
Supplementary Material for Consistent Robust Regression

A SSC/SSS guarantees

In this section we restate some results from [3] which are required for the convergence analysis of the RLSR problem. Similar
variants are known from other works, e.g. [10], as well.
Definition 7. A random variable x ∈ R is called sub-Gaussian if the following quantity is finite

sup
p≥1

p−1/2 (E [|x|p])1/p
.

Moreover, the smallest upper bound on this quantity is referred to as the sub-Gaussian norm of x and denoted as ‖x‖ψ2
.

Definition 8. A vector-valued random variable x ∈ Rp is called sub-Gaussian if its unidimensional marginals 〈x,v〉 are
sub-Gaussian for all v ∈ Sp−1. Moreover, its sub-Gaussian norm is defined as follows

‖X‖ψ2
:= sup

v∈Sp−1

‖〈x,v〉‖ψ2

Lemma 9. Let X ∈ Rp×n be a matrix whose columns are sampled i.i.d from a standard Gaussian distribution i.e. xi ∼ N (0, I).
Then for any ε > 0, with probability at least 1− δ, X satisfies

λmax(XX>) ≤ n+ (1− 2ε)−1

√
cnp+ c′n log

2

δ

λmin(XX>) ≥ n− (1− 2ε)−1

√
cnp+ c′n log

2

δ
,

where c = 24e2 log 3
ε and c′ = 24e2.

Theorem 10. LetX ∈ Rp×n be a matrix whose columns are sampled i.i.d from a standard Gaussian distribution i.e. xi ∼ N (0, I).
Then for any k > 0, with probability at least 1− δ, the matrix X satisfies the SSC and SSS properties with constants

Λk ≤ k
(

1 + 3e

√
6 log

en

k

)
+O

(√
np+ n log

1

δ

)

λk ≥ n− (n− k)

(
1 + 3e

√
6 log

en

n− k

)
− Ω

(√
np+ n log

1

δ

)
.

Lemma 11. Let X ∈ Rp×n be a matrix with columns sampled from some sub-Gaussian distribution with sub-Gaussian norm K
and covariance Σ. Then, for any δ > 0, with probability at least 1− δ, each of the following statements holds true:

λmax(XX>) ≤ λmax(Σ) · n+ CK ·
√
pn+ t

√
n

λmin(XX>) ≥ λmin(Σ) · n− CK ·
√
pn− t

√
n,

where t =
√

1
cK

log 2
δ , and cK , CK are absolute constants that depend only on the sub-Gaussian norm K of the distribution.

B Convergence Proofs for CRR

Theorem 4. Let xi ∈ Rd, 1 ≤ i ≤ n be generated i.i.d. from a Gaussian distribution, let yi’s be generated using (5) for a fixed w∗,
and let σ2 be the noise variance. Also let the number of corruptions k∗ be s.t. 2k∗ ≤ k ≤ n/10000. Then for any ε, δ > 0, with

probability at least 1− δ, after O
(

log
‖b∗‖2
σk+ε + log n

d

)
steps, CRR ensures that ‖wt −w∗‖2 ≤ ε+O

(
σ√

λmin(Σ)

√
d
n log nd

δ

)
.

Proof. Using Lemma 5, after O
(

log
‖b∗‖2
σk+ε

)
steps, we get bt s.t. ‖λt‖ = ‖(XTX)−1X(bt − b∗)‖ ≤ 90(k∗+

√
nd)

n ‖bt − b∗‖ ≤
90(k∗+

√
nd)

n (6σ
√
k∗ log n) ≤ σ/100 as long as k ≤ n/10000 and n ≥ d/10000.

Now, recall that bt+1 = HTk(b∗ +XT (λt − PXε) + ε). Now, using Lemma 13 with λ = λt − PXε, we get:∥∥λt+1
∥∥

2
≤ 0.91

∥∥λt∥∥
2

+ 110σ

√
d

n
log2 n,

which ensures a linear convergence of the terms
∥∥λt∥∥

2
to a value ε+O

(
σ
√

d
n log nd

δ

)
.
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Lemma 5. For any data matrix X that satisfies the SSC and SSS properties such that 2Λk+k∗

λn
< 1, CRR, when executed with

k ≥ k∗, ensures for any ε, δ > 0, with probability at least 1− δ (over the random Gaussian noise ε in the responses – see (3))
that after T0 = O

(
log
‖b∗‖2
e0+ε

)
steps,

∥∥bT0 − b∗
∥∥

2
≤ 3e0 + ε, where e0 = O

(
σ
√

(k + k∗) log n
δ(k+k∗)

)
for standard Gaussian

designs.

