTφ(s)

σ

)2
 ,

which is a common choice for MDPs with continuous actions. The exact gradient of the expected
discounted reward w.r.t. the policy parameters [2] is:

∇θJµ(θ) =
1

1− γ

∫
S
dπθ
µ (s)

∫
A
∇θπ(a|s,θ)Qπθ (s, a)dads.

In most commonly used policy gradient methods, the policy parameters are updated by following
the direction of the gradient of the expected discounted reward: θ′ = θ + α∇θJµ(θ), where α ≥ 0
is a scalar step size. In the following we will denote with ‖∇θJµ(θ)‖p the Lp-norm of the policy
gradient.

2

3 Non-Scalar Step Size for Gaussian Policies

Before starting to optimize the batch size for the gradient estimation, in this section we extend
the results in [15] to the case of a non-scalar step size, showing that, focusing on the Gaussian
policy model, such extension guarantees a larger performance improvement than the one obtained
in [15]. Furthermore, this result significantly simplifies the closed-form solutions obtained for the
optimization of the batch size described in the following sections. In Section 3.1 we stick to the
theoretical setting in which the gradient is known exactly, while in Section 3.2 we take into account
the estimation error.

3.1 Exact Framework

The idea is to have a separate adaptive step size αi for each component θi of θ. For notational
convenience, we define a non-scalar step size as a diagonal matrix Λ = diag(α1, α2, . . . , αm) with
αi ≥ 0 for i = 1, . . . ,m. The policy parameters can be updated as:

θ′ = θ + Λ∇θJµ(θ).

Note that the direction of the update can differ from the gradient direction. Since the αi are non-
negative, the absolute angular difference is never more than π/2. The traditional scalar step-size
update can be seen as a special case where Λ = αI .
Assumption 3.1. State features are uniformly bounded: |φi(s)| ≤Mφ,∀s ∈ S,∀i = 1, . . . ,m.

By adapting Theorem 4.3 in [15] to the new parameter update, we obtain a lower bound on the policy
performance improvement:
Lemma 3.2. For any initial state distribution µ and any pair of stationary Gaussian policies
πθ ∼ N (θTφ(s), σ2) and πθ′ ∼ N (θ′Tφ(s), σ2), so that θ′ = θ + Λ∇θJµ(θ), and under
Assumption 3.1, the difference between the performance of πθ′ and the one of πθ can be bounded
below as follows:

Jµ(θ
′
)− Jµ(θ) ≥ ∇θJµ(θ)

T
Λ∇θJµ(θ)−

‖Λ∇θJµ(θ)‖21M
2
φ

(1− γ)σ2

(
1

√
2πσ

∫
S
d
πθ
µ (s)

∫
A
Q
πθ (s, a)dads+

γ ‖Qπθ‖∞
2(1− γ)

)
,

where ‖Qπθ‖∞ is the supremum norm of the Q-function: ‖Qπθ‖∞ = sup
s∈S,a∈A

Qπθ (s, a).

The above bound requires us to compute the Q-function explicitly, but this is often not possible in
real-world applications. We now consider a simplified (although less tight) version of the bound that
does not have this requirement, which is an adaptation of Corollary 5.1 in [15]:
Theorem 3.3. For any initial state distribution µ and any pair of stationary Gaussian policies
πθ ∼ N (θTφ(s), σ2) and πθ′ ∼ N (θ′Tφ(s), σ2), so that θ′ = θ + Λ∇θJµ(θ), and under
Assumption 3.1, the difference between the performance of πθ′ and the one of πθ can be bounded
below as follows:

Jµ(θ′)− Jµ(θ) ≥ ∇θJµ(θ)
T
Λ∇θJµ(θ)− c ‖Λ∇θJµ(θ)‖21 ,

where c =
RM2

φ

(1−γ)2σ2

(
|A|√
2πσ

+ γ
2(1−γ)

)
and |A| is the volume of the action space.

We then find the step size Λ∗ that maximizes this lower bound under the natural constraint
αi ≥ 0 ∀i = 1, . . . ,m. The derivation is not trivial and is provided in Appendix A.
Corollary 3.4. The lower bound of Theorem 3.3 is maximized by the following non-scalar step size:

α∗k =

{
1
2c if k = min {arg maxi |∇θiJµ(θ)|} ,
0 otherwise,

which guarantees the following performance improvement: Jµ(θ′)− Jµ(θ) ≥ ‖∇θJµ(θ)‖2∞
4c .

Note that update induced by the obtained Λ∗ corresponds to employing a constant, scalar step size to
update just the parameter corresponding to the largest absolute gradient component. This method
is known in the literature as greedy coordinate descent. Convergence of this algorithm to a local

3

optimum is guaranteed for small step sizes, as shown in [20]. Note also that the way in which the
index is selected in case of multiple maxima (here min) is arbitrary, see the proof of Corollary 3.4
for details. We now propose an intuitive explanation of our result: the employed performance lower
bound ultimately derives from Corollary 3.6 in [13]. From the original bound, one can easily see
that the positive part accounts to the average advantage of the new policy over the old one, while the
negative part penalizes large parameter updates, which may result in overshooting. Updating just the
parameter corresponding to the larger policy gradient component represents an intuitive trade-off
between these two objectives. We now show that this result represents an improvement w.r.t. the
adaptive scalar step size proposed in [15] for the current setting:
Corollary 3.5. Under identical hypotheses, the performance improvement guaranteed by Corollary
3.4 is never less than the one guaranteed by Corollary 5.1 in [15], i.e.:

‖∇θJµ(θ)‖2∞
4c

≥
‖∇θJµ(θ)‖42

4c ‖∇θJµ(θ)‖21
.

This corollary derives from the trivial norm inequality ‖∇θJµ(θ)‖∞ ‖∇θJµ(θ)‖1 ≥ ‖∇θJµ(θ)‖22.

