
Supplementary material to Multiplicative Weights
Update with Constant Step-Size in Congestion Games:

Robust Convergence, Limit Cycles and Chaos

1 Missing Proofs and material from Section 3

Proof of Corollary 3.2 . We prove it by doing a reduction. Let P (x) be a non-homogeneous poly-
nomial of degree d on variables {xij} with x ∈ D (D is a product of simplices). We introduce
a dummy variable y that is always set to one and D′ = {(x, y) : x ∈ D, y = 1}. We define the
polynomial P ′(x, y) where for each monomial of P with total degree d′ so that d′ ≤ d, we have the
same monomial in P ′ multiplied by yd−d

′
. It is obvious to see that P ′ is homogeneous of degree d.

It is also obvious to check that the dynamics as defined in Theorem 2.4 for polynomial P ′ remains
the same as for polynomial P (apart from the extra(dummy) variable y which is always one) since if

y = 1 at time t then at time t+ 1, y is equal to
y
∂P ′(x,y)

∂y

y
∂P ′(x,y)

∂y

= 1, i.e., y indeed is always equal to one

and ∂P ′(x,y)
∂xij

∣∣∣
(x,1)

= ∂P (x)
∂xij

∣∣∣
(x)

.

We conclude that Theorem 2.4 holds for non-homogeneous polynomials.

Proof of Lemma 3.3. In a congestion game (or potential game; in case of a weighted potential game,
the term Φ(s) below is multiplied by a constant wi), the cost of the function of any player i can be
written as the sum of the potential function Φ(s) and a dummy term which depends on the actions of
all the rest players (not on the actions of player i), i.e.,

ci(s) = Φ(s) +Di(s−i). (1)

By taking expectations in Equation (1) we get that ĉi = Ψ + Es−i∼p−i [Di(s−i)]. Using the law
of total expectation it also follows that the expected cost of player i satisfies ĉi =

∑
γ∈Si piγciγ .

Therefore
∑
γ∈Si piγciγ = Ψ(p) + Es−i∼p−i [Di(s−i)].

We take the partial derivative of both L.H.S and R.H.S for variable piγ and we conclude that the
following holds:

ciγ =
∂Ψ(p)

∂piγ
+
∂Es−i∼p−i [Di(s−i)]

∂piγ︸ ︷︷ ︸
=0

, thus
∂Q(p)

∂piγ
= 1/εi − 1/β + 1/β ·

∏
j 6=i

∑
γ∈Sj

pjγ

− ciγ︸ ︷︷ ︸
1/εi−ciγ since p∈∆

(2)
Since the R.H.S of (2) does not depend on piγ , Q is a linear function w.r.t piγ for all i ∈ N , γ ∈ Si.
Therefore, it is a polynomial of degree N with respect to p.

Finally, we will show that all the coefficients of the polynomial Q are non-negative. Let’s focus on
the monomials containing the term piγ (for some i, γ). By (2) we have that the summation of those

monomials is equal to (1/εi − 1/β)piγ +
(

1/β ·
∏
j 6=i

(∑
γ∈Sj pjγ

)
− ciγ

)
piγ which expands to

(1/εi − 1/β)piγ +
(

1/β ·
∑

s−i∈S−i
∏
j 6=i pjsj − ciγ

)
piγ , where S−i

def
= ×j 6=iSj . However, we

have
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ciγ =
∑

s−i∈S−i

∏
j 6=i

pjsj ·

(∑
e∈γ

ce (1 + ke(s−i))

)
︸ ︷︷ ︸

≤ 1
β by definition of β

,

where ke(s−i) denotes the number of players apart from i that choose edge e in the strategy profile
s−i. Combining everything together we have that summation of all monomials including piγ is equal
to:

(1/εi − 1/β)piγ +
(

1/β −

(∑
e∈γ

ce(1 + ke(s−i))

)
︸ ︷︷ ︸

≤ 1
β

)
·
∑

s−i∈S−i

∏
j 6=i

pjsj · piγ

Clearly, each summand has a nonnegative coefficient. Hence, each monomial containing piγ has a
nonnegative coefficient. The above is true for all i, γ and the claim follows.

