A simple neural network module
for relational reasoning

Adam Santoro* David Raposo* David G.T. Barrett
adamsantoro@google.com draposo@google.com barrettdavid@google.com
Mateusz Malinowski Razvan Pascanu Peter Battaglia
mateuszm@google.com razp@google.com peterbattaglia@google.com
Timothy Lillicrap
DeepMind

London, United Kingdom
countzero@google.com

Abstract

Relational reasoning is a central component of generally intelligent behavior, but
has proven difficult for neural networks to learn. In this paper we describe how to
use Relation Networks (RNs) as a simple plug-and-play module to solve problems
that fundamentally hinge on relational reasoning. We tested RN-augmented net-
works on three tasks: visual question answering using a challenging dataset called
CLEVR, on which we achieve state-of-the-art, super-human performance; text-
based question answering using the bADbI suite of tasks; and complex reasoning
about dynamic physical systems. Then, using a curated dataset called Sort-of-
CLEVR we show that powerful convolutional networks do not have a general
capacity to solve relational questions, but can gain this capacity when augmented
with RNs. Thus, by simply augmenting convolutions, LSTMs, and MLPs with
RNs, we can remove computational burden from network components that are
not well-suited to handle relational reasoning, reduce overall network complexity,
and gain a general ability to reason about the relations between entities and their
properties.

1 Introduction

The ability to reason about the relations between entities and their properties is central to generally
intelligent behavior (Figure[T) [10. [7]. Consider a child proposing a race between the two trees in the
park that are furthest apart: the pairwise distances between every tree in the park must be inferred and
compared to know where to run. Or, consider a reader piecing together evidence to predict the culprit
in a murder-mystery novel: each clue must be considered in its broader context to build a plausible
narrative and solve the mystery.

Symbolic approaches to artificial intelligence are inherently relational [16] 5]. Practitioners define
the relations between symbols using the language of logic and mathematics, and then reason about
these relations using a multitude of powerful methods, including deduction, arithmetic, and algebra.
But symbolic approaches suffer from the symbol grounding problem and are not robust to small

*Equal contribution.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



Oriai . Non-relational question:
riginal Image:
What is the size of . ‘
the brown sphere? .

Relational question:

Are there any rubber
things that have the
same size as the yellow
metallic cylinder?

Figure 1: An illustrative example from the CLEVR dataset of relational reasoning. An image
containing four objects is shown alongside non-relational and relational questions. The relational
question requires explicit reasoning about the relations between the four objects in the image, whereas
the non-relational question requires reasoning about the attributes of a particular object.

task and input variations [3]]. Other approaches, such as those based on statistical learning, build
representations from raw data and often generalize across diverse and noisy conditions [12]. However,
a number of these approaches, such as deep learning, often struggle in data-poor problems where the
underlying structure is characterized by sparse but complex relations [3,[11]]. Our results corroborate
these claims, and further demonstrate that seemingly simple relational inferences are remarkably
difficult for powerful neural network architectures such as convolutional neural networks (CNNs)
and multi-layer perceptrons (MLPs).

Here, we explore “Relation Networks” (RN) as a general solution to relational reasoning in neural
networks. RN are architectures whose computations focus explicitly on relational reasoning [[18].
Although several other models supporting relation-centric computation have been proposed, such
as Graph Neural Neworks, Gated Graph Sequence Neural Netoworks, and Interaction Networks,
(20, 2], RNs are simpler, more exclusively focused on general relation reasoning, and easier to
integrate within broader architectures. Moreover, RNs require minimal oversight to construct their
input, and can be applied successfully to tasks even when provided with relatively unstructured inputs
coming from CNNs and LSTMs. We applied an RN-augmented architecture to CLEVR [[7]], a recent
visual question answering (QA) dataset on which state-of-the-art approaches have struggled due to the
demand for rich relational reasoning. Our networks vastly outperformed the best generally-applicable
visual QA architectures, and achieve state-of-the-art, super-human performance. RNs also solve
CLEVR from state descriptions, highlighting their versatility in regards to the form of their input. We
also applied an RN-based architecture to the bAbI text-based QA suite [22] and solved 18/20 of the
subtasks. Finally, we trained an RN to make challenging relational inferences about complex physical
systems and motion capture data. The success of RNs across this set of substantially dissimilar task
domains is testament to the general utility of RNs for solving problems that require relation reasoning.

