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Abstract

Random projections have been increasingly adopted for a diverse set of tasks in
machine learning involving dimensionality reduction. One specific line of research
on this topic has investigated the use of quantization subsequent to projection
with the aim of additional data compression. Motivated by applications in nearest
neighbor search and linear learning, we revisit the problem of recovering inner
products (respectively cosine similarities) in such setting. We show that even under
coarse scalar quantization with 3 to 5 bits per projection, the loss in accuracy tends
to range from “negligible” to “moderate”. One implication is that in most scenarios
of practical interest, there is no need for a sophisticated recovery approach like
maximum likelihood estimation as considered in previous work on the subject.
What we propose herein also yields considerable improvements in terms of accuracy
over the Hamming distance-based approach in Li et al. (ICML 2014) which is
comparable in terms of simplicity.

1 Introduction

The method of random projections (RPs) for linear dimensionality reduction has become more
and more popular over the years after the basic theoretical foundation, the celebrated Johnson-
Lindenstrauss (JL) Lemma [12, 20, 33], had been laid out. In a nutshell, it states that it is possible
to considerably lower the dimension of a set of data points by means of a linear map in such a way
that squared Euclidean distances and inner products are roughly preserved in the low-dimensional
representation. Conveniently, a linear map of this sort can be realized by a variety of random
matrices [1, 2, 18]. The scope of applications of RPs has expanded dramatically in the course of
time, and includes dimension reduction in linear classification and regression [14, 30], similarity
search [5, 17], compressed sensing [8], clustering [7, 11], randomized numerical linear algebra and
matrix sketching [29], and differential privacy [21], among others.

The idea of achieving further data compression by means of subsequent scalar quantization of the
projected data has been considered for a while. Such setting can be motivated from constraints
concerning data storage and communication, locality-sensitive hashing [13, 27], or the enhancement
of privacy [31]. The extreme case of one-bit quantization can be associated with two seminal works
in computer science, the SDP relaxation of the MAXCUT problem [16] and the simhash [10]. One-bit
compressed sensing is introduced in [6], and along with its numerous extensions, has meanwhile
developed into a subfield within the compressed sensing literature. A series of recent papers discuss
quantized RPs with a focus on similarity estimation and search. The papers [25, 32] discuss quantized
RPs with a focus on image retrieval based on nearest neighbor search. Independent of the specific
application, [25, 32] provide JL-type statements for quantized RPs, and consider the trade-off between
the number of projections and the number of bits per projection under a given budget of bits as it also
appears in the compressed sensing literature [24]. The paper [19] studies approximate JL-type results
for quantized RPs in detail. The approach to quantized RPs taken in the present paper follows [27, 28]
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in which the problem of recovering distances and inner products is recast within the framework of
classical statistical point estimation theory. The paper [28] discusses maximum likelihood estimation
in this context, with an emphasis on the aforementioned trade-off between the number of RPs and the
bit depth per projection. In the present paper we focus on the much simpler and computationally much
more convenient approach in which the presence of the quantizer is ignored, i.e., quantized data are
treated in the same way as full-precision data. We herein quantify the loss of accuracy of this approach
relative to the full-precision case, which turns out to be insignificant in many scenarios of practical
interest even under coarse quantization with 3 to 5 bits per projection. Moreover, we show that
the approach compares favorably to the Hamming distance-based (or equivalently collision-based)
scheme in [27] which is of similar simplicity. We argue that both approaches have their merits: the
collision-based scheme performs better in preserving local geometry (the distances of nearby points),
whereas the one studied in more detail herein yields better preservation globally.

Notation. For a positive integer m, we let [m] = {1, . . . ,m}. For l ∈ [m], v
(l)

denotes the l-th
component of a vector v ∈ Rm; if there is no danger of confusion with another index, the brackets in
the subscript are omitted. I(P ) denotes the indicator function of expression P .

Supplement: Proofs and additional experimental results can be found in the supplement.