Proof of Theorem 3.4. By Lemma 3.3, Q(p) is a polynomial with nonnegative coefficients. There-
fore, we can apply Corollary 3.2 for polynomial Q. In this case, the Baum-Eagon theorem defines
the map:

piγ(t+ 1) =

(
piγ(t)

∂Q

∂piγ

∣∣∣∣
(p(t))

)/∑
δ∈Si

piδ
∂Q

∂piδ

∣∣∣∣
(p(t))

(2)
=

piγ(t)(1/εi − ciγ)∑
δ∈Si piδ(t)(1/εi − ciδ)

= piγ(t)
1/εi − ciγ
1/εi − ĉi

,

which coincides with MWU` (1). Thus, it is true that Q(p(t + 1)) > Q(p(t)) unless p(t + 1) =

p(t). This proof justifies the reason we added the term
∑
i∈N

(
(1/εi − 1/β) ·

∑
γ∈Si piγ

)
+ 1/β ·∏

i∈N

(∑
γ∈Si piγ

)
in Q, namely so that the partial derivatives give us MWU` dynamics.

Proof of Corollary 3.6. Let n be the number of players. Given the sets St, S′t and the game G, we
define a new game G′ with |St| players (the players of game G′ are copies of the players in St of
game G). For each edge e with cost function ce, we introduce a new set of edges e0, ..., en−|St| where
the cost of cei(l) = Pr[exactly i of n− |St| use edge e]ce(l+ i). It is easy to check that the game G′
is still a congestion game and has the same potential as the original game G. The rest follows from
Theorem 3.1. Observe that it might be the case that the original game is not in a Nash equilibrium
(therefore fixed point for MWU`), whereas the “subgame" G′ is in a Nash equilibrium (i.e., no player
in St decreases his cost by deviating). In words, the potential is not necessarily strictly decreasing
but decreasing. As long as at least one player deviates, then it is strictly decreasing.

Proof of Theorem 3.7. Let Ω ⊂ ∆ be the set of limit points of an orbit p(t). Ψ(p(t)) is decreasing
with respect to time t by Theorem 3.1 and so, because Ψ is bounded on ∆, Ψ(p(t)) converges as
t→∞ to Ψ∗ = inft{Ψ(p(t))}. By continuity of Ψ we get that Ψ(y) = limt→∞Ψ(p(t)) = Ψ∗ for
all y ∈ Ω. So Ψ is constant on Ω. Also y(t) = limn→∞ p(tn + t) as n→∞ for some sequence of
times {ti} and so y(t) lies in Ω, i.e. Ω is invariant. Thus, if y ≡ y(0) ∈ Ω the orbit y(t) lies in Ω
and so Ψ(y(t)) = Ψ∗ on the orbit. But Ψ is strictly decreasing except on equilibrium orbits and so Ω
consists entirely of fixed points.

2 Missing Proofs and material from Section 4

In this section, we prove the existence of limit cycles as well as Li-Yorke chaos for MWUe in the
simple congestion games with two agents that have been defined in section 3. To improve readability,
we present these examples below.
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We consider a symmetric two agent congestion game with two edges e1, e2. Both agents have the
same two available strategies γ1 = {e1} and γ2 = {e2}. We denote x, y the probability that the first
and the second agent respectively choose strategy γ1.

For the first example, we assume that ce1(l) = 1
2 · l and ce2(l) = 1

2 · l. Computing the expected
costs we get that c1γ1 = 1+y

2 , c1γ2 = 2−y
2 , c2γ1 = 1+x

2 , c2γ2 = 2−x
2 . MWUe then becomes xt+1 =

xt
(1−ε1)

(yt+1)
2

xt(1−ε1)
yt+1

2 +(1−xt)(1−ε1)
2−yt

2

(first player) and yt+1 = yt
(1−ε2)

xt+1
2

yt(1−ε2)
xt+1

2 +(1−yt)(1−ε2)
2−xt

2

(sec-

ond player). We assume that ε1 = ε2 and also that x0 = y0 (players start with the same mixed
strategy. Due to symmetry, it follows that xt = yt for all t ∈ N, thus it suffices to keep track only of
one variable (we have reduced the number of variables of the update rule of the dynamics to one) and

the dynamics becomes xt+1 = xt
(1−ε)

xt+1
2

xt(1−ε)
xt+1

2 +(1−xt)(1−ε)
2−xt

2

. Finally, we choose ε = 1 − e−10

and we get

xt+1 = H(xt) = xt
e−5(xt+1)

xte−5(xt+1) + (1− xt)e−5(2−xt)
,

i.e., we denote H(x) = xe−5(x+1)

xe−5(x+1)+(1−x)e−5(2−x) .