3.2 Approximate Framework

We now turn to the more realistic case in which the policy gradient,∇θJµ(θ), is not known, and has
to be estimated from a finite number of trajectory samples. A performance improvement can still be
guaranteed with high probability. To adapt the result of Theorem 3.3 to the stochastic gradient case,
we need both a lower bound on the policy gradient estimate ∇̂θJµ(θ):

∇̂θJµ(θ) = max(|∇̂θJµ(θ)| − ε,0)

(where the maximum is component-wise) and an upper bound:

∇̂θJµ(θ) = |∇̂θJµ(θ)|+ ε

where ε = [ε1, . . . , εm], and εi is an upper bound on the approximation error of ∇θiJµ(θ) with
probability at least 1− δ. We can now state the following:
Theorem 3.6. Under the same assumptions of Theorem 3.3, and provided that a policy gradient
estimate ∇̂θJµ(θ) is available, so that P(|∇θiJµ(θ) − ∇̂θiJµ(θ)| ≥ εi) ≤ δ, ∀i = 1, . . . ,m, the
difference between the performance of πθ′ and the one of πθ can be bounded below with probability
at least (1− δ)m as follows:

Jµ(θ′)− Jµ(θ) ≥ ∇̂θJµ(θ)
T

Λ∇̂θJµ(θ)− c
∥∥∥Λ∇̂θJµ(θ)

∥∥∥2

1
,

where c is defined as in Theorem 3.3.

To derive the optimal step size, we first restrict our analysis to the case in which ε1 = ε2 = . . . =
εm , ε. We call this common estimation error ε. This comes naturally in the following section,
where we use concentration bounds to give an expression for ε. However, it is always possible to
define a common error by ε = maxi εi. We then need the following assumption:
Assumption 3.7. At least one component of the policy gradient estimate is, in absolute value, no
less than the approximation error:

∥∥∥∇̂θJµ(θ)
∥∥∥
∞
≥ ε.

The violation of the above assumption can be used as a stopping condition since it prevents to
guarantee any performance improvement. We can now state the following (the derivation is similar to
the one of Corollary 3.5 and is, again, left to Appendix A):
Corollary 3.8. The performance lower bound of Theorem 3.6 is maximized under Assumption 3.7 by
the following non-scalar step size:

α∗k =

(‖∇̂θJµ(θ)‖∞−ε)

2

2c(‖∇̂θJµ(θ)‖∞+ε)
2 if k = min

{
arg maxi |∇̂θiJµ(θ)|

}
,

0 otherwise,

4

which guarantees with probability (1− δ)m a performance improvement

Jµ(θ′)− Jµ(θ) ≥

(∥∥∥∇̂θJµ(θ)
∥∥∥
∞
− ε
)4

4c
(∥∥∥∇̂θJµ(θ)

∥∥∥
∞

+ ε
)2 .

4 Adaptive Batch Size

In this section we jointly optimize the step size for parameter updates and the batch size for policy
gradient estimation, taking into consideration the cost of collecting sample trajectories. We call N the
batch size, i.e., the number of trajectories sampled to compute the policy gradient estimate ∇̂θJµ(θ)
at each parameter update. We define the following cost-sensitive performance improvement measure:
Definition 4.1. Cost-sensitive performance improvement measure Υδ is defined as:

Υδ(Λ, N) :=
Bδ(Λ, N)

N
,

where Bδ is the high probability lower bound on performance improvement given in Theorem 3.6.

The rationale behind this choice of performance measure is to maximize the performance improvement
per sample trajectory. Using larger batch sizes leads to more accurate policy updates, but the gained
performance improvement is spread over a larger number of trials. This is particularly relevant in
real-world online applications, where the collection of more samples with a sub-optimal policy affects
the overall performance and must be justified by a greater improvement in the learned policy. By
defining Υδ in this way, we can control the improvement provided, on average, by each collected
sample. We now show how to jointly select the step size Λ and the batch size N so as to maximize
Υδ . Notice that the dependence of Bδ on N is entirely through ε, whose expression depends on which
concentration bound is considered. We first restrict our analysis to concentration bounds that allow to
express ε as follows:
Assumption 4.1. The per-component policy gradient estimation error made by averaging over N
sample trajectories can be bounded with probability at least 1− δ by:

ε(N) =
dδ√
N
,

where dδ is a constant w.r.t. N .

This class of inequalities includes well-known concentration bounds such as Chebyshev’s and
Hoeffding’s. Under Assumption 4.1 Υδ can be optimized in closed form:
Theorem 4.2. Under the hypotheses of Theorem 3.3 and Assumption 4.1, the cost-sensitive perfor-
mance improvement measure Υδ , as defined in Definition 4.1, is maximized by the following step size
and batch size:

α∗k =

{
(13−3

√
17)

4c if k = min
{

arg maxi |∇̂θiJµ(θ)|
}
,

0 otherwise,
N∗ =

(13 + 3

√
17)d2

δ

2
∥∥∥∇̂θJµ(θ)

∥∥∥2

∞

 ,
where c =

RM2
φ

(1−γ)2σ2

(
|A|√
2πσ

+ γ
2(1−γ)

)
. This choice guarantees with probability (1− δ)m a perfor-

mance improvement of:

Jµ(θ′)− Jµ(θ) ≥ 393− 95
√

17

8

∥∥∥∇̂θJµ(θ)
∥∥∥2

∞
≥ 0.16

∥∥∥∇̂θJµ(θ)
∥∥∥2

∞
.

Notice that, under Assumption 4.1, Assumption 3.7 can be restated as N ≥ d2δ

‖∇̂θJµ(θ)‖2∞
, which

is always verified by the proposed N∗. This means that the adaptive batch size never allows an
estimation error larger than the gradient estimate. Another peculiarity of this result is that the step
size is constant, in the sense that its value does not depend on the gradient estimate. This can be

5

explained in terms of a duality between step size and batch size: in other conservative adaptive-step
size approaches, such as the one proposed with Theorem 4.2, the step size is kept small to counteract
policy updates that are too off due to bad gradient estimates. When also the batch size is made
adaptive, a sufficient number of sample trajectories can be taken to keep the policy update on track
even with a constant-valued step size. Note that, in this formulation, the batch size selection process
is always one step behind the gradient estimation. A possible synchronous implementation is to
update N∗ each time a trajectory is performed, using all the data collected since the last learning step.
As soon as the number of trajectories performed in the current learning iteration is larger than or
equal to N∗, a new learning step is performed.

We now consider some concentration bounds in more detail: we provide the values for dδ , while the
full expressions for N∗ can be found in Appendix B.

