Supplementary Material for Consistent Robust Regression

A SSC/SSS guarantees

In this section we restate some results from [3]] which are required for the convergence analysis of the RLSR problem. Similar
variants are known from other works, e.g. [L0], as well.
Definition 7. A random variable x € R is called sub-Gaussian if the following quantity is finite

_ 1
sup p~!/? (E [|af"))"/" .
p>1
Moreover, the smallest upper bound on this quantity is referred to as the sub-Gaussian norm of x and denoted as ch||¢2

Definition 8. A vector-valued random variable x € RP is called sub-Gaussian if its unidimensional marginals (x,Vv) are
sub-Gaussian for all v € SP~1. Moreover, its sub-Gaussian norm is defined as follows

[X1ly, = sup [[(x,v)l],,
vesr—1

Lemma9. Let X € RP*™ be a matrix whose columns are sampled i.i.d from a standard Gaussian distribution i.e. x; ~ N (0, I).
Then for any € > 0, with probability at least 1 — 6, X satisfies

2
Amax(XXT) <n4 (1 —2¢)7! cnp—&-c’nlogg
T —1 2
Amin (XX ") >n — (1 —2¢) cnp—&-c’nlogg,
where ¢ = 24e> log% and ¢ = 24¢€>.

Theorem 10. Let X € RP*™ be a matrix whose columns are sampled i.i.d from a standard Gaussian distribution i.e. x; ~ N'(0, ).
Then for any k > 0, with probability at least 1 — 6, the matrix X satisfies the SSC and SSS properties with constants

Ak§k<1+3e,/61oge:)+O<,/np+nlog(15>
Ae>n—(n—k)|1+3e,/6log T ) _q \/anrnlog1 .
n—k )

Lemma 11. Let X € RP*"™ be a matrix with columns sampled from some sub-Gaussian distribution with sub-Gaussian norm K
and covariance .. Then, for any § > 0, with probability at least 1 — 0, each of the following statements holds true:

)\max(XXT) < )\max(z) ‘n+Ck - vpn + t\/ﬁ
Amin(XX ) > Ain(8) - n — C - /pn — t/n,
wheret = ,/ i log %, and cg , C'i are absolute constants that depend only on the sub-Gaussian norm K of the distribution.

B Convergence Proofs for CRR

Theorem 4. Let v; € R%, 1 < i < n be generated i.i.d. from a Gaussian distribution, let y;’s be generated using @) for a fixed w*,
and let o2 be the noise variance. Also let the number of corruptions k* be s.t. 2k* < k < n/10000. Then for any €, > 0, with

probability at least 1 — 0, after O (1og % + log %) steps, CRR ensures that |[w' — w*||, < e+ O (\/AJW %1og ’?).

Proof. Using Lemma after O <log %

OVd) (65, /F* Togn) < /100 as long as k < n/10000 and n > d/10000.
Now, recall that by = HTy(b* + XT()\t — Pxe€) + €). Now, using Lemmawith A = X' — Pxe, we get:

t+1 t g 2
A, <091 A ||2+1100\/;10g n,

which ensures a linear convergence of the terms H)\t H2 to a value e + O (a, / % log ’gd) . O

| = [(XTX)"1X (bt — b*)|| < LEEVRd) bt )| <

) steps, we get bt s.t. || \*
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Lemma 5. For any data matrix X that satisfies the SSC and SSS properties such that A’“*’“* < 1, CRR, when executed with
k > k¥, ensures for any €, > 0, with probability at least 1 — § (over the random Gausszan noise € in the responses — see (3))

that after Ty = O (log ‘leb_d‘e2> — b* ||2 < 3eg + ¢ where eg = O ( \/(k + k*)log W) for standard Gaussian

designs.

Proof. We start with the update step in CRR, and use the fact that y = X T w* + b* + € to rewrite the update as
b« HT,(Pxb' + (I — Px)(X"w* +b* +¢)).