For the second example, we assume that ce1(l) = 1
4 · l and ce2(l) = 1.4

4 · l. Computing
the expected costs we get that c1γ1 = 1+y

4 , c1γ2 = 1.4(2−y)
4 , c2γ1 = 1+x

4 , c2γ2 = 1.4(2−x)
4 .

MWUe then becomes xt+1 = xt
(1−ε1)

(yt+1)
4

xt(1−ε1)
yt+1

4 +(1−xt)(1−ε1)
1.4(2−yt)

4

(first player) and yt+1 =

yt
(1−ε2)

xt+1
4

yt(1−ε2)
xt+1

4 +(1−yt)(1−ε2)
1.4(2−xt)

4

(second player). We assume that ε1 = ε2 and also that x0 = y0

(players start with the same mixed strategy. Similarly, due to symmetry, it follows that xt = yt
for all t ∈ N, thus it suffices to keep track only of one variable and the dynamics becomes

xt+1 = xt
(1−ε)

xt+1
4

xt(1−ε)
xt+1

4 +(1−xt)(1−ε)
1.4(2−xt)

4

. Finally, we choose ε = 1− e−40 and we get

xt+1 = G(xt) = xt
e−10(xt+1)

xte−10(xt+1) + (1− xt)e−14(2−xt)
,

i.e., we denote G(x) = xe−10(x+1)

xe−10(x+1)+(1−x)e−14(2−x) .

2.1 Analyzing xt+1 = H(xt)

The signs of the derivative of H(H(x))

In this subsection we analyze the monotonicity of H(H(x)).
Lemma 1. There exist numbers 0 < y0 < x0 < 1/2 < x1 < y1 < 1 so that:

• For x ∈ [0, y0], [x0, x1] and [y1, 1] H(H(x)) is strictly increasing,

• for x ∈ [y0, x0] and x ∈ [x1, y1] H(H(x)) is strictly decreasing,

where x0 = 1
10 (5−

√
15) ≈ 0.1127, x1 = 1

10 (5+
√

15) ≈ 0.8873, y0 ∈ (0, x0) so thatH(y0) = x0

and y1 ∈ (x1, 1) so that H(y1) = x1.

Proof. First of all it holds that dH(H(x))
dx = H ′(H(x)) ·H ′(x), therefore we will analyze the signs of

H ′(H(x)) and H ′(x) separately. Direct calculations give H ′(x) = e5+10x 1−10x+10x2

(e10x(−1+x)−e5x)2 . The
roots of 1 − 10x + 10x2 are x0 and x1 (defined in the statement). We conclude that H is strictly
increasing in [0, x0] and [x1, 1] and strictly decreasing in [x0, x1].

Moreover H(x0) ≈ 0.8593 > x0 thus lies in (1/2, x1) and H(x1) ≈ 0.1406 < x1 and hence lies in
(x0, 1/2). Let y0 ∈ (0, x0) so that H(y0) = x0 (since H is strictly increasing in [0, x0], H(0) = 0
and H(x0) > x0, there exists a unique y0) and by similar argument let y1 the unique real in [x1, 1]
so that H(y1) = x1.
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Figure 1: Detailed plot of H2.

We have the following cases:

• For x ∈ (0, y0) we get that both H ′(x) and H ′(H(x)) are positive and hence H(H(x)) is
strictly increasing in [0, y0] (area 1 of the figure 1).

• For x ∈ (y0, x0) we get that H ′(x) is positive and H ′(H(x)) is negative, thus H(H(x))
strictly decreasing in [y0, x0] (area 2 of the figure 1).

• For x ∈ (x0, x1) we get that H ′ is negative and since (H(x1), H(x0)) ⊂ (x0, x1), H is
monotone we have that H ′(H(x)) is also negative, namely H(H(x)) is strictly increasing
in [x0, x1] (areas 3,4,5 and 6 of the figure 1).