4.1 Chebyshev’s Bound

By using the sample mean version of Chebyshev’s bound we obtain:

dδ =

√
V ar[∇̃θiJµ(θ)]

δ
,

where ∇̃θiJµ(θ) is the policy gradient approximator (from a single sample trajectory). The main
advantage of this bound is that it does not make any assumption on the range of the gradient sample.
The variance of the sample can be upper bounded in the case of the REINFORCE [1] and the
G(PO)MDP [3]/PGT [2] gradient estimators by using results from [21], already adapted for similar
purposes in [15]. The G(PO)MDP/PGT estimator suffers from a smaller variance if compared with
REINFORCE, and the variance bound is indeed tighter.

4.2 Hoeffding’s Bound

By using Hoeffding’s bound we obtain:

dδ = R

√
log 2/δ

2
,

where R is the range of the gradient approximator, i.e., |supp(∇̃θiJµ(θ))|. For the class of policies
we are considering, i.e., Gaussian with mean linear in the features, under some assumptions, the
range can be upper bounded as follows:

Lemma 4.3. For any Gaussian policy πθ ∼ N (θTφ(s), σ2), assuming that the action space is
bounded (∀a ∈ A, |a| ≤ A) and the policy gradient is estimated on trajectories of length H , the
range R of the policy gradient sample ∇̃θiJµ(θ) can be upper bounded ∀i = 1, . . . ,m and ∀θ by

R ≤ 2HMφAR

σ2(1− γ)
.

As we will show in Section 5, a more practical solution (even if less rigorous) consists in computing
the range as the difference between the largest and the smallest gradient sample seen during learning.

4.3 Empirical Bernstein’s Bound

Tighter concentration bounds allow for smaller batch sizes (which result in more frequent policy
updates) and larger step sizes, thus speeding up the learning process and improving long-time average
performance. An empirical Bernstein bound from [22] allows to use sample variance instead of the
variance bounds from [21] and to limit the impact of the gradient range. On the other hand, this
bound does not satisfy Assumption 4.1, giving for the estimation error the following, more complex,
expression:

ε(N) =
dδ√
N

+
fδ
N
,

where

dδ =
√

2SN ln 3/δ, f = 3R ln 3/δ,

6

and SN is the sample variance of the gradient approximator. No reasonably simple closed-form
solution is available in this case, requiring a linear search of the batch size N∗ maximizing Υδ. By
adapting Assumption 3.7 to this case, a starting point for this search can be provided:

N ≥

dδ +

√
d2
δ + 4fδ

∥∥∥∇̂θJµ(θ)
∥∥∥
∞

2
∥∥∥∇̂θJµ(θ)

∥∥∥
∞

2

,

We also know that there is a unique maximum in [N0,+∞) (see Appendix A for more details) and
that Υδ goes to 0 as N goes to infinity. Hence, to find the optimal batch size, it is enough to start from
N0 and stop as soon as the value of the cost function Υ(Λ∗, N) begins to decrease. Furthermore, the
optimal step size is no longer constant: it can be computed with the expression given in Corollary 3.8
by setting ε := ε(N∗). As for the Hoeffding’s bound, the range R can be upper bounded exactly or
estimated from samples.

Table 1: Improvement rate of the policy updates for different policy standard deviation σ, fixed batch
size N and fixed step size α, using the G(PO)MDP gradient estimator.

σ = 0.5 σ = 1

N = 10000 N = 1000 N = 100 N = 10000 N = 1000 N = 100

1e-3 95.96% 52.85% 49.79% 24.24% 37.4% 50.4%
α 1e-4 100% 73.27% 51.41% 100% 27.03% 46.08%

1e-5 98.99% 81.88% 55.69% 100% 99.9% 39.04%
1e-6 100% 83.88% 58.44% 100% 100% 86.04%

Table 2: Average performance for different gradient estimators, statistical bounds and values of δ.
All results are averaged over 5 runs (95% confidence intervals are reported).

Estimator Bound δ Υ Confidence interval

REINFORCE Chebyshev 0.95 -11.3266 [-11.3277; -11.3256]
REINFORCE Chebyshev 0.75 -11.4303 [-11.4308; -11.4297]
REINFORCE Chebyshev 0.5 -11.5947 [-11.5958; -11.5937]
G(PO)MDP Chebyshev 0.95 -10.6085 [-10.6087; -10.6083]
G(PO)MDP Chebyshev 0.75 -10.7141 [-10.7145; -10.7136]
G(PO)MDP Chebyshev 0.5 -10.9036 [-10.904; -10.9031]
G(PO)MDP Chebyshev 0.25 -11.2355 [-11.2363; -11.2346]
G(PO)MDP Chebyshev 0.05 -11.836 [-11.8368; -11.8352]
G(PO)MDP Hoeffding 0.95 -11.914 [-11.9143; -11.9136]
G(PO)MDP Bernstein 0.95 -10.2159 [-10.2162; -10.2155]
G(PO)MDP Hoeffding (empirical range) 0.95 -9.8582 [-9.8589; -9.8574]
G(PO)MDP Bernstein (empirical range) 0.95 -9.6623 [-9.6619; -9.6627]

5 Numerical Simulations

In this section, we test the proposed methods on the linear-quadratic Gaussian regulation (LQG)
problem [23]. The LQG problem is defined by transition model st+1 ∼ N (st + at, σ

2
0), Gaussian

policy at ∼ N (θ · s, σ2) and reward rt = −0.5(s2
t + a2

t). In all our simulations we use σ0 = 0,
since all the noise can be modelled on the agent’s side without loss of generality. Both action and
state variables are bounded to the interval [−2, 2] and the initial state is drawn uniformly at random.
We use this task as a testing ground because it is simple, all the constants involved in our bounds
can be computed exactly, and the true optimal parameter θ∗ is available as a reference. We use a
discount factor γ = 0.9, which gives an optimal parameter θ∗ ≈ −0.59, corresponding to expected
performance J(θ∗) ≈ −13.21. Coherently with the framework described in Section 1, we are
interested both in the convergence speed and in the ratio of policy updates that does not result in a

7

worsening of the expected performance, which we will call improvement ratio. First of all, we want
to analyze how the choice of fixed step sizes and batch sizes may affect the improvement ratio and
how much it depends on the variability of the trajectories (that in this case is due to the variance of
the policy). Table 1 shows the improvement ratio for two parameterizations (σ = 0.5 and σ = 1)
when various constant step sizes and batch sizes are used, starting from θ = −0.55 and stopping after
a total of one million trajectories. As expected, small batch sizes combined with large step sizes lead
to low improvement ratios. However, the effect is non-trivial and problem-dependent, justifying the
need for an adaptive method.