2 Relation Networks

An RN is a neural network module with a structure primed for relational reasoning. The design
philosophy behind RN is to constrain the functional form of a neural network so that it captures the
core common properties of relational reasoning. In other words, the capacity to compute relations is
baked into the RN architecture without needing to be learned, just as the capacity to reason about
spatial, translation invariant properties is built-in to CNNs, and the capacity to reason about sequential
dependencies is built into recurrent neural networks.

In its simplest form the RN is a composite function:

RN(O) = fs | Y g6l0ir05) | , )
i,



where the input is a set of “objects” O = {01, 02, ..., 0, }, 0; € R™ is the i*" object, and fs and gg
are functions with parameters ¢ and 6, respectively. For our purposes, fs and go are MLPs, and the
parameters are learnable synaptic weights, making RNs end-to-end differentiable. We call the output
of gy a “relation”; therefore, the role of gy is to infer the ways in which two objects are related, or if
they are even related at all.

RNs have three notable strengths: they learn to infer relations, they are data efficient, and they operate
on a set of objects — a particularly general and versatile input format — in a manner that is order
invariant.

RNs learn to infer relations  The functional form in Equation|[T]dictates that an RN should consider
the potential relations between all object pairs. This implies that an RN is not necessarily privy to
which object relations actually exist, nor to the actual meaning of any particular relation. Thus, RNs
must learn to infer the existence and implications of object relations.

In graph theory parlance, the input can be thought of as a complete and directed graph whose nodes
are objects and whose edges denote the object pairs whose relations should be considered. Although
we focus on this “all-to-all” version of the RN throughout this paper, this RN definition can be
adjusted to consider only some object pairs. Similar to Interaction Networks [2], to which RNs are
related, RNs can take as input a list of only those pairs that should be considered, if this information
is available. This information could be explicit in the input data, or could perhaps be extracted by
some upstream mechanism.

RN s are data efficient RNs use a single function gy to compute each relation. This can be thought
of as a single function operating on a batch of object pairs, where each member of the batch is a
particular object-object pair from the same object set. This mode of operation encourages greater
generalization for computing relations, since gy is encouraged not to over-fit to the features of any
particular object pair. Consider how an MLP would learn the same function. An MLP would receive
all objects from the object set simultaneously as its input. It must then learn and embed n? (where n
is the number of objects) identical functions within its weight parameters to account for all possible
object pairings. This quickly becomes intractable as the number of objects grows. Therefore, the cost
of learning a relation function n? times using a single feedforward pass per sample, as in an MLP, is
replaced by the cost of n? feedforward passes per object set (i.e., for each possible object pair in the
set) and learning a relation function just once, as in an RN.

RNs operate on a set of objects The summation in Equation |I{ensures that the RN is invariant to
the order of objects in its input, respecting the property that sets are order invariant. Although we
used summation, other commutative operators — such as max, and average pooling — can be used
instead.

3 Tasks

We applied RN-augmented networks to a variety of tasks that hinge on relational reasoning. To
demonstrate the versatility of these networks we chose tasks from a number of different domains,
including visual QA, text-based QA, and dynamic physical systems.

3.1 CLEVR

In visual QA a model must learn to answer questions about an image (Figure[T). This is a challenging
problem domain because it requires high-level scene understanding [1, [14]. Architectures must
perform complex relational reasoning — spatial and otherwise — over the features in the visual inputs,
language inputs, and their conjunction. However, the majority of visual QA datasets require reasoning
in the absence of fully specified word vocabularies, and perhaps more perniciously, a vast and
complicated knowledge of the world that is not available in the training data. They also contain
ambiguities and exhibit strong linguistic biases that allow a model to learn answering strategies that
exploit those biases, without reasoning about the visual input 1} [15} [19].

To control for these issues, and to distill the core challenges of visual QA, the CLEVR visual QA
dataset was developed [7]. CLEVR contains images of 3D-rendered objects, such as spheres and
cylinders (Figure [2). Each image is associated with a number of questions that fall into different



categories. For example, query attribute questions may ask “What is the color of the sphere?”,
while compare attribute questions may ask “Is the cube the same material as the cylinder?”.