Basic setup. Let X = {x1, . . . , xn} ⊂ Rd be a set of input data with squared Euclidean norms
λ2i := ‖xi‖22, i ∈ [n]. We think of d being large. RPs reduce the dimensionality of the input data
by means of a linear map A : Rd → Rk, k � d. We assume throughout the paper that the map
A is realized by a random matrix with i.i.d. entries from the standard Gaussian distribution, i.e.,
Alj ∼ N(0, 1), l ∈ [k], j ∈ [d]. One standard goal of RPs is to approximately preserve distances in
X while lowering the dimension, i.e., ‖Axi −Axj‖22/k ≈ ‖xi − xj‖22 for all (i, j). This is implied
by approximate inner product preservation 〈xi, xj〉 ≈ 〈Axi, Axj〉 /k for all (i, j).

For the time being, we assume that it is possible to compute and store the squared norms {λ2i }ni=1,
and to rescale the input data to unit norm, i.e., one first forms x̃i ← xi/λi, i ∈ [n], before applying
A. In this case, it suffices to recover the (cosine) similarities ρij :=

〈xi,xj〉
λiλj

= 〈x̃i, x̃j〉, i, j ∈ [n], of
the input data X from their compressed representation Z = {z1, . . . , zn}, zi := Ax̃i, i ∈ [n].

2 Estimation of cosine similarity based on full-precision RPs

As preparation for later sections, we start by providing background concerning the usual setting
without quantization. Let (Z,Z ′)r be random variables having a bivariate Gaussian distribution with
zero mean, unit variance, and correlation r ∈ (−1, 1):

(Z,Z ′)r ∼ N2

((
0
0

)
,

(
1 r
r 1

))
. (1)

Let further x, x′ be a generic pair of points from X , and let z := Ax̃, z′ := Ax̃′ be the counterpart in
Z . Then the components {(z(l), z′(l))}

k
l=1 of (z, z′) are distributed i.i.d. as in (1) with r = ρ =: 〈x̃, x̃′〉.

Hence the problem of recovering the cosine similarity of x and x′ can be re-cast as estimating the
correlation from an i.i.d. sample of k bivariate Gaussian random variables. To simplify our exposition,
we henceforth assume that 0 ≤ ρ < 1 as this can easily be achieved by flipping the sign of one of x
or x′. The standard estimator of ρ is what is called the “linear estimator” herein:

ρ̂lin =
1

k
〈z, z′〉 =

1

k

k∑
l=1

z(l)z
′
(l). (2)

As pointed out in [26] this estimator can be considerably improved upon by the maximum likelihood
estimator (MLE) given (1):

ρ̂MLE = argmax
r

{
−1

2
log(1− r2)− 1

2

1

1− r2

(
1

k
‖z‖22 +

1

k
‖z′‖22 −

1

k
〈z, z′〉 2r

)}
. (3)

The estimator ρ̂MLE is not available in closed form, which is potentially a serious concern since it
needs to be evaluated for numerous different pairs of data points. However, this can be addressed
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by tabulation of the two statistics
{(
‖z‖22 + ‖z′‖22

)
/k, 〈z, z′〉 /k

}
and the corresponding solutions

ρ̂MLE over a sufficiently fine grid. At processing time, computation of ρ̂MLE can then be reduced to a
look-up in a pre-computed table.

One obvious issue of ρ̂lin is that it does not respect the range of the underlying parameter. A natural
fix is the use of the “normalized linear estimator”

ρ̂norm = 〈z, z′〉 /(‖z‖2 ‖z′‖2). (4)

When comparing different estimators of ρ in terms of statistical accuracy, we evaluate the mean
squared error (MSE), possibly asymptotically as the number of RPs k →∞. Specifically, we consider

MSEρ(ρ̂) = Eρ[(ρ− ρ̂)2] = Bias2ρ(ρ̂) + Varρ(ρ̂), Biasρ(ρ̂) := Eρ[ρ̂]− ρ, (5)

where ρ̂ is some estimator, and the subscript ρ indicates that expectations are taken with respect to a
sample (z, z′) following the bivariate normal distribution in (1) with r = ρ.