We then proceed to test the methods described in Section 4. In the following simulations, we use
σ = 1 and start from θ = 0, stopping after a total of 30 million trajectories. Figure 1 shows the
expected performance over sample trajectories for both the REINFORCE and G(PO)MDP gradient
estimators, using Chebyshev’s bound with different values of δ. Expected performance is computed
for each parameter update. Data are then scaled to account for the different batch sizes. In general,
REINFORCE performs worse than G(PO)MDP due to its larger variance (in both cases the proper
optimal baseline from [23] was used), and larger values of δ (the probability with which worsening
updates are allowed to take place) lead to better performance. Notice that an improvement ratio of 1 is
achieved also with large values of δ. This is due to the fact that the bounds used in the development of
our method are not tight. Being the method this conservative, in practical applications δ can be set to
a high value to improve the convergence rate. Another common practice in empirical applications is
to shrink confidence intervals through a scalar multiplicative factor. However, in this work we chose
to not exploit this trick. Figure 2 compares the performance of the different concentration bounds
described in the previous section, using always G(PO)MDP to estimate the gradient and δ = 0.95.
As expected, Bernstein’s bound performs better than Chebyshev’s, especially in the empirical range
version. The rigorous version of Hoeffding’s bound performs very poorly, while the one using the
empirical range is almost as good as the corresponding Bernstein method. This is due to the fact
that the bound on the gradient estimate range is very loose, since it accounts also for unrealistic
combinations of state, action and reward. Finally, to better capture the performance of the different
variants of the algorithm in a real-time scenario, we define a metric Υ, which is obtained by averaging
the real performance (measured during learning) over all the trajectories, coherently with the cost
function used to derive the optimal batch size. The results are reported in Table 2. In Appendix C we
also show how the adaptive batch size evolves as the policy approaches the optimum.

6 Conclusions

We showed the relationship between the batch size and the step size in policy gradient approaches
under Gaussian policies, and how their joint optimization can lead to parameters updates that
guarantee with high probability a fixed improvement in the policy performance. In addition to
the formal analysis, we proposed practical methods to compute the information required by the
algorithms. Finally, we have proposed a preliminary evaluation on a simple control task. Future work
should focus on developing more practical methods. It would also be interesting to investigate the
extension of the proposed methodology to other classes of policies.

Acknowledgments

This research was supported in part by French Ministry of Higher Education and Research, Nord-Pas-
de-Calais Regional Council and French National Research Agency (ANR) under project ExTra-Learn
(n.ANR-14-CE24-0010-01).

References
[1] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement

learning. Machine Learning, 8(3):229–256, 1992.

[2] Richard S Sutton, David A. McAllester, Satinder P. Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. In Advances in Neural Information Processing
Systems 12, pages 1057–1063. MIT Press, 2000.

[3] Jonathan Baxter and Peter L. Bartlett. Infinite-horizon policy-gradient estimation. Journal of Artificial
Intelligence Research, 15:319–350, 2001.

8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

·107

−55

−50

−45

−40

−35

−30

−25

−20

−15

Number of Trajectories

E
x
p
ec
te
d
P
er
fo
rm

a
n
ce

G(PO)MDP δ=0.95

G(PO)MDP δ=0.75

G(PO)MDP δ=0.5

G(PO)MDP δ=0.25

G(PO)MDP δ=0.05

REINFORCE δ=0.95

REINFORCE δ=0.75

REINFORCE δ=0.5

Figure 1: Expected performance over sample trajectories using G(PO)MDP and REINFORCE
(dashed) gradient estimators and Chebyshev bound, for different values of δ. All results are
averaged over 5 runs.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

·107

−50

−40

−30

−20

−10

Number of Trajectories

E
x
p
ec
te
d
P
er
fo
rm

an
ce

Bernstein (empirical range)

Hoeffding (empirical range)

Bernstein

Chebyshev

Hoeffding

Figure 2: Comparison of the performance of different statistical bounds, using the G(PO)MDP
gradient estimator and δ = 0.95. All results are averaged over 5 runs.

[4] Frank Sehnke, Christian Osendorfer, Thomas Rückstieß, Alex Graves, Jan Peters, and Jürgen Schmidhuber.
Policy gradients with parameter-based exploration for control. In Artificial Neural Networks - ICANN
2008, pages 387–396. Springer Berlin Heidelberg, 2008.

[5] Jens Kober and Jan Peters. Policy search for motor primitives in robotics. In Advances in Neural
Information Processing Systems 21, volume 21, pages 849–856, 2008.

[6] Jan Peters and Stefan Schaal. Natural actor-critic. Neurocomputing, 71(7-9):1180–1190, 2008.

[7] Jan Peters, Katharina Mülling, and Yasemin Altun. Relative entropy policy search. In AAAI Conference on
Artificial Intelligence 24. AAAI Press, 2010.

[8] Ivo Grondman, Lucian Busoniu, Gabriel AD Lopes, and Robert Babuska. A survey of actor-critic
reinforcement learning: Standard and natural policy gradients. Systems, Man, and Cybernetics, Part C:
Applications and Reviews, IEEE Transactions on, 42(6):1291–1307, 2012.

[9] Marc Peter Deisenroth, Gerhard Neumann, Jan Peters, et al. A survey on policy search for robotics.
Foundations and Trends in Robotics, 2(1-2):1–142, 2013.

[10] Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
International Conference on Machine Learning 19, pages 267–274. Morgan Kaufmann, 2002.

[11] Dimitri P Bertsekas. Approximate policy iteration: A survey and some new methods. Journal of Control
Theory and Applications, 9(3):310–335, 2011.

9

[12] Bruno Scherrer. Approximate policy iteration schemes: A comparison. In International Conference on
Machine Learning 31, volume 32 of JMLR Workshop and Conference Proceedings, pages 1314–1322.
JMLR.org, 2014.