For our purposes, an important feature of CLEVR is that many questions are explicitly relational in
nature. Remarkably, powerful QA architectures [24] are unable to solve CLEVR, presumably because
they cannot handle core relational aspects of the task. For example, as reported in the original paper a
model comprised of ResNet-101 image embeddings with LSTM question processing and augmented
with stacked attention modules vastly outperformed other models at an overall performance of 68.5%
(compared to 52.3% for the next best, and 92.6% human performance) [7]. However, for compare
attribute and count questions (i.e., questions heavily involving relations across objects), the
model performed little better than the simplest baseline, which answered questions solely based on
the probability of answers in the training set for a given question category (Q-type baseline).

We used two versions of the CLEVR dataset: (i) the pixel version, in which images were represented
in standard 2D pixel form. (ii) a state description version, in which images were explicitly represented
by state description matrices containing factored object descriptions. Each row in the matrix contained
the features of a single object — 3D coordinates (X, y, z); color (1, g, b); shape (cube, cylinder, etc.);
material (rubber, metal, etc.); size (small, large, etc.). When we trained our models, we used either
the pixel version or the state description version, depending on the experiment, but not both together.

3.2 Sort-of-CLEVR

To explore our hypothesis that the RN architecture is better suited to general relational reasoning as
compared to more standard neural architectures, we constructed a dataset similar to CLEVR that we
call “Sort—of—CLEVR’ﬂ This dataset separates relational and non-relational questions.

Sort-of-CLEVR consists of images of 2D colored shapes along with questions and answers about the
images. Each image has a total of 6 objects, where each object is a randomly chosen shape (square
or circle). We used 6 colors (red, blue, green, orange, yellow, gray) to unambiguously identify each
object. Questions are hard-coded as fixed-length binary strings to reduce the difficulty involved
with natural language question-word processing, and thereby remove any confounding difficulty
with language parsing. For each image we generated 10 relational questions and 10 non-relational
questions. Examples of relational questions are: “What is the shape of the object that is farthest from
the gray object?”; and “How many objects have the same shape as the green object?”. Examples of
non-relational questions are: “What is the shape of the gray object?”; and “Is the blue object on the
top or bottom of the scene?”. The dataset is also visually simple, reducing complexities involved in
image processing.

3.3 DbAbI

bADI is a pure text-based QA dataset [22]]. There are 20 tasks, each corresponding to a particular
type of reasoning, such as deduction, induction, or counting. Each question is associated with a set
of supporting facts. For example, the facts “Sandra picked up the football” and “Sandra went to
the office” support the question “Where is the football?” (answer: “office”). A model succeeds on
a task if its performance surpasses 95%. Many memory-augmented neural networks have reported
impressive results on bAbIl. When training jointly on all tasks using 10K examples per task, Memory
Networks pass 14,/20, DNC 16/20, Sparse DNC 19/20, and EntNet 16,/20 (the authors of EntNets
report state-of-the-art at 20/20; however, unlike previously reported results this was not done with
joint training on all tasks, where they instead achieve 16/20) [23] 4. [17, [6].

3.4 Dynamic physical systems

We developed a dataset of simulated physical mass-spring systems using the MuJoCo physics engine
[21]]. Each scene contained 10 colored balls moving on a table-top surface. Some of the balls moved
independently, free to collide with other balls and the barrier walls. Other randomly selected ball
pairs were connected by invisible springs or a rigid constraint. These connections prevented the balls
from moving independently, due to the force imposed through the connections. Input data consisted
of state descriptions matrices, where each ball was represented as a row in a matrix with features

2The “Sort-of-CLEVR” dataset will be made publicly available online



representing the rgb color values of each object and their spatial coordinates (x and y) across 16
sequential time steps.

The introduction of random links between balls created an evolving physical system with a variable
number “systems” of connected balls (where “systems” refers to connected graphs with balls as
nodes and connections between balls as edges). We defined two separate tasks: 1) infer the existence
or absence of connections between balls when only observing their color and coordinate positions
across multiple sequential frames, and 2) count the number of systems on the table-top, again when
only observing each ball’s color and coordinate position across multiple sequential frames.