It turns out that ρ̂norm and ρ̂MLE can have dramatically lower (asymptotic) MSEs than ρ̂lin for large
values of ρ, i.e., for points of high cosine similarity. It can be shown that (cf. [4], p.132, and [26])

Biasρ(ρ̂lin) = 0, Varρ(ρ̂lin) = (1 + ρ2)/k, (6)

Bias2ρ(ρ̂norm) = O(1/k2), Varρ(ρ̂norm) = (1− ρ2)2/k +O(1/k2), (7)

Bias2ρ(ρ̂MLE) = O(1/k2), Varρ(ρ̂MLE) = (1−ρ2)2
1+ρ2 /k +O(1/k2). (8)

While for ρ = 0, the (asymptotic) MSEs are the same, we note that the leading terms of the MSEs
of ρ̂norm and ρ̂MLE decay at rate Θ((1− ρ)2) as ρ→ 1, whereas the MSE of ρ̂lin grows with ρ. The
following table provides the asymptotic MSE ratios of ρ̂lin and ρ̂norm for selected values of ρ.

ρ 0.5 0.6 0.7 0.8 0.9 0.95 0.99
MSEρ(ρ̂lin)

MSEρ(ρ̂norm)
2.2 3.3 5.7 12.6 50 200 5000

In conclusion, if it is possible to pre-compute and store the norms of the data prior to dimensionality
reduction, a simple form of normalization can yield important benefits with regard to the recovery of
inner products and distances for pairs of points having high cosine similarity. The MLE can provide
a further refinement, but the improvement over ρ̂norm can be at most by a factor of 2.

3 Estimation of cosine similarity based on quantized RPs

The following section contains our main results. After introducing preliminaries regarding quantiza-
tion, we review previous approaches to the problem, before analyzing estimators following a different
paradigm. We conclude with a comparison and some recommendations about what to use in practice.

Quantization. After obtaining the projected data Z , the next step is scalar quantization. Let
t = (t1, . . . , tK−1) with 0 = t0 < t1 < . . . < tK−1 < tK = +∞ be a set of thresholds
inducing a partitioning of the positive real line into K intervals {[ts−1, ts), s ∈ [K]}, and let
M = {µ1, . . . , µK} be a set of codes with µs representing interval [ts−1, ts), s ∈ [K]. Given t and
M, the scalar quantizer (or quantization map) is defined by

Q : R→M± := −M∪M, z 7→ Q(z) = sign(z)
∑K
s=1 µsI(|z| ∈ [ts−1, ts)). (9)

The projected and quantized data result asQ = {qi}ni=1 ⊂ (M±)k, qi =
(
Q(zi(l))

)k
l=1

, where zi(l)
denotes the l-th component of zi ∈ Z , l ∈ [k], i ∈ [n]. The bit depth b of the quantizer is given by
b := 1 + log2(K). For simplicity, we only consider the case where b is an integer. The case b = 1 is
well-studied [10, 27] and is hence disregarded in our analysis to keep our exposition compact.

Bin-based vs. code-based approaches. Let q = Q(z) and q′ = Q(z′) be the points resulting from
quantization of the generic pair z, z′ in the previous section. In this paper, we distinguish between
two basic paradigms for estimating the cosine similarity of the underlying pair x, x′ from q, q′. The
first paradigm, which we refer to as bin-based estimation, does not make use of the specific values of
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the codesM±, but only of the intervals (“bins”) associated with each code. This is opposite to the
second paradigm, referred to as code-based estimation which only makes use of the values of the
codes. As we elaborate below, an advantage of the bin-based approach is that working with intervals
reflects the process of quantization more faithfully and hence can be statistically more accurate; on the
other hand, a code-based approach tends to be more convenient from the point of view computation.
In this paper, we make a case for the code-based approach by showing that the loss in statistical
accuracy can be fairly minor in several regimes of practical interest.