Since X T = Px X T, we get, using the notation set up before,

b« HT,(b* + X TA' + g).
Since k > k*, using the properties of the hard thresholding step gives us
Hbt]‘till - b[t+1 + XItJrlAt + g[t+1)H2 S Hb;t+1 - (b;t+1 + Xlt+1At + g1t+1)H2 = ’|X}E+1>\t + grt+1 H2 .
This, upon applying the triangle inequality, gives us
Hbt+1 _ b*

< 2 HXIf+1At + g1t+1 H2 .

Now, usmg the SSC and SSS properties of X, we can show that ||XI,+1)\ H = ||XI,+1 XXT)*lXp (bt —b

A *
k/\-;k _ b*||2

I, <

Since € is a Gaussian vector, using tail bounds for Chi-squared random variables (for example, see Lemma 20 in [3]]), for any set
S of size k -+ k*, we have with probability at least 1 — & ,||es]||3 < 0%(k + k*) + 2e024/6(k + k*) log L. Taking a union bound

over all sets of size (k + k*) and (}) < (%)k gives us, with probability at least 1 — 4, for all sets .S of size at most (k + k*),

en
< * _—
leslly < ov/(k+E )\/l—l—Qe1 /6 log 5+ )

Using tail bounds on Gaussian random Variablesﬂ we can also show that for every 4, with probability at least 1 — J, we have
I(Xe)ill, <o H(XTLH2 \/2log }. Taking a union bound gives us, with the same confidence, ||Xe||2 < 202 ||X||F log 4 § <

20%dA,, log 4. This allows us to bound ||g e+,

lgrenlly = erss — Xfin (XX T) "' Xe,

/ en \/Ak-i-k*An\/ d

/142 I 2dlog =

0\/(k‘+k)\/ +2e 60g5<k+k*)+a N d0g5
/ en 12d d

= 1.0003eo,

where the second last step is true for Gaussian designs and sufficiently large enough n. Note that ey does not depend on the
iterates and is thus, a constant. This gives us

Hbt+1 —b bt o

+ 2.0006¢.

I

2 ke
< =2

For data matrices sampled from Gaussian ensembles, whose SSC and SSS properties will be established later, assuming
n > dlog d, wehave eg = O (O'\/(k‘ + k*) 10g W) Thus, if 2[\;7:“ < 1,theninTy = O <10g [[b* Hz) steps, CRR ensures

that ||b™ — b*||, < 2.0009¢ + €. O
3 1 /Oo —t2/2 1 /Oo L _42)2 1 22/
— e dt < —— —e dt = ——e
V2r Ja “Vor ). = zV/2r
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Lemma 12. Let A\yin(3) be the smallest eigenvalue of the covariance matrix of the distribution N'(0,X) that generates the data
. . . t * 2 d d t
points. Then at any time instant t, we have |[w" — w*||, < To® (201 /< log § + H/\ H2>

Proof. As described in Algorithm[l] w® = (XXT)"'X (y — b') = w* + (XX )" X (e + b* — b"). If we let X = £~1/2X,
we get:

* 1 *
It =l < ey X O =l
1
< XT t *
—\/mmin(z)—cz\/ﬁH (W =wil,
1

= Ny (E)—CE\/EHXT(XXT)_lX(G“rb*—bt)HQ
1 e
B \/n)\min(E)fc'E\/ﬁHX (XX )"'X(e+b —b)H2

5

< T o H(WT)_ly(e +b* — bt)H2

2 [d_d .,

where the second step follows from results on eigenvalue bounds for data matrices drawn from non-spherical Gaussians, where
Cs: is a constant dependent on the subGaussian norm of the distribution. The fourth step is a whitening step executed for sake of
convenience alone and can be bypassed. The step uses the fact that even though X may be sampled from a non-spherical Gaussian

N(0, %), the quantity X " (X X ")~ X is distributed as x' (XXT)_ly where X is sampled from a spherical Gaussian N(0, I).