[13] Matteo Pirotta, Marcello Restelli, Alessio Pecorino, and Daniele Calandriello. Safe policy iteration.
In International Conference on Machine Learning 30, volume 28 of JMLR Workshop and Conference
Proceedings, pages 307–315. JMLR.org, 2013.

[14] Yasin Abbasi-Yadkori, Peter L Bartlett, and Stephen J Wright. A fast and reliable policy improvement
algorithm. In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics,
pages 1338–1346, 2016.

[15] Matteo Pirotta, Marcello Restelli, and Luca Bascetta. Adaptive step-size for policy gradient methods. In
Advances in Neural Information Processing Systems 26, pages 1394–1402. Curran Associates, Inc., 2013.

[16] Matteo Pirotta, Marcello Restelli, and Luca Bascetta. Policy gradient in lipschitz markov decision processes.
Machine Learning, 100(2-3):255–283, 2015.

[17] John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp Moritz. Trust region policy
optimization. In International Conference on Machine Learning 32, volume 37 of JMLR Workshop and
Conference Proceedings, pages 1889–1897. JMLR.org, 2015.

[18] Philip Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. High confidence policy improve-
ment. In International Conference on Machine Learning 32, volume 37 of JMLR Workshop and Conference
Proceedings, pages 2380–2388. JMLR.org, 2015.

[19] Mohammad Ghavamzadeh, Marek Petrik, and Yinlam Chow. Safe policy improvement by minimizing
robust baseline regret. pages 2298–2306, 2016.

[20] Julie Nutini, Mark W. Schmidt, Issam H. Laradji, Michael P. Friedlander, and Hoyt A. Koepke. Coordinate
descent converges faster with the gauss-southwell rule than random selection. In International Conference
on Machine Learning 32, volume 37 of JMLR Workshop and Conference Proceedings, pages 1632–1641.
JMLR.org, 2015.

[21] Tingting Zhao, Hirotaka Hachiya, Gang Niu, and Masashi Sugiyama. Analysis and improvement of policy
gradient estimation. Neural Networks, 26:118–129, 2012.

[22] Volodymyr Mnih, Csaba Szepesvári, and Jean-Yves Audibert. Empirical bernstein stopping. In Interna-
tional Conference on Machine Learning 25, volume 307 of ACM International Conference Proceeding
Series, pages 672–679. ACM, 2008.

[23] J. Peters and S. Schaal. Reinforcement learning of motor skills with policy gradients. Neural Networks,
21(4):682–697, May 2008.

[24] M. S. Pinsker. Information and Information Stability of Random Variables and Processes. Izv. Akad. Nauk,
Moskva, 1960.

10

A Proofs

In this appendix, we provide proofs for all the new theoretical results, including some auxiliary
lemmas.

Lemma A.1. For any initial state distribution µ and any pair of stationary Gaussian policies
πθ ∼ N (θTφ(s), σ2) and πθ′ ∼ N (θ′Tφ(s), σ2), so that θ′ = θ + Λ∇θJµ(θ), and for any state
s and action a

π(a|s,θ′)− π(a|s,θ) ≥ ∇θπ(a|s,θ)TΛ∇θJµ(θ)−
M2
φ ‖Λ∇θJµ(θ)‖21√

2πσ3

Proof. By exploiting Taylor’s expansion

π(a|s,θ′) = π(a|s,θ + Λ∇θJµ(θ))

= π(a|s,θ) +∇θπ(a|s,θ)T∆θ +R1(∆θ),

where R1(∆θ) is the remainder of the series which can be bounded as follows by exploiting Lemma
4.1 from [15] and Assumption 3.1:

R1(∆θ) =

m∑
i=1

m∑
j=1

∂2π(a|s,θ)

∂θi∂θj

∣∣∣∣
θ+c∆θ

∆θi∆θj
1 + I(i = j)

for some c ∈ (0, 1)

≥−
m∑
i=1

m∑
j=1

|φi(s)φj(s)|√
2πσ3

∆θi∆θj
1 + I(i = j)

=− 1√
2πσ3

m∑
i=1

m∑
j=1

αi|φi(s)|∇θiJµ(θ)αj |φj(s)|∇θjJµ(θ)

1 + I(i = j)

=− (|∇θJµ(θ)|TΛ|φ(s)|)2

√
2πσ3

≥−
M2
φ ‖Λ∇θJµ(θ)‖21√

2πσ3
.

It is now enough to apply this bound to Taylor’s expansion.

Lemma A.2. For any initial state distribution µ and any pair of stationary Gaussian policies
πθ ∼ N (θTφ(s), σ2) and πθ′ ∼ N (θ′Tφ(s), σ2), so that θ′ = θ + Λ∇θJµ(θ)

‖πθ′ − πθ‖2∞ ≤
M2
φ ‖Λ∇θJµ(θ)‖21

σ2

Proof. By exploiting Pinsker’s inequality [24]

‖πθ′ − πθ‖2∞ = sup
s
‖πθ′ − πθ‖2∞

≥ sup
s

2H(πθ′ ||πθ)

= sup
s

1

σ2

∑
i

(∇θiJµ(θ)αiφi(s))
2

≥
M2
φ ‖Λ∇θJµ(θ)‖21

σ2
,

where H(P ||Q) is the Kullback-Liebler divergence.

Lemma 3.2. For any initial state distribution µ and any pair of stationary Gaussian policies
πθ ∼ N (θTφ(s), σ2) and πθ′ ∼ N (θ′Tφ(s), σ2), so that θ′ = θ + Λ∇θJµ(θ), and under

11

Assumption 3.1, the difference between the performance of πθ′ and the one of πθ can be bounded
below as follows:

Jµ(θ
′
)− Jµ(θ) ≥ ∇θJµ(θ)

T
Λ∇θJµ(θ)−

‖Λ∇θJµ(θ)‖21M
2
φ

(1− γ)σ2

(
1

√
2πσ

∫
S
d
πθ
µ (s)

∫
A
Q
πθ (s, a)dads+

γ ‖Qπθ‖∞
2(1− γ)

)
,

where ‖Qπθ‖∞ is the supremum norm of the Q-function: ‖Qπθ‖∞ = sup
s∈S,a∈A

Qπθ (s, a).