Proof. We start with the update step in CRR, and use the fact that y = X>w∗ + b∗ + ε to rewrite the update as

bt+1 ← HTk(PXbt + (I − PX)(X>w∗ + b∗ + ε)).

Since X> = PXX
>, we get, using the notation set up before,

bt+1 ← HTk(b∗ +X>λt + g).

Since k ≥ k∗, using the properties of the hard thresholding step gives us∥∥bt+1
It+1 − (b∗It+1 +X>It+1λ

t + gIt+1)
∥∥

2
≤
∥∥b∗It+1 − (b∗It+1 +X>It+1λ

t + gIt+1)
∥∥

2
=
∥∥X>It+1λ

t + gIt+1

∥∥
2
.

This, upon applying the triangle inequality, gives us∥∥bt+1 − b∗
∥∥

2
≤ 2

∥∥X>It+1λ
t + gIt+1

∥∥
2
.

Now, using the SSC and SSS properties of X , we can show that
∥∥X>It+1λ

t
∥∥

2
=
∥∥X>It+1(XX>)−1XIt(b

t − b∗)
∥∥

2
≤

Λk+k∗

λn
‖bt − b∗‖2.

Since ε is a Gaussian vector, using tail bounds for Chi-squared random variables (for example, see Lemma 20 in [3]), for any set

S of size k + k∗, we have with probability at least 1− δ ,‖εS‖22 ≤ σ2(k + k∗) + 2eσ2
√

6(k + k∗) log 1
δ . Taking a union bound

over all sets of size (k + k∗) and
(
n
k

)
≤
(
en
k

)k
gives us, with probability at least 1− δ, for all sets S of size at most (k + k∗),

‖εS‖2 ≤ σ
√

(k + k∗)

√
1 + 2e

√
6 log

en

δ(k + k∗)

Using tail bounds on Gaussian random variables3, we can also show that for every i, with probability at least 1 − δ, we have

‖(Xε)i‖2 ≤ σ
∥∥(X>)i

∥∥
2

√
2 log 1

δ . Taking a union bound gives us, with the same confidence, ‖Xε‖22 ≤ 2σ2 ‖X‖2F log d
δ ≤

2σ2dΛn log d
δ . This allows us to bound ‖gIt+1‖2

‖gIt+1‖2 =
∥∥εIt+1 −X>It+1(XX>)−1Xε

∥∥
2

≤ σ
√

(k + k∗)

√
1 + 2e

√
6 log

en

δ(k + k∗)
+ σ

√
Λk+k∗Λn

λn

√
2d log

d

δ

≤ σ
√

(k + k∗)

√
1 + 2e

√
6 log

en

δ(k + k∗)︸ ︷︷ ︸
e0

(
1 +

√
2d

n
log

d

δ

)

= 1.0003e0,

where the second last step is true for Gaussian designs and sufficiently large enough n. Note that e0 does not depend on the
iterates and is thus, a constant. This gives us∥∥bt+1 − b∗

∥∥
2
≤ 2Λk+k∗

λn

∥∥bt − b∗
∥∥

2
+ 2.0006e0.

For data matrices sampled from Gaussian ensembles, whose SSC and SSS properties will be established later, assuming
n ≥ d log d, we have e0 = O

(
σ
√

(k + k∗) log n
δ(k+k∗)

)
. Thus, if 2Λk+k∗

λn
< 1, then in T0 = O

(
log
‖b∗‖2
e0+ε

)
steps, CRR ensures

that
∥∥bT0 − b∗

∥∥
2
≤ 2.0009e0 + ε.