• For x ∈ (x1, y1) we get that H ′(x) is positive and H ′(H(x)) is negative and hence
H(H(x)) is strictly decreasing in [x1, y1] (area 7 of the figure 1).

• For x ∈ (y1, 1) we get that H ′(x) is positive and H ′(H(x)) is positive, thus H(H(x))
strictly increasing in [y1, 1] (area 8 of the figure 1).

The fixed points of H(H(x))

Lemma 2. H(H(x)) has 5 fixed points, 0 < ρ1 < 1/2 < ρ2 = 1−ρ1 < 1. MoreoverH(H(x))−x
is positive in (0, ρ1), (1/2, ρ2) and negative in (ρ1, 1/2), (ρ2, 1).
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(a) Exponential MWUe: Plot of function H (blue)
and its iterated versions H2 (red), H3 (yellow).
Function y(x) = x is also included.

(b) Linear MWU`: Plot of function H` (blue) and
its iterated versions H2

` (red) and H3
` (yellow).

Function y(x) = x is also included.

Proof. By direct calculations we get that

H(H(x)) =
x

(e−5+10x(1− x) + x)
(

x
e−5+10x(1−x)+x + e

−5+ 10x

e−5+10x(1−x)+x

(
1− x

e−5+10x(1−x)+x

))
=

x

x+ e
10x

(
1+ 1

e−5+10x(1−x)+x

)
−10

(1− x)

It is clear that H(H(0)) = 0, H(H(1)) = 1 and H(H(1/2)) = 1/2. In order to find the other fixed

points, it suffices to analyze the roots of the function 1 − x − e10x
(

1+ 1

e−5+10x(1−x)+x

)
−10

(1 − x).
By cancelling the common factor (1 − x) (we have already take into account x = 1), we have to

analyze g(x)
def
= 1− e10x

(
1+ 1

e−5+10x(1−x)+x

)
−10. It follows by the monotonicity of ex that g(x) = 0

iff 10x
(

1 + 1
e−5+10x(1−x)+x

)
− 10 = 0, i.e., x

e−5+10x(1−x)+x = 1− x.

To solve the equation above, it suffices to analyze the roots of the function

g1(x)
def
= x− (1− x)

(
e−5+10x(1− x) + x

)
= x2 − e−5+10x(1− x)2.

By direct calculation we have to find the roots of g2(x)
def
= x− e−2.5+5x(1− x) (since 0 ≤ x ≤ 1).

Finally, we take the derivative of g2 which is g′2(x) = 1 + e−2.5+5x − 5e−2.5+5x(1 − x) =
1 + e−2.5+5x(5x − 4). Clearly g′′2 (x) is negative in [0, 3/5), positive in (3/5, 1] and zero at 3/5.
Also g′2(0) ≈ 0.67 > 0, g′2(3/5) ≈ −0.648 < 0 and g′2(1) > 0, i.e., by Bolzano’s theorem
g′2(x) has a unique root in (0, 3/5) (say α1) and a unique root in (3/5, 1) (say α2). Finally, since
g′2(1/2) = −0.5 < 0 and g′2(x0) ≈ 0.504 > 0, it follows that x0 < α1 < 1/2 and since
g′2(x1) ≈ 4.026 we get that 1/2 < α2 < x1. By the above and Rolle’s theorem we conclude
that H(H(x)) has at most 3 distinct fixed points apart from 0, 1. Since g2 is increasing in (0, x0)
and g2(x0) ≈ −0.015 < 0, g2 has no root in (0, x0]. Moreover, since g2(1/4) ≈ 0.035 > 0, it
follows that g2 has a root in (x0, 1/4) (say ρ1). Hence H(H(ρ1)) = ρ1 and 1/2 > 1/4 > ρ1 > x0.
By observing that H(1 − x) = 1 − H(x), we get that H(1 − H(x)) = 1 − H(H(x)) and also
H(H(1− x)) = H(1−H(x)), i.e.,

H(H(1− x)) = 1−H(H(x)).

We substitute x with ρ1 and we get H(H(1 − ρ1)) = 1 − H(H(ρ1)) = 1 − ρ1, namely ρ2
def
=

1−ρ1 > 3/4 is the remaining fixed point ofH(H(x)). WhetherH(H(x))−x is positive or negative
follows by same arguments. See also the figure 1 for a visualization of this theorem.