Proof. We plug the results of Lemmas A.1 and A.2 into Lemma 3.1 from [15]:

Jµ(θ′)− Jµ(θ) ≥ 1

1− γ

∫
S
dπθ
µ (s)

∫
A

(π(a|s,θ′)− π(a|s,θ))Qπθ (s, a)dads

− γ

2(1− γ)2
‖πθ′ − πθ‖2∞ ‖Q

πθ‖∞

≥ 1

1− γ

∫
S
dπθ
µ (s)

∫
A
∇θπ(a|s,θ)TΛ∇θJµ(θ)Qπθ (s, a)dads (1)

−
M2
φ ‖Λ∇θJµ(θ)‖21
(1− γ)

√
2πσ3

∫
S
dπθ
µ (s)

∫
A
Qπθ (s, a)dads (2)

−
γM2

φ ‖Λ∇θJµ(θ)‖21
2(1− γ)2σ2

‖Qπθ‖∞ (3)

Term (1) can be simplified by using the Policy Gradient Theorem [2]:

1

1− γ

∫
S
dπθ
µ (s)

∫
A
∇θπ(a|s,θ)TΛ∇θJµ(θ)Qπθ (s, a)dads

=
∇θJµ(θ)TΛ

1− γ

∫
S
dπθ
µ (s)

∫
A
∇θπ(a|s,θ)Qπθ (s, a)dads

=∇θJµ(θ)TΛ∇θJµ(θ)

The proof now follows simply by rearranging terms.

Theorem 3.3. For any initial state distribution µ and any pair of stationary Gaussian policies
πθ ∼ N (θTφ(s), σ2) and πθ′ ∼ N (θ′Tφ(s), σ2), so that θ′ = θ + Λ∇θJµ(θ), and under
Assumption 3.1, the difference between the performance of πθ′ and the one of πθ can be bounded
below as follows:

Jµ(θ′)− Jµ(θ) ≥ ∇θJµ(θ)
T
Λ∇θJµ(θ)− c ‖Λ∇θJµ(θ)‖21 ,

where c =
RM2

φ

(1−γ)2σ2

(
|A|√
2πσ

+ γ
2(1−γ)

)
and |A| is the volume of the action space.

Proof. For every state s ∈ S and every action a ∈ A, the Q-function belongs to
[
− R

1−γ ,
R

1−γ

]
. As a

consequence,
∫
AQ

πθ (s, a)da ≤ |A|R1−γ and ‖Qπθ‖∞ ≤
R

1−γ . The proof follows from applying these
bounds to the expression of Lemma 3.2.

Corollary 3.4. The lower bound of Theorem 3.3 is maximized by the following non-scalar step size:

α∗k =

{
1
2c if k = min {arg maxi |∇θiJµ(θ)|} ,
0 otherwise,

which guarantees the following performance improvement: Jµ(θ′)− Jµ(θ) ≥ ‖∇θJµ(θ)‖2∞
4c .

Proof. We study the bound from Theorem 3.3, which we call B for the duration of this proof, as a
function of α1, . . . , αm constrained by αi ≥ 0 ∀i = 1, . . . ,m. The derivative of the bound w.r.t. αk
is:

∂B

∂αk
= ∇θkJµ(θ)2 − 2c|∇θkJµ(θ)|

m∑
i=1

(αi|∇θiJµ(θ)|) .

12

Hence setting the gradient of B to zero corresponds to the following problem:

m∑
i=1

(αi|∇θiJµ(θ)|) =
|∇θkJµ(θ)|

2c
∀k = 1, . . . ,m,

which is impossible (except from the case in which all the components of the gradient are equal in
absolute value, which we address later). This means the function has no stationary points. In the
most general case, the best we can do is to set to zero a single component of the gradient, i.e., partial
maximization is possible only along a single dimension at a time. Candidates for the optimum are
thus attained only on the boundary given by the constraint αi ≥ 0∀i = 1, . . . ,m, and are obtained
by setting to 0 all the components of the step size but one, say αk. Under this hypothesis the bound
becomes:

B = αk∇θkJµ(θ)2 − cα2
k∇θkJµ(θ),

which is maximized by setting αk = 1
2c . This assignment yields:

Jµ(θ′)− Jµ(θ) ≥ ∇θkJµ(θ)2

4c
.

To obtain the global maximum is enough to select k as to maximize the above quantity, which results
in the following:

α∗k =

{
1
2c if k = arg maxi |∇θiJµ(θ)|,
0 otherwise.

In case the arg max function returns more than one candidate, we have a looser condition. Suppose
|∇̂θiJµ(θ)| = |∇̂θjJµ(θ)| = ‖∇θJµ(θ)‖∞ ∀i, j ∈ I ′ ⊆ {1, . . . ,m}. The bound becomes:

B = ‖∇θJµ(θ)‖∞

∑
i∈I′

αi − c

(∑
i∈I′

αi

)2
 .

In this case the maximum is attained by any assignment Λ such that:{∑
i∈I′

αi = 1
2c

αj = 0 ∀j /∈ I ′.

A possible solution is to pick just one k ∈ I ′, set αk = 1/2c and all the other components of Λ to 0.
We adopt this solution in order to maintain the coordinate descent nature of the resulting algorithm,
which is crucial for guaranteeing convergence. The non-zero component can be selected in any way,
for instance by lexicographical order of the index. This gives us a more general expression for Λ∗:

α∗k =

{
1
2c if k = min {arg maxi |∇θiJµ(θ)|} ,
0 otherwise.

By substituting Λ∗ back into the bound, we obtain:

Jµ(θ′)− Jµ(θ) ≥
‖∇θJµ(θ)‖2∞

4c
.

Theorem 3.6. Under the same assumptions of Theorem 3.3, and provided that a policy gradient
estimate ∇̂θJµ(θ) is available, so that P(|∇θiJµ(θ) − ∇̂θiJµ(θ)| ≥ εi) ≤ δ, ∀i = 1, . . . ,m, the
difference between the performance of πθ′ and the one of πθ can be bounded below with probability
at least (1− δ)m as follows:

Jµ(θ′)− Jµ(θ) ≥ ∇̂θJµ(θ)
T

Λ∇̂θJµ(θ)− c
∥∥∥Λ∇̂θJµ(θ)

∥∥∥2

1
,

where c is defined as in Theorem 3.3.