3 1√
2π

∫ ∞
x

e−t
2/2dt ≤ 1√

2π

∫ ∞
x

t

x
e−t

2/2dt =
1

x
√

2π
e−x

2/2
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Lemma 12. Let λmin(Σ) be the smallest eigenvalue of the covariance matrix of the distribution N (0,Σ) that generates the data

points. Then at any time instant t, we have ‖wt −w∗‖2 ≤
2√

λmin(Σ)

(
2σ
√

d
n log d

δ +
∥∥λt∥∥

2

)
.

Proof. As described in Algorithm 1, wt = (XX>)−1X(y − bt) = w∗ + (XX>)−1X(ε + b∗ − bt). If we let X = Σ−1/2X ,
we get: ∥∥wt −w∗

∥∥
2
≤ 1√

λmin(XX>)

∥∥X>(wt −w∗)
∥∥

2

≤ 1√
nλmin(Σ)− CΣ

√
n

∥∥X>(wt −w∗)
∥∥

2

=
1√

nλmin(Σ)− CΣ
√
n

∥∥X>(XX>)−1X(ε + b∗ − bt)
∥∥

2

=
1√

nλmin(Σ)− CΣ
√
n

∥∥∥X>(XX
>

)−1X(ε + b∗ − bt)
∥∥∥

2

≤
√

Λn√
nλmin(Σ)− CΣ

√
n

∥∥∥(XX
>

)−1X(ε + b∗ − bt)
∥∥∥

2

≤ 2√
λmin(Σ)

(
2σ

√
d

n
log

d

δ
+
∥∥λt∥∥

2

)
,

where the second step follows from results on eigenvalue bounds for data matrices drawn from non-spherical Gaussians, where
CΣ is a constant dependent on the subGaussian norm of the distribution. The fourth step is a whitening step executed for sake of
convenience alone and can be bypassed. The step uses the fact that even though X may be sampled from a non-spherical Gaussian
N (0,Σ), the quantity X>(XX>)−1X is distributed as X

>
(XX

>
)−1X where X is sampled from a spherical GaussianN (0, I).

The last step assumes n ≥ 2CΣ

λmin(Σ) and uses the proof technique used in Lemma 5 to get∥∥∥(XX
>

)−1Xε
∥∥∥

2
≤ σ
√

Λn
λn

√
2d log

d

δ
≤ 2σ

√
d

n
log

d

δ
.

Lemma 6. Let X = [x1,x2, . . . ,xn] be a data matrix consisting of i.i.d. standard normal vectors i.e xi ∼ N (0, Id×d), and
ε ∼ N(0, σ2 · In×n) be standard normal vector drawn independently of X . For any λ ∈ Rd such that ‖λ‖2 ≤

σ
100 , define

z = HTk(X>λ + ε + b∗) − b∗, where k = 2k∗ and |supp(b∗)| ≤ k∗. Also let k∗ ≤ n/10000 and d ≤ n/10000. Then, the
following holds (w.p. ≥ 1− 1/n5):

‖Xz‖ ≤ .9n‖λ‖+ 300σ
√
d · n log2 n

Proof. We first decompose ‖Xz‖22, using the Pythagorean theorem, as:

‖Xz‖22 ≤
1

‖λ‖22
(λTXz)2 + max

v,‖v‖2=1,vTλ=0
(vTXz)2. (7)

We now consider the first term above. Let τk > 0 be such that the k largest elements (in magnitude) of b = X>λ+ ε+b∗ are all
greater than τk and the (n− k) smallest elements (in magnitude) of b are all less than τk.

That is,

λ>Xz =
∑
j

(λ>xj)(I
{
|x>j λ + b∗j + εj | > τk

}
(b∗j + εj + x>j λ)− b∗j )

=
∑
j

(λ>xj)
2I
{
|x>j λ + b∗j + εj | > τk

}
+
∑
j

(λ>xj)(I
{
|x>j λ + b∗j + εj | > τk

}
(b∗j + εj)− b∗j )

≤ 20(k log n/k +
√
dn log n)‖λ‖2 +

∑
j

(λ>xj)(I
{
|x>j λ + b∗j + εj | > τk

}
(b∗j + εj)− b∗j ), (8)

where the last inequality follows from Theorem 10 and hold with probability ≥ 1− 1/nd.