Both of these tasks involve reasoning about the relative positions and velocities of the balls to infer
whether they are moving independently, or whether their movement is somehow dependent on the
movement of other balls through invisible connections. For example, if the distance between two
balls remains similar across frames, then it can be inferred that there is a connection between them.
The first task makes these inferences explicit, while the second task demands that this reasoning
occur implicitly, which is much more difficult. For further information on all tasks, including videos
of the dynamic systems, see the supplementary information.

4 Models

In their simplest form RNs operate on objects, and hence do not explicitly operate on images or
natural language. A central contribution of this work is to demonstrate the flexibility with which
relatively unstructured inputs, such as CNN or LSTM embeddings, can be considered as a set of
objects for an RN. As we describe below, we require minimal oversight in factorizing the RN’s input
into a set of objects.

Final CNN feature maps RN

Object pair
with question  Jo -MLP

fo-mp
EOE —» small

Element-wise
sum

What size is the cylinder
that is left of the brown

metal thing that is left .
of the big sphere?

L » what size is... sphere

LSTM

Figure 2: Visual QA architecture. Questions are processed with an LSTM to produce a question
embedding, and images are processed with a CNN to produce a set of objects for the RN. Objects
(three examples illustrated here in yellow, red, and blue) are constructed using feature-map vectors
from the convolved image. The RN considers relations across all pairs of objects, conditioned on the
question embedding, and integrates all these relations to answer the question.

Dealing with pixels We used a CNN to parse pixel inputs into a set of objects. The CNN took
images of size 128 x 128 and convolved them through four convolutional layers to k feature maps of
size d x d, where k is the number of kernels in the final convolutional layer. We remained agnostic as
to what particular image features should constitute an object. So, after convolving the image, each of
the d? k-dimensional cells in the d x d feature maps was tagged with a coordinate (from the range
(=1, 1) for each of the x- and y-coordinatesﬂindicating its relative spatial position, and was treated
as an object for the RN (see Figure[2). This means that an “object” could comprise the background, a
particular physical object, a texture, conjunctions of physical objects, etc., which affords the model
great flexibility in the learning process.

3We also experimented without this tagging, and achieved performance of 88% on the validation set.



Conditioning RNs with question embeddings The existence and meaning of an object-object
relation should be question dependent. For example, if a question asks about a large sphere, then the
relations between small cubes are probably irrelevant. So, we modified the RN architecture such that
go could condition its processing on the question: a = f¢(zi7 ;90 (0s,04,q)). To get the question
embedding ¢, we used the final state of an LSTM that processed question words. Question words
were assigned unique integers, which were then used to index a learnable lookup table that provided
embeddings to the LSTM. At each time-step, the LSTM received a single word embedding as input,
according to the syntax of the English-encoded question.

Dealing with state descriptions We can provide state descriptions directly into the RN, since state
descriptions are pre-factored object representations. Question processing can proceed as before:
questions pass through an LSTM using a learnable lookup embedding for individual words, and the
final state of the LSTM is concatenated to each object-pair.

Dealing with natural language For the bAbI suite of tasks the natural language inputs must be
transformed into a set of objects. This is a distinctly different requirement from visual QA, where
objects were defined as spatially distinct regions in convolved feature maps. So, we first took the
20 sentences in the support set that were immediately prior to the probe question. Then, we tagged
these sentences with labels indicating their relative position in the support set, and processed each
sentence word-by-word with an LSTM (with the same LSTM acting on each sentence independently).
We note that this setup invokes minimal prior knowledge, in that we delineate objects as sentences,
whereas previous bAbI models processed all word tokens from all support sentences sequentially.
It’s unclear how much of an advantage this prior knowledge provides, since period punctuation also
unambiguously delineates sentences for the token-by-token processing models. The final state of the
sentence-processing-LSTM is considered to be an object. Similar to visual QA, a separate LSTM
produced a question embedding, which was appened to each object pair as input to the RN. Our
model was trained on the joint version of bAbI (all 20 tasks simultaneously), using the full dataset of
10K examples per task.