Lloyd-Max (LM) quantizer. With b respectively K being fixed, one needs to choose the thresholds
t and the codesM of the quantizer (the second is crucial only for a code-based approach). In our
setting, with zi(l) ∼ N(0, 1), i ∈ [n], l ∈ [k], which is inherited from the distribution of the entries
of A, a standard choice is LM quantization [15] which minimizes the squared distortion error:

(t?,µ?) = argmin
t,µ

Eg∼N(0,1)[{g −Q(g; t,µ)}2]. (10)

Problem (10) can be solved by an iterative scheme that alternates between optimization of t for fixed
µ and vice versa. That scheme can be shown to deliver the global optimum [22]. In the absence of
any prior information about the cosine similarities that we would like to recover, (10) appears as a
reasonable default whose use for bin-based estimation has been justified in [28]. In the limit of cosine
similarity ρ→ 1, it may seem more plausible to use (10) with g replaced by its square, and taking the
root of the resulting optimal thresholds and codes. However, it turns out that empirically this yields
reduced performance more often than improvements, hence we stick to (10) in the sequel.

3.1 Bin-based approaches

MLE. Given a pair q = (q
(l)

)kl=1 and q′ = (q′
(l)

)kl=1 of projected and quantized points, max-
imum likelihood estimation of the underlying cosine similarity ρ is studied in depth in [28].
The associated likelihood function L(r) is based on bivariate normal probabilities of the form
Pr(Z ∈ [ts−1, ts), Z

′ ∈ [tu−1, tu)),P−r(Z ∈ [ts−1, ts), Z
′ ∈ [tu−1, tu)) with (Z,Z ′)r as in (1).

It is shown in [28] that the MLE with b ≥ 2 can be more efficient at the bit level than common
single-bit quantization [10, 16]; the optimal choice of b increases with ρ. While statistically optimal in
the given setting, the MLE remains computationally cumbersome even when using the approximation
in [28] because it requires cross-tabulation of the empirical frequencies corresponding to the bivariate
normal probabilities above. This makes the use of the MLE unattractive particularly in situations in
which it is not feasible to materialize all O(n2) pairwise similarities estimable from (qi, qj)i<j so
that they would need to be re-evaluated frequently.

Collision-based estimator. The collision-based estimator proposed in [27] is a bin-based approach
as the MLE. The similarity ρ is estimated as ρ̂col = θ−1

(∑k
l=1 I(q

(l)
= q′

(l)
)/k
)

, where the map
θ : [0, 1] → [0, 1] is defined by r 7→ θ(r) = Pr(Q(Z) = Q(Z ′)), shown to be monotonically
increasing in [27]. Compared to the MLE, ρ̂col uses less information – it only counts “collisions”,
i.e., events {q

(l)
= q′

(l)
}. The loss in statistical efficiency is moderate for b = 2, in particular for ρ

close to 1. However, as b increases that loss becomes more and more substantial; cf. Figure 1. On
the positive side, ρ̂col is convenient to compute given that the evaluation of the function θ−1 can be
approximated by employing a look-up table after tabulating θ on a fine grid.
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Figure 1: (L): Asymptotic MSEs [27] of ρ̂col (to be divided by k) for 2 ≤ b ≤ 4. (M,R): Asymptotic
relative efficiencies MSEρ(ρ̂col)/MSEρ(ρ̂MLE) for b ∈ {2, 4}, where ρ̂MLE is the MLE in [28].
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Figure 2: (L): Bias2ρ(ρ̂lin) and the bound of Theorem 1. (M): uniform upper bounds on Bias2ρ(ρ̂lin)
obtained from Theorem 1 by setting ρ = 1. (R): Varρ(ρ̂lin) (to be divided by k).

3.2 Code-based approaches

In the code-based approach, we simply ignore the fact that the quantized data actually represent
intervals and treat them precisely in the same way as full-precision data. Recovery of cosine similarity
is performed by means of the estimator in §2 with z, z′ replaced by q, q′. Perhaps surprisingly, it
turns out that depending on ρ the loss of information incurred by this rather crude approach can be
small already for bit depths between b = 3 and b = 5. That loss increases with ρ, with a fundamental
gap compared to bin-based approaches and to the full precision case in the limit ρ→ 1.