Now to bound the second term above, our approach is to show that each of the j-th term is small in expectation and then use
tail bounds to obtain the final bound. Unfortunately, as λ and τk can depend on random variables X and ε, we cannot bound
expectation as well as apply Hoeffding style tail bounds directly.
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Instead, we take the standard approach of using ε-nets and union bounds. That is, we form γλ-net over the set B := B2(0, σ
100 )

(i.e. the ball of radius σ
100 ≥ ‖λ‖ centered at the origin in d-dimensions) and similarly a unit dimensional γτ -net over

[σ/2
√

log(n/k), 30σ
√

log(n/k)]; we will provide the justification for selecting the above given range for τ below.

Recall that we hard-threshold k = 2k∗ entries ofX>λ+ε+b∗. Moreover, |supp(b∗)| ≤ k∗. Now, let S = {j s.t. |x>j λ+εj | ≥ τk.
Note that |S| ≥ k−k∗ as τk ensures that top-k elements ofX>λ+ε+b∗ are selected. Similarly, define Ŝ = {j s.t. |x>j λ+εj | <
τk. Again, note that |Ŝ| ≤ n− k + k∗ as τk ensures that only k elements of X>λ + ε + b∗ are selected. Hence,

1

|Ŝ|

∑
j∈Ŝ

(x>j λ + εj)
2 ≤ τ2

k ≤
1

|S|
∑
j∈S

(x>j λ + εj)
2. (9)

Using the fact that k ≤ n/10000 and using SSC/SSS bounds with d < n/10000 (apply Theorem 10 part 1 with k − k∗ and
part 2 with n− k + k∗), we get with probability at least 1− 1

n6 , τk ∈ [.5σ
√

log n/k, 30σ
√

log n/k]. Note that this result holds
uniformly for any λ ∈ B2(0, σ

100 ) as it simply uses the SSC/SSS properties of the matrix X .

Now, let λ̃ and τ̃ be the closest point from the γλ-net to λ and the γτ -net to τk, respectively. Now,∣∣∣∣∣∣
∑
j

I
{
|x>j λ + εj + b∗j | ≥ τk

}
− I
{
|x>j λ̃ + εj + b∗j | ≥ τ̃

}∣∣∣∣∣∣ ≤
∑
j

I
{
|x>j λ̃ + εj + b∗j − τ̃ | ≤ (γτ + ‖xj‖γλ)

}
. (10)

Now let us denote νj = x>j λ̃ + εj + b∗j ∼ N (b∗j , ‖λ‖2 + σ2). Note that νj are independent of each other (recall that b∗ is
generated independently of xi and λ is a fixed vector). Also, let γ = γτ + ‖xj‖γλ. Recall that since the Gaussian distribution has
a density function that always takes values less than unity at every point, for g ∼ N (µ, 1), Pr(|g − τ | ≤ ζ) ≤ 2ζ for all τ, µ and
for all ζ > 0. Hence, for a fixed λ̃ and τ̃ , we have:

Pr

∑
j

I {|νj − τ̃ | ≤ γ} ≥ 4d

 = Pr

∑
j

I
{∣∣∣∣νjσ̃ − τ̃

σ̃

∣∣∣∣ ≤ γ

σ̃

}
≥ 4d

 ≤ ( n
4d

)(
2γ

σ̃

)4d

≤
(
n

4d

)(
2γ

σ

)4d

. (11)

In the above σ̃ =
√
σ2 + ‖λ‖22 ≥ σ. At this point, we recall that using standard results on covering numbers [9] and by setting

γτ = O
(
σ
n3

)
, γλ = σ

2000dn3 logn , we know that the net on λ values needs at most ( 4σ
100γλ

)d elements and the net on τ values

needs at most 2.5σ
√

log(n/k)

γτ
elements. Thus, using a union bound, we have for all λ̃ in the γλ-net of B and τ̃ ∈ γτ -net of

[.5σ
√

log(n/k), 30σ
√

log(n/k)]:

Pr

∑
j

I {|νj − τ̃ | ≤ γ} ≥ 4d

 ≤ ( n
4d

)(
2γ

σ

)4d

·
(

4σ

100γλ

)d
·

(
2.5σ

√
log(n/k)