The last step assumes 1 > 2_0232) and uses the proof technique used in Lemmato get

_ VA
H(XXT)_lXeH < oY fodlog 4 < 20y [ L1og 4. 0
2 An ) n )

Lemma 6. Let X = [x1,Xo,...,X,| be a data matrix consisting of i.i.d. standard normal vectors i.e x; ~ N (0, I;xq), and
€ ~ N(0,0% - I,xn) be standard normal vector drawn independently of X. For any A € R? such that || A||, < 135, define
z = HT,(X "X+ €+ b*) — b*, where k = 2k* and |supp(b*)| < k*. Also let k* < n/10000 and d < n/10000. Then, the

following holds (w.p. > 1 —1/n°):

| Xz|| < .9n]|A| + 3000Vd - nlog? n

Proof. We first decompose || X'z||3, using the Pythagorean theorem, as:

Xz|2 < A x7)? + max vl Xz)2. @)
|| ||2 = H)\”%( ) v,Hngzl,vTA:O( )

We now consider the first term above. Let 7, > 0 be such that the k largest elements (in magnitude) of b = X TA+ e+ b*areall
greater than 75 and the (n — k) smallest elements (in magnitude) of b are all less than 7.

That is,
AT Xz = (AT ([I{ %] A+ b5 + ¢ > 7} (0] + ¢ + %] A) = bY)
J
=D AT {4+ 0] + 65 > b+ Y ATx)I{x A +85 + €| > i} (0] + ) — b))
J J
< 20(klogn/k + v/dnlogn) X + > (A Tx) (I {[x] X + b5 + €| > 70} (0] + ) — b}), (8)
J

where the last inequality follows from Theorem and hold with probability > 1 — 1/n<.

Now to bound the second term above, our approach is to show that each of the j-th term is small in expectation and then use
tail bounds to obtain the final bound. Unfortunately, as A and 73 can depend on random variables X and e, we cannot bound
expectation as well as apply Hoeffding style tail bounds directly.
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Instead, we take the standard approach of using e-nets and union bounds. That is, we form ~x-net over the set B := B5(0, 155)

(i.e. the ball of radius 155 > |||l centered at the origin in d-dimensions) and similarly a unit dimensional +;,-net over

[0/2/log(n/k), 300+/log(n/k)]; we will provide the justification for selecting the above given range for 7 below.

Recall that we hard-threshold k = 2k* entries of X " A+e+b*. Moreover, |supp(b*)| < k*. Now, let S = {j s.t. \ij)\+ej| > Tk.
Note that | S| > k—k* as 7, ensures that top-k elements of X T A+ e+ b* are selected. Similarly, define S = {;j s.t. [z A+e| <
Tk. Again, note that |§ | <n—k+ k* as 7 ensures that only k elements of X T + € + b* are selected. Hence,

1 1
— E (x;r/\—i— )2 <1< = E (:r:;r)\ + €)% )
S|~ 5] 4
jes jes
Using the fact that & < n/10000 and using SSC/SSS bounds with d < n/10000 (apply Theorem [10| part 1 with k — k* and

part 2 with n — k + k*), we get with probability at least 1 — 5, 7, € [.5o+/logn/k, 300 /log nn/k]. Note that this result holds
uniformly for any A € B2(0, 755) as it simply uses the SSC/SSS properties of the matrix X.

Now, let X and 7 be the closest point from the ~yx-net to A and the ~,-net to 7, respectively. Now,

S T{Ix] A+ € +b3| =7} —]1{|XJTX+EJ- +05| > %} < ZH{|XJTX+ej +b; =7 < (v + ||xj\m)}. (10)

J

Now let us denote v; = XJ—X + €j + b5 ~ N(b5,|IAl|> + 0°). Note that v; are independent of each other (recall that b* is
generated independently of x; and X is a fixed vector). Also, let v = 7, + ||x;||a. Recall that since the Gaussian distribution has
a density function that always takes values less than unity at every point, for g ~ N (i, 1), Pr(|g — 7| < ¢) < 2¢ for all 7, 1 and

for all ¢ > 0. Hence, for a fixed X and 7, we have:
~ 4d 4d
i ¥ n 2y n 2y
I __l<2Itlsuyql < ) < =) 11