Linear estimator. We first consider ρ̂lin = 〈q, q′〉 /k. We note that ρ̂lin = ρ̂lin,b depends on b; b =∞
corresponds to the estimator ρ̂lin = ρ̂lin,∞ in §2 denoted by the same symbol. A crucial difference
between the code-based and the bin-based approaches discussed above is that the latter have vanishing
asymptotic squared bias of the order O(k−2) for any b [27, 28]. This is not the case for code-based
approaches whose bias needs to be analyzed carefully. The exact bias of ρ̂lin in dependence of ρ and
b can be evaluated exactly numerically. Numerical evaluations of bias and variance of estimators
discussed in the present section only rely on the computation of coefficients θα,β defined by

θα,β := Eρ[Q(Z)αQ(Z′)β ] =
∑

σ,σ′∈{−1,1}

K∑
s,u=1

σα(σ′)βµαs µ
β
uPρ

(
Z ∈ σ(ts−1, ts), Z

′ ∈ σ′(tu−1, tu)
)
,

(11)
where α, β are non-negative integers and (Z,Z ′) are bivariate normal (1) with r = ρ. Specifically,
we have Eρ[ρ̂lin] = θ1,1, Varρ(ρ̂lin) = (θ2,2 − θ21,1)/k. In addition to exact numerical evaluation, we
provide a bound on the bias of ρ̂lin which quantifies explicitly the rate of decay in dependence b.

Theorem 1. We have Bias2ρ(ρ̂lin) ≤ 4ρ2D2
b , where Db = 33/22π

12 2−2b ≈ 2.72 · 2−2b.

As shown in Figure 2 (L), the bound on the squared bias in Theorem 1 constitutes a reasonable
proxy of the exact squared bias. The rate of decay is O(2−4b). Moreover, it can be verified
numerically that the variance in the full precision case upper bounds the variance for finite b, i.e.,
Varρ(ρ̂lin,b) ≤ Varρ(ρ̂lin,∞), ρ ∈ [0, 1). Combining bias and variance, we may conclude that
depending on k, the MSE of ρ̂lin based on coarsely quantized data does not tend to be far from what
is achieved with full precision data. The following two examples illustrate this point.

(i) Suppose k = 100 and b = 3. With full precision, we have MSEρ(ρ̂lin,∞) = (1+ρ2)/k ∈ [.01, .02].
From Figure 2 (M) and the observation that Varρ(ρ̂lin,3) ≤ Varρ(ρ̂lin,∞), we find that the MSE can
go up by at most 7.2 · 10−3, i.e., it can at most double relative to the full precision case.

(ii) Suppose k = 1000 and b = 4. With the same reasoning as in (i), the MSE under quantization can
increase at most by a factor of 1.45 as compared to full precision data.

Figure 3 shows that these numbers still tend to be conservative. In general, the difference of the
MSEs for b =∞ on the one hand and b ∈ {3, 4, 5} on the other hand gets more pronounced for large
values of the similarity ρ and large values of k. This is attributed to the (squared) bias of ρ̂lin. In
particular, it does not pay off to choose k significantly larger than the order of the squared bias.
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Figure 3: MSEs of ρ̂lin for various k and b ∈ {3, 4, 5} (dotted). The solid (red) lines indicate the
corresponding MSEs for ρ̂lin in the full-precision case (b =∞).