γτ

)
≤ 2
√

log n

n5d
, (12)

where the last inequality follows by setting γτ = O
(
σ
n3

)
, γλ = σ

2000dn3 logn . These bounds were set as such since ‖λ‖2 ≤ σ/100,
and by using standard tail bounds on Chi-squared random variables, with probability at least 1− 1/nd, we have maxi ‖xi‖2 ≤
20d log n. Using (10) with the above bound, we get that w.p. ≥ 1− 1

nd
:∣∣∣∣∣∣

∑
j

I
{
|x>j λ + εj + b∗j | ≥ τk

}
− I
{
|x>j λ̃ + εj + b∗j | ≥ τ̃

}∣∣∣∣∣∣ ≤ 4d. (13)

Also let R =
{
j, s.t., I

{
|x>j λ + εj + b∗j | ≥ τk

}
6= I

{
|x>j λ̃ + εj + b∗j | ≥ τ̃

}}
. Above bound shows that |R| ≤ 4d with high

probability.

Now, ∑
j∈R
|λ>xj ||b∗j + εj | ≤

∑
j∈R
|λ>xj |(|λ>xj |+ τ̃ + γ)

ζ1
≤
∑
j∈R

(λ>xj)
2 +

√
|R|(τ̃ + γ)

√∑
j∈R

(λ>xj)2

ζ2
≤ 20(d log n/d+

√
dn log n)‖λ‖2 + 160σ(d+

√
dn) log n · ‖λ‖, (14)
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where ζ1 follows from the fact that for all j ∈ R, |b∗j + εj + λ>xj − τ̃ | ≤ γ and by using Cauchy-Schwarz inequality. ζ2 follows
from SSS condition (Theorem 10), as well as bound on τ and γ (given above).

Using (8) and (14), we get (w.p. ≥ 1− 1/nd), for any λ ∈ B2(0, σ
100 ):

λ>Xz ≤ 20((k + d) log n/d+ 2
√
dn log n)‖λ‖2 + 160σ(d+

√
dn) · log n · ‖λ‖

+
∑
j

(λ>xj)
(
I
{
|x>j λ̃ + b∗j + εj | > τ̃

}
(b∗j + εj)− b∗j

)
. (15)

We now analyze the last term in the above expression:∑
j

(λ>xj)
(
I
{
|x>j λ̃ + b∗j + εj | > τ̃

}
(b∗j + εj)− b∗j

) ζ1
≤
∑
j

(λ̃
>
xj)

(
I
{
|x>j λ̃ + b∗j + εj | > τ̃

}
(b∗j + εj)− b∗j

)

+ γλ
√
d
√

log n

∑
j

∣∣∣(I{|x>j λ̃ + b∗j + εj | > τ̃
}
− 1
)
b∗j

∣∣∣+ |εj |

 ,

ζ2
≤
∑
j

(λ̃
>
xj)

(
I
{
|x>j λ̃ + b∗j + εj | > τ̃

}
(b∗j + εj)− b∗j

)
+ γλ

√
d
√

log n · n ·
√
dσ
√

log n

ζ3
≤
∑
j

(λ̃
>
xj)

(
I
{
|x>j λ̃ + b∗j + εj | > τ̃

}
(b∗j + εj)− b∗j

)
+

σ

2000n2
, (16)

where (ζ1) follows by using the fact that
∥∥∥λ− λ̃

∥∥∥
2
≤ γλ by definition, (ζ2) follows from bounds on εj , and (ζ3) follows from

the setting of γλ = σ
2000dn3 logn .

Now, using a union bound over all the (80dn3 log n)d elements of the net over λ values and all 2.5n3
√

log n elements of the
net over τ values on top of the result in Lemma 13, we have, w.p. 1− 1/nd, for all λ̃ ∈ γλ-net of B and for all τ̃ ∈ γτ -net of
[.5σ

√
log n/k, 30σ

√
log n/k]:∑

j

(λ̃
>
xj)

(
I
{
|x>j λ̃ + b∗j + εj | > τ̃

}
(b∗j + εj)− b∗j

)
≤
(

0.4n
√

logα exp(− logα

33
) + 1.62

n

α
log(α)

)
‖λ‖22

+8σ‖λ‖ log n ·
√

100nd log n, (17)

where α = n/k.