X
N

Q

Pr(> I{ly,—7| <y} >4d| =Pr ZH{
J

J

In the above o = /02 + ||)\H§ > o. At this point, we recall that using standard results on covering numbers [9] and by setting
V=0 (%), A = m, we know that the net on A values needs at most (lo‘g’w )4 elements and the net on 7 values

504/log(n/k)

2. . . <. ~
needs at most elements. Thus, using a union bound, we have for all A in the yx-net of B and 7 € ,-net of

50/Tog(n/k), 300 «/Toa(n TK)]:

- n 27\ 4 40\ 2.50+/log(n/k 2+/logn
Pr| Y I{ly; —7 <~} > 4d §<4d> (:) .<100%) ( 7g( / )>§ \/n5dg 7 a2)
7 T

These bounds were set as such since ||A[|, < /100,

where the last inequality follows by setting v, = O (ﬁ), A= m.

and by using standard tail bounds on Chi-squared random variables, with probability at least 1 — 1/n?, we have max; ||x;||, <
20d log n. Using (T0) with the above bound, we get that w.p. > 1 — -L;:

nd

SI{x A+ + 5] 2} —T{x] X+ ¢+ 05 > 7}| <4d. (13)
J

Also let R = {j, st, T{Ix/ A +¢; + i[>} #1 {‘X]TX + €5 + 05 > ?}} Above bound shows that |R| < 4d with high
probability.

Now,

~ Sl ~
DOINTxGIE gl < DI T +9) < D ATx) HVIRIT ) YA xg)?
JjER JjER JER JER

¢
< 20(dlogn/d + /dnlogn)||A||* + 1600(d + vdn)logn - | A, (14)
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where (; follows from the fact that for all j € R, [b] + €; + AT x; — 7| <~y and by using Cauchy-Schwarz inequality. (o follows
from SSS condition (Theorem@) as well as bound on 7 and vy (given above).

Using () and (T4), we get (w.p. > 1 — 1/n?), for any X € B5(0, 1% ):
X' Xz < 20((k + d)logn/d + 2v/dnlogn)||A||? + 1600 (d + Vdn) - logn - || A
+3 (ATx)) (11 {\xji B 4] > %} (b + ;) — b;) . (15)
J
We now analyze the last term in the above expression:

> (ATxy) (11 {|x}X 0] > %} (b +¢5) — b;f) % Z(Xij) (11 {|XJT7\ 0 4] > ?} (b +¢5) — b;f)

J J

+|€j‘ )

+ ady/logn Z\(H{|X;X+b;+ej|>;}—1)b;
J

G2

< Z A X;) (H{|x?i+b§ +¢5| > ?} (b +€5) —b;) +yaVd/logn - n - Vdoy/logn

R ) (LR 8 o > 70 o) ) + oo (16)
J

where ((;) follows by using the fact that H)\ — S\H < 4 by definition, (¢2) follows from bounds on €;, and ({3) follows from
2

the setting of A = 2000dn? log n*

Now, using a union bound over all the (80dn>logn)? elements of the net over X values and all 2.5n%/Iog n elements of the
net over 7 values on top of the result in Lemma we have, w.p. 1 — 1/n?, for all X\ € yx-net of B and for all 7 € 7, -net of

[.50+/log n/k, 300 \/log n/k]:
~T ~ - lo
Z()\ X;) (]I {|x;-r)\ + b5 + €| > T} (b7 +€5) — b;‘) < (0.4n\/logaexp(—§3a) +1.62— log(a)> [BN[
J
+80||A|| log n - v/100ndlogn, a7

where o = n/k.
Finally, using (T3], (T6), and (I7), and the fact that « = n/(2k*) > 10000 and d < n/10000, we get with probability at least
>1—1/nt0:

A Xz < .8n||A||? + 2000V - d - log®n - ||A|. (18)
We now consider the second term from (7). Let v be any unit vector such that v A = 0. Note that,

vIXz2=v"Xz - (V-v) Xz, (19)

where V is the closest point to v in an v-net over S¢~! such that each point over the net is orthogonal to 5\; recall that X is the
closest point to A over ~y net over B.