Periodic orbits

Proof of Theorem 4.1. Since (ρ1, 1/2) ⊂ [x0, x1], from Lemma 1 it holds that H(H(x)) is strictly
increasing in (ρ1, 1/2). Thus if ρ1 < x < 1/2, it follows ρ1 = H(H(ρ1)) < H(H(x)) <
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(c) Exponential MWUe: Plot of function H10.
Function y(x) = x is also included.

(d) Linear MWU`: Plot of function H10
` . Function

y(x) = x is also included.

Figure 2: We compare and contrast MWUe (left) and MWU` (right) in the same two agent two
strategy/edges congestion game with ce1(l) = 1

2 · l and ce2(l) = 1
2 · l and same learning rate

ε = 1− e−10. MWUe converges to a limit cycle whereas MWU` equilibrates. Function y(x) = x is
also included in the graphs to help identify fixed points and periodic points.

H(H(1/2)) = 1/2, i.e., the interval [ρ1, 1/2] is invariant under H ◦H . Consider an initial condition
z0 ∈ (ρ1, 1/2) and define the sequence zi+1 = H(H(zi). It is clear that zi ∈ (ρ1, 1/2) for all i ∈ N
from previous argument. Additionally, (zi)i∈N is strictly decreasing because zi+1 = H(H(zi)) < zi
(from Lemma 2 we have H(H(x)) < x for all x ∈ (ρ1, 1/2)). Finally, zi > ρ1 for all i ∈ N (lower
bounded), and thus the sequence converges to some limit l. It is easy to see that ρ1 ≤ l < 1/2 and also
H(H(l)) = l by continuity ofH , namely l = ρ1 (using Lemma 2). Therefore, we showed that for any
initial point z0 ∈ [ρ1, 1/2), we get that limt→∞H2t(z0) = ρ1. Analogously holds that for any initial
point z0 ∈ (1/2, ρ2], we get that limt→∞H2t(z0) = ρ2. It is clear that limt→∞H2t(1/2) = 1/2
(1/2 is a fixed point of H).

Moreover a point z ∈ (x0, ρ1) we have that z′ = H(H(z)) ∈ (HH(x0), HH(ρ1)) (H ◦H is strictly
increasing by Lemma 1). Since z < ρ1, we have that z′ = H(H(z)) > z (from Lemma 2). Therefore
for any initial point z0 ∈ (x0, ρ1), the sequence (H2t(z0))t∈N is strictly increasing and bounded
by ρ1, hence it converges. By similar argument as before we conclude that limt→∞H2t(z0) = ρ1.
Analogously, it holds for any initial point z0 ∈ (ρ2, x1) that limt→∞H2t(z0) = ρ1.

We continue by considering the case that z ∈ (y0, x0). From Lemma 1 we have that z′ = H(H(z)) ∈
(H(H(x0)), H(H(y0))). From Lemma 2 H(H(x0)) > x0 and H(H(y0)) = H(x0) < x1. There-
fore z′ ∈ (x0, x1) and from the previous cases we have that limt→∞H2t(z) = ρ1 or ρ2, unless
z′ = 1/2, i.e., unless H(H(z)) = 1/2. It is completely analogous the case z ∈ (x1, y1).

To finish the proof, assume z0 ∈ (0, y0). From Lemma 1 is holds that z1 = H(H(z0)) > z0. Let n
be the minimum index for t so that zn = H2n(z0) > y0 (n exists and is finite, otherwise the sequence
(H2t)t∈N would converge to a fixed point, which is contradiction because there is no fixed point in
(0, y0)). It is clear that zn−1 < y0 and hence

y0 < H(H(zn−1)) < H(H(y0)) = H(x0) < x1.

So either zn = 1/2 orH(H(zn)) = 1/2 or else the sequenceH2t converges to ρ1 or ρ2 (by reduction
to the previous cases). Completely analogous is the remaining case z0 ∈ (y1, 1).