Finally, using (15), (16), and (17), and the fact that α = n/(2k∗) ≥ 10000 and d ≤ n/10000, we get with probability at least
≥ 1− 1/n10:

λ>Xz ≤ .8n‖λ‖2 + 200σ
√
n · d · log2 n · ‖λ‖. (18)

We now consider the second term from (7). Let v be any unit vector such that v>λ = 0. Note that,

vTXz = ṽ>Xz− (ṽ − v)>Xz, (19)

where ṽ is the closest point to v in an ν-net over Sd−1 such that each point over the net is orthogonal to λ̃; recall that λ̃ is the
closest point to λ over γλ net over B.

Now,

ṽ>Xz =
∑
j

(ṽ>xj)(I
{
|λ>xj + b∗j + εj | ≥ τk

}
(b∗j + εj)− b∗j ), (20)

=
∑
j

(ṽ>xj)(I
{
|λ̃
>
xj + b∗j + εj | ≥ τ̃

}
(b∗j + εj)− b∗j )

+
∑
j

(ṽ>xj)(I
{
|λ>xj + b∗j + εj | ≥ τk

}
− I
{
|λ̃
>
xj + b∗j + εj | ≥ τ̃

}
)(b∗j + εj). (21)
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Now, using the fact that,∣∣∣I{|λ>xj + b∗j + εj | ≥ τk
}
− I
{
|λ̃
>
xj + b∗j + εj | ≥ τ̃

}∣∣∣ ≤ I
{
λ̃
>
xj + b∗j + εj − τ̃ | ≤ γτ + ‖xj‖γλ

}
,

as well as using (13), we get (w.p. ≥ 1− 1/nd):∑
j

(ṽ>xj)(I
{
|λ>xj + b∗j + εj | ≥ τk

}
− I
{
|λ̃
>
xj + b∗j + εj | ≥ τ̃

}
)(b∗j + εj) ≤

∑
j∈R

|ṽ>xj |(|λ̃
>
xj |+ τ̃ + γτ + ‖xj‖γλ|),

ζ1
≤ 2‖λ‖

∑
j∈R

(ṽ>xj)
2 + 2

1

‖λ‖
∑
j∈R

(λ̃
>
xj)

2 + 30σ logn
∑
j∈R

|ṽ>xj |,

ζ2
≤ (d+

√
dn)σ + 100σd logn, (22)

where R =
{
j, s.t.,

∑
j I
{
|x>j λ + εj + b∗j | ≥ τk

}
6= I

{
|x>j λ̃ + εj + b∗j | ≥ τ̃

}}
. ζ1 follows from τ̃ ≤ 30σ

√
log n. ζ2 follows

from Theorem 10 along with bound on |R| ≤ 4d obtained using (13).

Now consider the first term of (21). Using an argument similar to the one used in Lemma 13, we get (w.p. ≥ 1− exp(−n/10)):

|(ṽ>xj)(I
{
|λ̃
>
xj + b∗j + εj | ≥ τ̃

}
(b∗j + εj)− b∗j )| ≤ 8σ log n. (23)

Now since v ⊥ λ and xj is a standard multivariate Gaussian random variable, λ>xj and v>xj are independent random variables.
Moreover E

[
v>xj

]
= 0. Thus we have

E

∑
j

(v>xj)(I
{
|λ>xj + b∗j + εj | ≥ τ̃

}
(b∗j + εj)− b∗j )

 = 0

Using simple manipulations, we can then show

E

∑
j

(ṽ>xj)(I
{
|λ̃
>
xj + b∗j + εj | ≥ τ̃

}
(b∗j + εj)− b∗j )

 ≤ n(γτ + γλ · d log n),

where the right hand side is vanishingly small since we set γτ and γλ to values of the order of n−3. Even the above can be avoided
and the right hand side made absolutely zero by simply expanding the ν-net over v vectors so that for every pair of (v,λ) that is
orthogonal, we are able to find a pair (ṽ, λ̃) that are not only in close proximity to the original pair but we also have ṽ ⊥ λ̃. This
would require a quadratic increase in the number of points in the net which can only increase the constants in the expressions by a
small quantity.