Model configuration details For the CLEVR-from-pixels task we used: 4 convolutional layers
each with 24 kernels, ReLLU non-linearities, and batch normalization; 128 unit LSTM for question
processing; 32 unit word-lookup embeddings; four-layer MLP consisting of 256 units per layer with
ReLU non-linearities for gg; and a three-layer MLP consisting of 256, 256 (with 50% dropout), and
29 units with ReLU non-linearities for f. The final layer was a linear layer that produced logits for a
softmax over the answer vocabulary. The softmax output was optimized with a cross-entropy loss
function using the Adam optimizer with a learning rate of 2.5¢~%. We used size 64 mini-batches
and distributed training with 10 workers synchronously updating a central parameter server. The
configurations for the other tasks are similar, and can be found in the supplementary information.

We’d like to emphasize the simplicity of our overall model architecture compared to the visual QA
architectures used on CLEVR thus far, which use ResNet or VGG embeddings, sometimes with
fine-tuning, very large LSTMs for language encoding, and further processing modules, such as
stacked or iterative attention, or large fully connected layers (upwards of 4000 units, often) [7]).

5 Results

5.1 CLEVR from pixels

Our model achieved state-of-the-art performance on CLEVR at 95.5%, exceeding the best model
trained only on the pixel images and questions at the time of the dataset’s publication by 27%, and
surpassing human performance in the task (see Table[l]and Figure 3).

These results — in particular, those obtained in the compare attribute and count categories — are
a testament to the ability of our model to do relational reasoning. In fact, it is in these categories that
state-of-the-art models struggle most. Furthermore, the relative simplicity of the network components
used in our model suggests that the difficulty of the CLEVR task lies in its relational reasoning
demands, not on the language or the visual processing.

Many CLEVR questions involve computing and comparing more than one relation; for example,
consider the question: “There is a big thing on the right side of the big rubber cylinder that is behind



Model Overall Count Exist SEEP{):: A%;liet:)ruyte i?trrrilbpiee:
Human 92.6 86.7 96.6 86.5 95.0 96.0
Q-type baseline 41.8 34.6 50.2 51.0 36.0 51.3
LSTM 46.8 41.7 61.1 69.8 36.8 51.8
CNN-+LSTM 52.3 43.7 65.2 67.1 49.3 53.0
CNN-+LSTM+SA 68.5 52.2 71.1 73.5 85.3 52.3
CNN-+LSTM+SA* 76.6 64.4 82.7 77.4 82.6 75.4
CNN+LSTM+RN 95.5 90.1 97.8 93.6 97.9 97.1

* Our implementation, with optimized hyperparameters and trained end-to-end using the same
CNN as in our RN model. We also tagged coordinates, which did not improve performance.

Table 1: Results on CLEVR from pixels. Performances of our model (RN) and previously reported
models [8]], measured as accuracy on the test set and broken down by question category.

the large cylinder to the right of the tiny yellow rubber thing; What is its shape?”, which has three
spatial relations (“right side”, “behind”, “right of””). On such questions, our model achieves 93%
performance, indicating that the model can handle complex relational reasoning.

Results using privileged training information A more recent study reports overall performance
of 96.9% on CLEVR, but uses additional supervisory signals on the functional programs used to
generate the CLEVR questions [8]. It is not possible for us to directly compare this to our work since
we do not use these additional supervision signals. Nonetheless, our approach greatly outperforms
a version of their model that was not trained with these extra signals, and even a version of their
model trained using 9K ground-truth programs. Thus, RNs can achieve very competitive, and even
super-human results under much weaker and more natural assumptions, and even in situations when
functional programs are unavailable.

compare numbers

1.0 ' '
> 3 Human
§ 0.75 1 CNN+LSTM+RN
3 0.5 B CNN+LSTM+SA
g 0.25 =3 CNN+LSTM
0.0 [ LST™
overall count exist more less equal =1 Q-type baseline
than than
query attribute compare attribute
1.0
5 0.75
é 0.5
g 0.25
0.0
query query query query compare compare compare  compare
size shape material color size shape material color

Figure 3: Results on CLEVR from pixels. The RN-augmented model outperformed all other models
and exhibited super-human performance overall. In particular, it solved “compare attribute” questions,
which trouble all other models because they heavily depend on relational reasoning.