Therefore we showed the following: For all z ∈ (0, 1), either there exists a number k ∈ N so that
H2k(z) = 1

2 or the limit limt→∞H2t(z) exists and is equal to ρ1 or ρ2. Finally, the set {z ∈ (0, 1) :

∃k ∈ N s.t H2k(z) = 1
2} has measure zero (from Lemma 1, the set {z : H(H(z)) = 1/2} has

cardinality at most 5). See also figure 2(c) for a visualization of the theorem. In contrast, figure
2(d) shows that the linear variant converges to the fixed point 1/2 (x = 1/2, y = 1/2 is a Nash
equilibrium of the corresponding game, i.e., the first example of Section 4).

2.2 Analyzing xt+1 = G(xt)

Lemma 3. G has 3 fixed points 0 < 3/4 < 1 in [0, 1].
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(a) Exponential MWUe: Plot of function G (blue)
and its iterated versions G2 (red), G3 (yellow).
Function y(x) = x is also included.

(b) Linear MWU`: Plot of function G` (blue) and
its iterated versions G2

` (red) and G3
` (yellow). Func-

tion y(x) = x is also included.

Proof. Let x be a fixed point of G. If x 6= 0, 1 then 1 + x = 14
10 (2− x), therefore x = 3

4 .

Lemma 4. There exist a y ∈ [0, 1] so that G(G(G(y))) = y, G(y) 6= y, G(G(y)) 6= y and
G(G(y)) 6= G(y). Hence y,G(y), G(G(y)) is a periodic orbit of length three.

Proof. It holds that G(G(G(0.4))) − 0.4 ≈ −0.158 and G(G(G(0.5))) − 0.5 ≈ 0.496 and hence
by Bolzano’s theorem there exists a y ∈ (0.4, 0.5) so that G(G(G(y))) = y. Observe that y
cannot be a fixed point of G because of Lemma 3. If G(G(y)) = y, then by applying G we
get G(G(G(y))) = G(y) and hence y = G(y) (contradiction since y cannot be a fixed point).
Finally, if G(G(y)) = G(y) then by applying G ◦G we get G(G(G(G(y)))) = G(G(G(y))), and
since G(G(G(y))) = y we have that G(y) = y (contradiction again). See also figure 3(a) for a
visualization of the theorem.

Using Li-Yorke theorem and Lemma 4 we can show Theorem 4.2.

Proof of Theorem 4.2. It follows from Li-Yorke theorem (Theorem 2.3) and Lemma 4. See also
figure 3(c) for a visualization of the theorem. In contrast, figure 3(d) shows that the linear variant
converges to the fixed point 3/4 (x = 3/4, y = 3/4 is a Nash equilibrium of the corresponding game,
i.e., the second example of Section 4).

Finally using Theorem 4.2 we show that for any 1 > ε > 0, we can create games so that MWUe
exhibits chaotic behavior for infinitely many initial conditions.

Proof of Corollary 4.3. Given any 1 > ε > 0 and n, consider a game with 2 edges e1, e2 and a
dummy edge that does not belong to the strategy set of players n− 1, n. Assume that the costs for
the two edges are ce1(x) = al and ce2(l) = bl where a = 10

ln 1/(1−ε) and b = 14
ln 1/(1−ε) . The first

1, 2, ..., n− 2 players choose the dummy edge with probability one. MWUe dynamics ensures that
the n − 2 players don’t change their strategy along the iterations of the dynamics (if a strategy is
played with probability zero, that probability remains zero for all times). For players n− 1, n, let
x, y be the probabilities to choose edge e1 and we start from the symmetric position x = y. It is
not hard to show that the update rule of the MWUe dynamics is x(1−ε)a(1+x)

x(1−ε)a(1+x)+(1−x)(1−ε)a(2−x) =

xe−10(1+x)

xe−10(1+x)+(1−x)e−14(2−x) , namely the same as G(x) for both players, i.e., we reduce the instance to
that of our second example and by Theorem 4.2 our claim follows.
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(c) Exponential MWUe: Plot of function G10.
Function y(x) = x is also included.

(d) Linear MWU`: Plot of function G10
` . Function

y(x) = x is also included.

Figure 3: We compare and contrast MWUe (left) and MWU` (right) in the same two agent two
strategy/edges congestion game with ce1(l) = 1

4 · l and ce2(l) = 1.4
4 · l and same learning rate

ε = 1− e−40. MWUe exhibits sensitivity to initial conditions whereas MWU` equilibrates. Function
y(x) = x is also included in the graphs to help identify fixed points and periodic points.
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