Now,

VX7 = 3 (TR {IATx; 45 + 5] =m0 + ;) — b)), (20)
~ ol * ~ * *
- Z(vij)(]I {|A Xj + b +¢;] > 7'} (0% +¢€;) — b])

o~ * ~d * ~ *
T xNT{ATx 40+l 27 —T{IX x50 6 TG +e). @D
J
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Now, using the fact that,
~T ~T
{IATx; + 85 + 65 2 mef ~T{IX x5 4855 + 6 2 7} ST{X %, 485 + ¢ = 71 < + sl |
as well as using (13), we get (w.p. > 1 — 1/n9):

~ * 3T * ~ * ~ T ~
S ETxNE{ATR 18 6l 2 TR x5+ 5 4+ 6 2705 +6) < SORTRIIR x50+ F 430 + s,

J JER
¢1 . 1 ~T -
<2 SEFTx) + 20 > (A x;)? +300logn Y ¥ %1,
jer 1M 5= jen
<
Z (d+ Vdn)o + 1000d log n, 22)

where R = {j, sty 2o, {1 A6 + 05| > 7} # ]I{|X;|—X + €5 + b5 > F}} ¢; follows from 7 < 300+/logn. (s follows
from Theorem [10|along with bound on |R| < 4d obtained using (T3).
Now consider the first term of (ZI). Using an argument similar to the one used in Lemma we get (w.p. > 1 —exp(—n/10)):

~ T ~
(¥ x;)(I {p\ Xj+ b5 4] > T} (% +¢;) — b3)] < 8ologn. 23)

Now since v L A and x; is a standard multivariate Gaussian random variable, )\ij and Vij are independent random variables.
Moreover E [v'x;] = 0. Thus we have

E Z(vij)(H{|,\ij+b;+ej|2?} (bj +¢€;) —b5)| =0
J

Using simple manipulations, we can then show

~ cdl ~ * *
E S @Tx) MR x5+ 5+ 6] = 7} 05 + ) = b)) | <nlre +9x - dlogn),
J
where the right hand side is vanishingly small since we set -y, and 7 to values of the order of n~3. Even the above can be avoided
and the right hand side made absolutely zero by simply expanding the v-net over v vectors so that for every pair of (v, A) that is
orthogonal, we are able to find a pair (¥, A) that are not only in close proximity to the original pair but we also have v L A. This

would require a quadratic increase in the number of points in the net which can only increase the constants in the expressions by a
small quantity.

Thereafter, using the Hoeffding’s inequality with union bound as well (T9), 1)), and 23), we get w.p. > 1 — 1/n4", for all A
andforallv e ST tst. v L X

|vT' Xz| < 1000(d + Vd - n)log® n. (24)
The result now follows by combining (7), (T8), and (Z4) and using v/a + b < v/a + v/b. O

Lemma 13. Letx; ~ N(0,1) € Re forall 1 < j < nand e; ~ N(0,0%). Let b* be k* sparse and k = 2k*. Let d < n/10000,
k < n/10000 and o = n/k. Let X € R? be a fixed vector with ||A|| < ¢/100 and T € [.50 log(n/k), 20 log(n/k)] be a fixed
constant. Then, the following holds (w.p. > 1 — 6 — exp(—n/10)):

1
Z()\ij) (I {|ij/\ + b5+ 65| > 7} (b5 +¢5) —bf) < (0.4n\/logaexp(—cg)g3a) + 1.62% log(a)) H/\||§

+ 80| Al log ny/nlog g

J
Proof. Letus define x X := hj, a; = b} + €;. We note that h; ~ N(0, ||)\||§) and a; ~ N (b%,0?). Then, we are interested in:

S OTx) (T X+ 85 + 5] > 7} (0] +¢;) = b7) = > 75, (25)

J J

16



where

rj :H{‘h] +aj| > T}hjaj 7hjb;

Note that E [Z j hjb;] = 0 since b;f is independent of h; and A is fixed. Hence,

E Y ri| =E|> I{lh; +aj| > 7} hja;

J J

Now, using distribution of h; and a;, we have:

1
E[I{lh; + a;| > T} hja;]a;]

2

T h3 1 > h
= — ajhjexp | ——2— |dh; + 7/ ajhjexp (— Z
V2 [[All [w ( 2 II)\||§> V2r Al Jr—a; 2| Al

I P (r—ay)? Cex (T +4y)?
‘mf( p( 2||A|§> p( 2|72 ))

Since h; and a; are independent E [I{|h; 4+ a;| > 7} hja;]

E[I{[hj + aj| > 7} hja;] =

= ]Eaj [Ehj []I{|hj + aj| > T} hjaj|aj]] . Therefore,

R 1 /°° (7 — a;)° (a; - b7)?
- . S VA IR
Vor Al v2ro J o P T g ) P T e )

IAI13 1 /°° (1 +a)? (a; — b7)*
- ajexp | ————35— | exp | ————=—— | daq;
Var [Ally vVaro oo 2|13 20° ’
1AL exp ( 1 < o b?)) PRt * e | L (HAH% + )
-5 1, 1 57 1 _ . 1
V2T 1Al + o [RYE T o 2 PRt
b A
B S b\ exp< 1 ( o b”)) BE o o 1 (77 + )
1 1
VT JIA + o2 A1 R T o 2 pEte
A+ B 1 (b))
<2 Pl 53|
Var o 2 o2 4 A

where the above inequalities follow from straightforward calculations.

Note that [[A|[7 < 2. Let a := %. Now, consider the following three cases for a fixed 7 € (1+/log(a), 2,/log(a))
o b5 <7/2
2 T+ 5l —1 (Jpj] =) -17°
Efr]< a2 2"t o LU= T7) ey
i < IR =T g (L 2T @ 208 o (70T

where (; follows from using the fact that [b}| < 7/2.

o 7/2<|bj| <27

E [r;) < | All5

where (; follows from using exp (
o b3 >27

E[r; ]<”)‘”2W

2 0.5001b%]

2 T+104

—1 (|b;| - 7)2 C1 9 T
< 83—
o exp <2.02 5 < [[A][50.8

—1 (b51-)*
202 o2 ) =L

—1 (b5l =7)*\ & 0] —1 b3?
— 2 7 ) <|IA|504—= e
p<2.02 o? < A2 0-47= exp | o505

where (; follows from using [b}| > 27.
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Recall that b* has at most £* non-zeros, hence at most k* elements can belong to case 2 and 3 described above. Combining the
above given cases, we have:

B? T -1 72 T o« 2
zj:rj < ((n -k )ﬁn;auf [0 43 exp (8 08 0.8 exp 30352 +0.8—- kSIS
¢1 " ﬂz -1 T2 n 2
< <(n —k )[131;@35 [0 4B exp (8 08) 0. 8— <80802)] + 1.62alog(a)> Al
Gz log « 2
< 0~4n\/@eXp(—§) +1.627 10%(04) Al (28)

where (; follows from the fact that 7 < 300+/log(c). (2 follows from maximizing xexp (—%) in the interval
(0.5y/log(a), 2+/log()) for 7 and (y/log(x), c0) for 3.

Above given equation bounds the expected values of > ; 73~ We now bound the deviation of > ; 75 from its expected value. For
this, we first consider r; = [ {|h; + a;| > T} hja; — h;b}. Here, we consider two cases:

1. |hj 4+ a;j| > 7: in this case, r; = hje;. Moreover, w.p. > 1 — exp(—n/10), |h;| < 2||A||V/Iogn, and |¢;| < 20+/logn.
Hence, |r;| < 4||A||o logn.
2. |hj+aj| < 7 inthis case, [b| < 7+ |hj| +|€;| < 7+ 2(]|A[| 4 0)v/Iog n. Moreover, r; = —h;b%, ie., ;| < 8a||A log n.

Hence, using Hoeffding’s bound, we get (w.p. > 1 — d — exp(—n/10)):

2
er — ]E [Tj] S 80“)‘” IOgTL nlog <6)
J

The result now follows by combining the above observation with (28). O
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