5.2 CLEVR from state descriptions

To demonstrate that the RN is robust to the form of its input, we trained our model on the state
description matrix version of the CLEVR dataset. The model achieved an accuracy of 96.4%. This
result demonstrates the generality of the RN module, showing its capacity to learn and reason
about object relations while being agnostic to the kind of inputs it receives — i.e., to the particular
representation of the object features to which it has access. Therefore, RNs are not necessarily



restricted to visual problems, and can thus be applied in very different contexts, and to different tasks
that require relational reasoning.

5.3 Sort-of-CLEVR from pixels

The results so far led us to hypothesize that the difficulty in solving CLEVR lies in its heavy emphasis
on relational reasoning, contrary to previous claims that the difficulty lies in question parsing [9].
However, the questions in the CLEVR dataset are not categorized based on the degree to which they
may be relational, making it hard to assess our hypothesis. Therefore, we use the Sort-of-CLEVR
dataset which we explicitly designed to seperate out relational and non-relational questions (see

Section[3.2)).

We find that a CNN augmented with an RN achieves an accuracy above 94% for both relational and
non-relational questions. However, a CNN augmented with an MLP only reached this performance
on the non-relational questions, plateauing at 63% on the relational questions. This strongly indicates
that models lacking a dedicated relational reasoning component struggle, or may even be completely
incapable of solving tasks that require very simple relational reasoning. Augmenting these models
with a relational module, like the RN, is sufficient to overcome this hurdle.

A simple “closest-to” or “furthest-from” relation is particularly revealing of a CNN+MLP’s lack
of general reasoning capabilities (52.3% success). For these relations a model must gauge the
distances between each object, and then compare each of these distances. Moreover, depending on
the images, the relevant distance could be quite small in magnitude, or quite large, further increasing
the combinatoric difficulty of this task.

54 DbAbI

Our model succeeded on 18/20 tasks. Notably, it succeeded on the basic induction task (2.1%
total error), which proved difficult for the Sparse DNC (54%), DNC (55.1%), and EntNet (52.1%).
Also, our model did not catastrophically fail in any of the tasks: for the 2 tasks that it failed (the
“two supporting facts”, and “three supporting facts” tasks), it missed the 95% threshold by 3.1%
and 11.5%, respectively. We also note that the model we evaluated was chosen based on overall
performance on a withheld validation set, using a single seed. That is, we did not run multiple replicas
with the best hyperparameter settings (as was done in other models, such as the Sparse DNC, which
demonstrated performance fluctuations with a standard deviation of more than +3 tasks passed for
the best choice of hyperparameters).

5.5 Dynamic physical systems

Finally, we trained our model on two tasks requiring reasoning about the dynamics of balls moving
along a surface. In the connection inference task, our model correctly classified all the connections in
93% of the sample scenes in the test set. In the counting task, the RN achieved similar performance,
reporting the correct number of connected systems for 95% of the test scene samples. In comparison,
an MLP with comparable number of parameters was unable to perform better than chance for both
tasks. Moreover, using this task to learn to infer relations results in transfer to unseen motion capture
data, where RN predict the connections between body joints of a walking human (see Supplementary
Material for experimental details and example videos).

6 Discussion and Conclusions

RNs are powerful, versatile, and simple neural network modules with the capacity for relational
reasoning. The performance of RN-augmented networks on CLEVR is especially notable; they
significantly improve upon current general purpose, state-of-the-art models (upwards of 25%),
indicating that previous architectures lacked a fundamental, general capacity to reason about relations.
Moreover, these results unveil an important distinction between the often confounded notions of
processing and reasoning. Powerful visual QA architectures contain components, such as ResNets,
which are highly capable visual processors capable of detecting complicated textures and forms.
However, as demonstrated by CLEVR, they lack an ability to reason about the features they detect.