Normalized estimator. In the full precision case we have seen that simple normalization of the
form ρ̂norm = 〈z, z′〉 /(‖z‖2 ‖z′‖2) can yield substantial benefits. Interestingly, it turns out that
the counterpart ρ̂norm = 〈q, q′〉 /(‖q‖2 ‖q′‖2) for quantized data is even more valuable as it helps
reducing the bias of ρ̂lin = 〈q, q′〉 /k. This effect can be seen easily in the limit ρ→ 1 in which case
Biasρ(ρ̂norm)→ 0 by construction. In general, bias and variance can be evaluated as follows.
Proposition 1. In terms of the coefficients θα,β defined in (11), as k →∞, we have

|Biasρ[ρ̂norm]| =
∣∣ θ1,1
θ2,0
− ρ
∣∣+O(k−1)

Var(ρ̂norm) = 1
k

(
θ2,2
θ22,0
− 2θ1,1θ3,1

θ32,0
+

θ21,1(θ4,0+θ2,2)

2θ42,0

)
+O(k−2).

Figure 4 (L,M) graphs the above two expressions. In particular, the plots highlight the reduction
in bias compared to ρ̂lin and the fact that the variance is decreasing in ρ as for b = ∞. While
Proposition 1 is asymptotic, we verify a tight agreement in simulations for reasonably small k
(cf. supplement).
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Figure 4: (L): Asymptotic Bias2ρ(ρ̂norm) relative to Bias2ρ(ρ̂lin). (M): Varρ(ρ̂norm) (asymptotic, to be
divided by k). (R): MSEs of ρ̂lin,4 vs. the MSEs of ρ̂coll,2 using twice the number of RPs (comparison
at the bit level). The stars indicate the values of ρ at which the MSEs of the two estimators are equal.

3.3 Coding-based estimation vs. Collision-based estimation

Both schemes are comparable in terms of simplicity, but at the level of statistical performance none
of the two dominates the other. The collision-based approach behaves favorably in a high similarity
regime as shows a comparison of MSEρ(ρ̂col) (b = 2) and MSEρ(ρ̂norm) (b = 4) at the bit level
(Figure 4 (R)): since ρ̂col uses only two bits for each of the k RPs, while ρ̂norm uses twice as many
bits, we have doubled the number of RPs for ρ̂col. The values of ρ for which the curves of the two
approaches (for fixed k) intersect are indicated by stars. As k decreases from 104 to 102, these values
increase from about ρ = 0.55 to ρ = 0.95. In conclusion, ρ̂col is preferable in applications in which
high similarities prevail, e.g., in duplicate detection. On the other hand, for generic high-dimensional
data, one would rather not expect ρ to take high values given that two points drawn uniformly at
random from the sphere are close to orthogonal with high probability.

Figure 1 (L) shows that as b is raised, ρ̂col requires ρ to be increasingly closer to one to achieve lower
MSE. By contrast, increasing b for the coding-based schemes yields improvements essentially for the
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whole range of ρ. An interesting phenomenon occurs in the limit ρ→ 1. It turns out that the rate of
decay of Varρ(ρ̂norm) is considerably slower than the rate of decay of Varρ(ρ̂col).
Theorem 2. For any finite b, we have

Varρ(ρ̂norm) = Θ((1− ρ)1/2), Varρ(ρ̂col) = Θ((1− ρ)3/2) as ρ→ 1.

The rate Θ((1 − ρ)3/2) is the same as the MLE [28] which is slower than the rate Θ((1 − ρ)2) in
the full precision case (cf. §2). We conjecture that the rate Θ((1− ρ)1/2) is intrinsic to code-based
estimation as this rate is also obtained when computing the full precision MLE (3) with quantized
data (i.e., z, z′ gets replaced by q, q′).

3.4 Quantization of norms

Let us recall that according to our basic setup in §1, we have assumed so far that it is possible to
compute the norms λi = ‖xi‖22, i ∈ [n], of the original data prior to projection and quantization, and
store them in full precision to approximately recover inner products and squared distances via

〈xi, xj〉 ≈ λiλj ρ̂ij , ‖xi − xj‖22 ≈ λ2i + λ2j − 2λiλj ρ̂ij ,

where ρ̂ij is an estimate of the cosine similarity of xi and xj . Depending on the setting, it may be
required to quantize the {λi}ni=1 as well. It turns out that the MSE for estimating distances can be
tightly bounded in terms of the MSE for estimating cosine similarities and max1≤i≤n |λ̂i−λi|, where
{λ̂i}ni=1 denote the quantized versions of {λi}ni=1; the precise bound is stated in the supplement.