Thereafter, using the Hoeffding’s inequality with union bound as well (19), (21), and (23), we get w.p. ≥ 1− 1/nd−1, for all λ
and for all v ∈ Sd−1 s.t. v ⊥ λ:

|vTXz| ≤ 100σ(d+
√
d · n) log2 n. (24)

The result now follows by combining (7), (18), and (24) and using
√
a+ b ≤

√
a+
√
b.

Lemma 13. Let xj ∼ N (0, I) ∈ Rd for all 1 ≤ j ≤ n and εj ∼ N (0, σ2). Let b∗ be k∗ sparse and k = 2k∗. Let d < n/10000,
k < n/10000 and α = n/k. Let λ ∈ Rd be a fixed vector with ‖λ‖ ≤ σ/100 and τ ∈ [.5σ log(n/k), 2σ log(n/k)] be a fixed
constant. Then, the following holds (w.p. ≥ 1− δ − exp(−n/10)):∑

j

(λ>xj)
(
I
{
|x>j λ + b∗j + εj | > τ

}
(b∗j + εj)− b∗j

)
≤
(

0.4n
√

logα exp(− logα

33
) + 1.62

n

α
log(α)

)
‖λ‖22

+ 8σ‖λ‖ log n

√
n log

n

δ
.

Proof. Let us define x>j λ := hj , aj = b∗j + εj . We note that hj ∼ N(0, ‖λ‖22) and aj ∼ N(b∗j , σ
2). Then, we are interested in:∑

j

(λ>xj)
(
I
{
|x>j λ + b∗j + εj | > τ

}
(b∗j + εj)− b∗j

)
=
∑
j

rj , (25)
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where
rj = I {|hj + aj | > τ}hjaj − hjb∗j .

Note that E
[∑

j hjb
∗
j

]
= 0 since b∗j is independent of hj and λ is fixed. Hence,

E

∑
j

rj

 = E

∑
j

I {|hj + aj | > τ}hjaj

 . (26)

Now, using distribution of hj and aj , we have:

E [I {|hj + aj | > τ}hjaj |aj ] =
1√

2π ‖λ‖2

∫ −τ−aj
−∞

ajhj exp

(
−

h2
j

2 ‖λ‖22

)
dhj +

1√
2π ‖λ‖2

∫ ∞
τ−aj

ajhj exp

(
−

h2
j

2 ‖λ‖22

)
dhj

=
‖λ‖2√

2π
aj

(
exp

(
− (τ − aj)2

2 ‖λ‖22

)
− exp

(
− (τ + aj)

2

2 ‖λ‖22

))
.

Since hj and aj are independent E [I {|hj + aj | > τ}hjaj ] = Eaj
[
Ehj [I {|hj + aj | > τ}hjaj |aj ]

]
. Therefore,

E [I {|hj + aj | > τ}hjaj ] =
‖λ‖22√
2π ‖λ‖2

1√
2πσ

∫ ∞
−∞

aj exp

(
− (τ − aj)2

2 ‖λ‖22

)
exp

(
−

(aj − b∗j )2

2σ2

)
daj

−
‖λ‖22√
2π ‖λ‖2

1√
2πσ

∫ ∞
−∞

aj exp

(
− (τ + aj)

2

2 ‖λ‖22

)
exp

(
−

(aj − b∗j )2

2σ2

)
daj

=
1√
2π

‖λ‖22√
‖λ‖22 + σ2

exp

(
−1

2

(
τ2

‖λ‖22
+
b∗2j
σ2

)) τ
‖λ‖22

+
b∗j
σ2

1
‖λ‖22

+ 1
σ2

exp

1

2

(
τ
‖λ‖22

+
b∗j
σ2

)2

1
‖λ‖22

+ 1
σ2


+

1√
2π

‖λ‖22√
‖λ‖22 + σ2

exp

(
−1

2

(
τ2

‖λ‖22
+
b∗2j
σ2

)) τ
‖λ‖22

− b∗j
σ2

1
‖λ‖22

+ 1
σ2

exp

1

2

(
−τ
‖λ‖22

+
b∗j
σ2

)2

1
‖λ‖22

+ 1
σ2


≤ 2
‖λ‖22√

2π

τ +
|b∗j |‖λ‖

2
2

σ2

σ
exp

(
−1

2

(|b∗j | − τ)2

σ2 + ‖λ‖22

)
, (27)

where the above inequalities follow from straightforward calculations.