RN can easily exploit foreknowledge of the relations that should be computed for a particular task.
Indeed, especially in circumstances with strong computational constraints, bounding the otherwise
quadratic complexity of the number of relations could be advantageous. Attentional mechanisms
could reduce the number of objects fed as input to the RN, and hence reduce the number of relations
that need to be considered. Or, using an additional down-sampling convolutional or pooling layer
could further reduce the number of objects provided as input to the RN; indeed, max-pooling to 4 x 4
feature maps reduces the total number of objects, and hence computed relations, and results in 87%
performance on the validation set.

RNs have a flexible input format: a set of objects. Our results show that, strikingly, the set of objects
does not need to be cleverly pre-factored. RNs learn to deal with “object” representations provided
by CNNs and LSTMs, presumably by influencing the content and form of the object representations
via the gradients they propagate.

In future work it would be interesting to apply RNs to relational reasoning across highly abstract
entities (for example, decisions in hierarchical reinforcement learning tasks). Relation reasoning is a
central component of generally intelligent behavior, and so, we expect the RN to be a simple-to-use,
useful and widely used neural module.

Acknowledgments

We would like to thank Murray Shanahan, Ari Morcos, Scott Reed, Daan Wierstra, and many others
on the DeepMind team, for critical feedback and discussions.



References

(1]

2

—

(3]

(4]

(5]

[6

—_

[7

—

[8

—

[9

—

(10]

(11]

(12]
[13]

(14]

(15]

(16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]
[24]

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zitnick,
and Devi Parikh. Vqa: Visual question answering. In ICCV, 2015.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks for
learning about objects, relations and physics. In NIPS, 2016.

Marta Garnelo, Kai Arulkumaran, and Murray Shanahan. Towards deep symbolic reinforcement learning.
arXiv:1609.05518, 2016.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-Barwinska,
Sergio Gémez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou, et al. Hybrid computing
using a neural network with dynamic external memory. Nature, 2016.

Stevan Harnad. The symbol grounding problem. Physica D: Nonlinear Phenomena, 42(1-3):335-346,
1990.

Mikael Henaff, Jason Weston, Arthur Szlam, Antoine Bordes, and Yann LeCun. Tracking the world state
with recurrent entity networks. In /CLR, 2017.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross
Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In
CVPR, 2017.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Judy Hoffman, Li Fei-Fei, C Lawrence
Zitnick, and Ross Girshick. Inferring and executing programs for visual reasoning. arXiv:1705.03633,
2017.

Kushal Kafle and Christopher Kanan. An analysis of visual question answering algorithms.
arXiv:1703.09684, 2017.

Charles Kemp and Joshua B Tenenbaum. The discovery of structural form. Proceedings of the National
Academy of Sciences, 105(31):10687-10692, 2008.

Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building machines
that learn and think like people. arXiv:1604.00289, 2016.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436—444, 2015.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural networks.
ICLR, 2016.

Mateusz Malinowski and Mario Fritz. A multi-world approach to question answering about real-world
scenes based on uncertain input. In NIPS, 2014.

Mateusz Malinowski, Marcus Rohrbach, and Mario Fritz. Ask your neurons: A deep learning approach to
visual question answering. arXiv:1605.02697, 2016.

Allen Newell. Physical symbol systems. Cognitive science, 4(2):135-183, 1980.

Jack Rae, Jonathan J Hunt, Ivo Danihelka, Timothy Harley, Andrew W Senior, Gregory Wayne, Alex
Graves, and Tim Lillicrap. Scaling memory-augmented neural networks with sparse reads and writes. In
NIPS, 2016.

David Raposo, Adam Santoro, David Barrett, Razvan Pascanu, Timothy Lillicrap, and Peter Battaglia.
Discovering objects and their relations from entangled scene representations. arXiv:1702.05068, 2017.

Mengye Ren, Ryan Kiros, and Richard Zemel. Image question answering: A visual semantic embedding
model and a new dataset. In NIPS, 2015.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Transactions on Neural Networks, 2009.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In
IROS, 2012.

Jason Weston, Antoine Bordes, Sumit Chopra, and Tomas Mikolov. Towards ai-complete question
answering: A set of prerequisite toy tasks. arXiv:1502.05698, 2015.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. In /CLR, 2015.

Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and Alex Smola. Stacked attention networks for image
question answering. In CVPR, 2016.

10