4 Empirical results: linear classification using quantized RPs

One traditional application of RPs is dimension reduction in linear regression or classification with
high-dimensional predictors [14, 30]. The results of §3.2 suggest that as long as the number of RPs
k are no more than a few thousand, subsequent scalar quantization to four bits is not expected to
have much of a negative effect relative to using full precision data. In this section, we verify this
hypothesis for four high-dimensional data sets from the UCI repository: arcene (d = 104), Dexter
(d = 2 · 104), farm (d = 5.5 · 104) and PEMS (d = 1.4 · 105).

Setup. All data points are scaled to unit Euclidean norm before dimension reduction and scalar
quantization based on the Lloyd-Max quantizer (10). The number of RPs k is varied according to
{26, 27, . . . , 212}. For each of these values for k, we consider 20 independent realizations of the
random projection matrix A. Given projected and quantized data {q1, . . . , qn}, we estimate the
underlying cosine similarities ρij as ρ̂ij = ρ̂(qi, qj), i, j ∈ [n], where ρ̂(qi, qj) is a placeholder
for either the collision-based estimator ρ̂coll based on b = 2 bits or the normalized estimator ρ̂norm
for b ∈ {1, 2, 4,∞} using data {qi(l) , qj(l)}kl=1; one-bit quantization (b = 1) is here included as a
reference. The {ρ̂ij}1≤i,j≤n are then used as a kernel matrix fed into LIBSVM [9] to train a binary
classifier. Prediction on test sets is performed accordingly. LIBSVM is run with 30 different values of
its tuning parameter C ranging from 10−3 to 104.

Results. A subset of the results is depicted in Figure 5 which is composed of three columns (one for
each type of plot) and four rows (one for each data set). All results are averages over 20 independent
sets of random projections. The plots in the left column show the minimum test errors over all 30
choices of the tuning parameter C under consideration in dependency of the number of RPs k. The
plots in the middle column show the test errors in dependency of C for a selected value of k (the full
set of plots can be found in the supplement). The plots in the right column provide a comparison of
the minimum (w.r.t. C) test errors of ρ̂coll,2 and ρ̂norm,4 at the bit level, i.e., with k doubled for ρ̂coll,2.
In all plots, classification performance improves as b increases. What is more notable though is that
the gap between b = 4 and b = ∞ is indeed minor as anticipated. Regarding the performance of
ρ̂coll,2 and ρ̂norm,4, the latter consistently achieves better performance.

5 Conclusion

In this paper, we have presented theoretical and empirical evidence that it is possible to achieve
additional data compression in the use of random projections by means of coarse scalar quantization.
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Figure 5: Results of the classification experiments. Each row corresponds to one data set. (L):
Accuracy on the test set (optimized over C) in dependence of the number of RPs k (log2 scale). (M):
Accuracy on the test set for a selected value of k in dependence of log10(C). (R): Comparison of the
test accuracies when using the estimators ρ̂norm,4 respectively ρ̂coll,2 with twice the number of RPs.

The loss of information incurred at this step tends to be mild even with the naive approach in which
quantized data are treated in the same way as their full precision counterparts. An exception only
arises for cosine similarities close to 1 (Theorem 2). We have also shown that the simple form of
normalization employed in the construction of the estimator ρ̂norm can be extremely beneficial, even
more so for coarsely quantized data because of a crucial bias reduction.

Regarding future work, it is worthwhile to consider the extension to the case in which the random
projections are not Gaussian but arise from one of the various structured Johnson-Lindenstrauss
transforms, e.g., those in [2, 3, 23]. A second direction of interest is to analyze the optimal trade-off
between the number of RPs k and the bit depth b in dependence of the similarity ρ; in the present
work, the choice of b has been driven with the goal of roughly matching the full precision case.
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