13

Proof. The proof immediately follows from Theorem 3.3 and the definition of ∇̂θJµ(θ) and

∇̂θJµ(θ). Note that the saturation to 0 in ∇̂θJµ(θ) is necessary since ∇θJµ(θ) is taken with
absolute value in the negative term of the original bound.

Corollary 3.8. The performance lower bound of Theorem 3.6 is maximized under Assumption 3.7 by
the following non-scalar step size:

α∗k =

(‖∇̂θJµ(θ)‖∞−ε)

2

2c(‖∇̂θJµ(θ)‖∞+ε)
2 if k = min

{
arg maxi |∇̂θiJµ(θ)|

}
,

0 otherwise,

which guarantees with probability (1− δ)m a performance improvement

Jµ(θ′)− Jµ(θ) ≥

(∥∥∥∇̂θJµ(θ)
∥∥∥
∞
− ε
)4

4c
(∥∥∥∇̂θJµ(θ)

∥∥∥
∞

+ ε
)2 .

Proof. The derivation of the optimal step size is similar to the one of Corollary 3.4. The only
difference is that we must select the parameter to update as follows:

θk | k = min

{
arg max

i

{
max(|∇̂θiJµ(θ)| − εi, 0)2

4c(|∇̂θiJµ(θ)|+ εi)2

}}
.

In the case ε1 = ε2 = . . . = εm , ε, which can always be obtained by setting ε = maxi εi, the
criterion can be simplified as:

k = min

{
arg max

i

{
max(|∇̂θiJµ(θ)| − ε, 0)2

4c(|∇̂θiJµ(θ)|+ ε)2

}}
.

Then, since we are already maximizing, the max(·, 0) operator can be removed (under Assumption
4.2):

k = min

{
arg max

i

{
(|∇̂θiJµ(θ)| − ε)2

4c(|∇̂θiJµ(θ)|+ ε)2

}}
.

Being the objective function monotonic non-decreasing in |∇̂θkJµ(θ)|, we can simply select k as to
maximize |∇̂θkJµ(θ)|, obtaining:

α∗k =

(‖∇̂θJµ(θ)‖∞−ε)

2

2c(‖∇̂θJµ(θ)‖∞+ε)
2 if k = min

{
arg maxi |∇̂θiJµ(θ)|

}
,

0 otherwise.
By substituting Λ∗ back into the bound, we obtain:

Jµ(θ′)− Jµ(θ) ≥

(∥∥∥∇̂θJµ(θ)
∥∥∥
∞
− ε
)4

4c
(∥∥∥∇̂θJµ(θ)

∥∥∥
∞

+ ε
)2 .

Theorem 4.2. Under the hypotheses of Theorem 3.3 and Assumption 4.1, the cost-sensitive perfor-
mance improvement measure Υδ , as defined in Definition 4.1, is maximized by the following step size
and batch size:

α∗k =

{
(13−3

√
17)

4c if k = min
{

arg maxi |∇̂θiJµ(θ)|
}
,

0 otherwise,
N∗ =

(13 + 3

√
17)d2

δ

2
∥∥∥∇̂θJµ(θ)

∥∥∥2

∞

 ,
where c =

RM2
φ

(1−γ)2σ2

(
|A|√
2πσ

+ γ
2(1−γ)

)
. This choice guarantees with probability (1− δ)m a perfor-

mance improvement of:

Jµ(θ′)− Jµ(θ) ≥ 393− 95
√

17

8

∥∥∥∇̂θJµ(θ)
∥∥∥2

∞
≥ 0.16

∥∥∥∇̂θJµ(θ)
∥∥∥2

∞
.

14

Proof. We first optimize the cost function Υδ w.r.t Λ. Since Υδ is just the bound from Theorem
3.6 divided by N , we can use the result from Corollary 3.8, which under Assumption 4.1 can be
expressed as:

α∗k =

(‖∇̂θJµ(θ)‖∞−dδ/

√
N)

2

2c(‖∇̂θJµ(θ)‖∞+dδ/
√
N)

2 if k = min
{

arg maxi |∇̂θiJµ(θ)|
}
,

0 otherwise,

which yields:

Υδ(Λ
∗, N) =

(∥∥∥∇̂θJµ(θ)
∥∥∥
∞
− dδ/

√
N

)4

4c
(∥∥∥∇̂θJµ(θ)

∥∥∥
∞

+ dδ/
√
N

)2

N
.

To justify the use of Corollary 3.8, our N∗ must be compliant with 3.7, which, under Assumption 4.1,
translates into the following constraint:

N ≥ N0 :=
d2
δ∥∥∥∇̂θJµ(θ)
∥∥∥2

∞

.

By computing the derivative ∂Υδ/∂N we find just two stationary points in [N0,+∞): the first one
is N0 itself, which is a minimum (Υδ(Λ

∗, N0) = 0 and Υδ is non-negative); the other one is our
optimal batch size:

N∗ =
(13 + 3

√
17)d2

δ

2
∥∥∥∇̂θJµ(θ)

∥∥∥2

∞

.

Since Υδ(Λ
∗, N1) = 0, lim

N→+∞
Υδ(Λ

∗, N) = 0, and Υδ is continuous and differentiable in

[N0,+∞), N∗ is indeed the global maximum in the region of interest. We can now substitute
N∗ into Λ∗ to obtain:

α∗k =

{
(13−3

√
17)

4c if k = min
{

arg maxi |∇̂θiJµ(θ)|
}
,

0 otherwise,

and into Υδ(Λ
∗, N∗) to obtain:

Υ∗ =
(4977− 1207

√
17)
∥∥∥∇̂θJµ(θ)

∥∥∥4

∞
32d2

δ

.

Finally

Jµ(θ′)− Jµ(θ) ≥ N∗Υ∗ =
393− 95

√
17

8

∥∥∥∇̂θJµ(θ)
∥∥∥2

∞

with probability at least (1− δ)m.

Lemma 4.3. For any Gaussian policy πθ ∼ N (θTφ(s), σ2), assuming that the action space is
bounded (∀a ∈ A, |a| ≤ A) and the policy gradient is estimated on trajectories of length H , the
range R of the policy gradient sample ∇̃θiJµ(θ) can be upper bounded ∀i = 1, . . . ,m and ∀θ by

R ≤ 2HMφAR

σ2(1− γ)
.