Note that ‖λ‖22 ≤
σ2

104 . Let α := n
k . Now, consider the following three cases for a fixed τ ∈ ( 1

2

√
log(α), 2

√
log(α)):

• |b∗j | ≤ τ/2

E [rj ] ≤ ‖λ‖22
2√
2π

τ + τ
2·104

σ
exp

(
−1

2.02

(|b∗j | − τ)2

σ2

)
ζ1
≤ ‖λ‖22 0.8

τ

σ
exp

(
−1

8.08

τ2

σ2

)
where ζ1 follows from using the fact that |b∗j | ≤ τ/2.
• τ/2 ≤ |b∗j | ≤ 2τ

E [rj ] ≤ ‖λ‖22
2√
2π

τ + 2τ
104

σ
exp

(
−1

2.02

(|b∗j | − τ)2

σ2

)
ζ1
≤ ‖λ‖22 0.8

τ

σ

where ζ1 follows from using exp
(
−1
2.02

(|b∗j |−τ)2

σ2

)
≤ 1.

• |b∗j | ≥ 2τ

E [rj ] ≤ ‖λ‖22
2√
2π

0.5001|b∗j |
σ

exp

(
−1

2.02

(|b∗j | − τ)2

σ2

)
ζ1
≤ ‖λ‖22 0.4

|b∗j |
σ

exp

(
−1

8.08

b∗2j
σ2

)
where ζ1 follows from using |b∗j | ≥ 2τ .
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Recall that b∗ has at most k∗ non-zeros, hence at most k∗ elements can belong to case 2 and 3 described above. Combining the
above given cases, we have:

E

∑
j

rj

 ≤ ((n− k∗) max
β≥ 2τ

σ

[
0.4β exp

(
−β2

8.08

)
, 0.8

τ

σ
exp

(
−1

8.08

τ2

σ2

)]
+ 0.8

τ

σ
· k∗
)
‖λ‖22

ζ1
≤

(
(n− k∗) max

β≥ 2τ
σ

[
0.4β exp

(
−β2

8.08

)
, 0.8

τ

σ
exp

(
−1

8.08

τ2

σ2

)]
+ 1.62

n

α
log(α)

)
‖λ‖22

ζ2
≤
(

0.4n
√

logα exp(− logα

33
) + 1.62

n

α
log(α)

)
‖λ‖22 , (28)

where ζ1 follows from the fact that τ ≤ 30σ
√

log(α). ζ2 follows from maximizing x exp
(
− x2

8.08

)
in the interval

(0.5
√

log(α), 2
√

log(α)) for τ and (
√

log(α),∞) for β.

Above given equation bounds the expected values of
∑
j rj . We now bound the deviation of

∑
j rj from its expected value. For

this, we first consider rj = I {|hj + aj | > τ}hjaj − hjb∗j . Here, we consider two cases:

1. |hj + aj | > τ : in this case, rj = hjεj . Moreover, w.p. ≥ 1 − exp(−n/10), |hj | ≤ 2‖λ‖
√

log n, and |εj | ≤ 2σ
√

log n.
Hence, |rj | ≤ 4‖λ‖σ log n.

2. |hj +aj | ≤ τ : in this case, |b∗j | ≤ τ + |hj |+ |εj | ≤ τ +2(‖λ‖+σ)
√

log n. Moreover, rj = −hjb∗j , i.e., |rj | ≤ 8σ‖λ‖ log n.

Hence, using Hoeffding’s bound, we get (w.p. ≥ 1− δ − exp(−n/10)):∣∣∣∣∣∣
∑
j

rj − E [rj ]

∣∣∣∣∣∣ ≤ 8σ‖λ‖ log n

√
n log

(
2

δ

)
.

The result now follows by combining the above observation with (28).
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