Proof. We focus on the REINFORCE[1] gradient estimator:

∇̂θJ
RF
µ (θ) =

1

N

N∑
n=1

(
H∑
k=1

∇θ log π(ank |snk ,θ)

(
H∑
l=1

γl−1rnl − b

))
,

15

and the G(PO)MDP[3]/PGT[2] gradient estimator:

∇̂θJ
PGT
µ (θ) = ∇̂θJ

G(PO)MDP
µ (θ) =

1

N

N∑
n=1

(
H∑
k=1

∇θ log π(ank |snk ,θ)

(
H∑
l=k

γl−1rnl − bnl

))
.

In both cases, the i-th component of the single sample can be bounded in absolute value as

H∑
k=1

|∇θi log π(ank |snk ,θ)| R

1− γ
.

In the case of Gaussian policy, bounded action space (|a| ≤ A) and under Assumption 3.1, in the

most general case, the range of the term∇θi log π(ank |snk ,θ) can be bounded as 2MφA
σ2 . Finally

R ≤ 2HMφAR

σ2(1− γ)
.

B More on Statistical Bounds

Chebyshev’s bound. Using results from [21] as adapted in [15], we can give explicit formulations
for the optimal batch size. When the REINFORCE [1] gradient estimator (∇̂θJ

RF
µ (θ)) is used to

estimate the gradient, we can use Lemma 5.4 from [15] to bound the estimation error as:

ε ≤ 1√
N

(
RMφ(1− γH)

σ(1− γ)

√
H

δ

)
,

which gives an optimal batch size:

N∗ =
(13 + 3

√
17)R2M2

φH(1− γH)2

2δσ2(1− γ)2
∥∥∥∇̂θJRFµ (θ)

∥∥∥2

∞

.

Similarly, when the G(PO)MDP/PGT gradient estimator (∇̂θJ
PGT
µ (θ)) is used, using Lemma 5.5

from [15] we have:

ε ≤ 1√
N

(
RMφ

σ(1− γ)

√
1

δ

[
1− γ2H

1− γ2
+Hγ2H − 2γH

1− γH
1− γ

])

and

N∗ =
(13 + 3

√
17)R2M2

φ

[
1−γ2H

1−γ2 +Hγ2H − 2γH 1−γH
1−γ

]
2δσ2(1− γ)2

∥∥∥∇̂θJPGTµ (θ)
∥∥∥2

∞

.

These results are independent on the baseline used in the gradient estimation.

Hoeffding’s bound. The explicit expression for the optimal batch size using Hoeffding’s bound is:

N∗ =
(13 + 3

√
17)R2 log 2/δ

4
∥∥∥∇̂θJµ(θ)

∥∥∥2

∞

.

16

Empirical Bernstein’s bound. Using the empirical Bernstein’s bound from [22], the cost function
to optimize becomes (already optimized w.r.t the step size):

Υδ(Λ
∗, N) =

(∥∥∥∇̂θJµ(θ)
∥∥∥
∞
−
√

2SN ln 3/δ
N − 3R ln 3/δ

N

)4

4cN

(∥∥∥∇̂θJµ(θ)
∥∥∥
∞

+
√

2SN ln 3/δ
N + 3R ln 3/δ

N

)2 .

First of all, Assumption 3.7 gives the following constraint:

N ≥ N0 :=

dδ +

√
d2
δ + 4fδ

∥∥∥∇̂θJµ(θ)
∥∥∥
∞

2
∥∥∥∇̂θJµ(θ)

∥∥∥
∞

2

.

By computing the derivative w.r.t. N we obtain:

−
(
dδ
√
N + fδ −

∥∥∥∇̂θJµ(θ)
∥∥∥
∞
N

)3

×

×

(
2d2δN + 5dδfδ

√
N + 3dδ

∥∥∥∇̂θJµ(θ)
∥∥∥
∞
N3/2 + 3f2

δ + 6f
∥∥∥∇̂θJµ(θ)

∥∥∥
∞
N −

∥∥∥∇̂θJµ(θ)
∥∥∥2
∞
N2

)
4cN4

(
d
√
N + f +

∥∥∥∇̂θJµ(θ)
∥∥∥
∞
N
)3

.

The left side of the numerator gives again N0. By applying Descartes’ rule of signs to the left term,
seen as a polynomial in

√
N , we see that it gives just one root. The exact expression of this maximum

is too big to be reported, but its uniqueness justifies the methodology proposed for the search of N∗.

C More on Numerical Simulations

We show how the adaptive batch size evolves during the learning process. The following plots are
relative to the experiments reported in Figure 2. Simulations are stopped after a total of 30 million
trajectories, so different methods perform a different number of iterations. As the policy approaches
an optimum, larger and larger batch sizes need to be employed to guarantee a constant improvement.
We can see how less conservative methods, such as the ones using empirical ranges, show larger
oscillations in the batch size.

17

0 1000 2000 3000
iteration

0

0.5

1

1.5

2

2.5

ba
tc

h
si

ze

#10 4

Figure 3: Adaptive batch size over learning iterations, using Chebyshev’s bound.

18

0 100 200 300
iteration

8

8.5

9

9.5

10

10.5

11

ba
tc

h
si

ze

#10 4

Figure 4: Adaptive batch size over learning iterations, using Hoeffding’s bound.

0 2000 4000 6000
iteration

0

0.5

1

1.5

2

2.5

3

3.5

4

ba
tc

h
si

ze

#10 4

Figure 5: Adaptive batch size over learning iterations, using Hoeffding’s bound with empirical range.

19

0 1000 2000 3000
iteration

0

2000

4000

6000

8000

10000

12000

14000

16000

ba
tc

h
si

ze

Figure 6: Adaptive batch size over learning iterations, using empirical Bernstein’s bound.

0 5000 10000
iteration

0

5000

10000

15000

ba
tc

h
si

ze

Figure 7: Adaptive batch size over learning iterations, using empirical Bernstein’s bound with
empirical range.

20

	Introduction
	Preliminaries
	Non-Scalar Step Size for Gaussian Policies
	Exact Framework
	Approximate Framework

	Adaptive Batch Size
	Chebyshev's Bound
	Hoeffding's Bound
	Empirical Bernstein's Bound

	Numerical Simulations
	Conclusions
	Proofs
	More on Statistical Bounds
	More on Numerical Simulations

