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This supplement contains proofs and extra discussion omitted from the main text.

1 Privacy and fault tolerance

Theorem 1 (Distributed Gaussian mechanism). If at most T' clients collude or drop out of the
protocol, the sum-query result returned by Algorithm[l|is differentially private, when the variance of
the added noise O'j2- Sulfils
1
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where N is the number of clients and 0]2 «tq 1S the variance of the noise in the standard Gaussian
mechanism given in Eq. ().
Proof. Using the property that a sum of independent Gaussian variables is another Gaussian with
variance equal to the sum of the component variances, we can divide the total noise equally among
the N clients.

However, in the distributed setting even with all honest-but-curious clients, there is an extra scaling
factor needed compared to the standard DP. Since each client knows the noise values she adds to
the data, she can also remove them from the aggregate values. In other words, privacy then has
to be guaranteed by the noise the remaining N — 1 clients add to the data. If we further assume
the possibility of 7" colluding clients, then the noise from N — T — 1 clients must be sufficient to
guarantee the privacy.

The added noise can therefore be calculated from the inequality

N-T-1
Y. 205 (1)
i=1
2 1 2
R vy e L 2)
O

2 Bayesian linear regression

In the following, we denote the d-dimensional input data for the ¢th observation by x;, the scalar
target values by y;, and the whole d + 1—dimensional dataset by D; = (x;,y;). We assume all
variable-wise expectations to be zeroes for simplicity. For n observations, we denote the sufficient
statistics by nZZ = Y., x;x! and nTy = Y ., X;Y;.

For the regression, we assume that

yilxi ~ N(xI'B,\),i=1,...,n 3)
B~ N(0, o), “4)
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where we want to learn the posterior over 3, and A, ¢ are hyperparameters (set to 1 in the tests). The
posterior can be solved analytically to give

Bly,x ~ N(ii, A), (5)
A = \oI + 77, (6)
o = A~ (wnzy). (7

The predicted mean values from the model are §j = x7 i.

The DP sufficient statistics are given by nar = nIT + gz, NTY = NITY + Nzy, Where 0z, Ny
consist of suitably scaled Gaussian noise added independently to each dimension. In total, there are
d(d 4+ 1)/2 + d parameters in the combined sufficient statistic, since nZZ is a symmetric matrix.

The main idea in the data projection is simply to project the data into some reduced range. Since the
noise level is determined by the sensitivity of the data, reducing the sensitivity by limiting the data
range translates into less added noise.

With projection threshold c, the projection of data x; is given by

Z; = max(—c¢, min(z;, ¢)). 8)

This data projection obviously discards information, but in various problems it can be beneficial
to disregard some information in the data in order to achieve less noisy estimates of the model
parameters. From the bias-variance trade-off point of view, this can be seen as increasing the bias
while reducing the variance. The optimal trade-off then depends on the actual problem.

To run Algorithm I (in the main text), we need to assume initial projection bounds (¢;, d;) for each
dimension j € {1,...,d + 1} for the data (x;, y;)?_. In the paper we assume bounds of the form
(—c¢j,¢;). To find good final projection bounds, we first find an optimal projection threshold by a grid
search on an auxiliary dataset, that is generated from a BLR model similar to the regression model
defined above.

This gives us the projection thresholds in terms of std for each dimension. We then estimate the
marginal std for each dimension by using Algorithm|[I] (in the main text), to fix the actual projection
thresholds. For this the data are assumed to lie on some known bounded interval. In practice, the
assumed bounds need to be based on prior information. In case the estimates are negative due to
noise, they are set to small positive constants (0.5 in all the tests).

The amount of noise each client needs to add to the output depends partly on the sensitivity of the
function in question. The query function we are interested in returns a vector of length d(d+1)/2+d
that contains all the unique terms in the sufficient statistics needed for linear regression.

Let x, x’ be the mismatching, maximally different elements over adjacent datasets s.t. dimensions

1,...,d are the independent variables, and d + 1 is the target. Assume further that each dimension
j=1,...,d+ 1isbounded by (—c;, ¢;). The squared sensitivity of the query f is then
Ao (f)? = 1f(x) = FIII3 )
= ([ — 2, wjap1 — 25aiy) o1 =y 13 (10)
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We assume ¢; = ¢,Vj =1,...,d, so can be further simplified to d(2d — 1)ct + 4d(cycqy1)?.

3 Asymptotic efficiency of the Gaussian mechanism

The asymptotic efficiency of the sufficient statistics perturbation using Laplace mechanism has been
proven before [2} 3. We show corresponding results for the Gaussian mechanism. The proofs



generally follow closely those given in [3]]. For convenience, we state the relevant definitions, but
mostly focus on those proofs that differ in a non-trivial way from the existing ones for the Laplace
mechanism. For the full proofs and related discussion, see [3]].

3.1 Definition of asymptotic efficiency

Definition 3.1. A differentially private mechanism M is asymptotically consistent with respect to an
estimated parameter 0 if the private estimates 6, given a data set D converge in probability to the

corresponding non-private estimates 6y p as the number of samples, n = |D|, grows without bound,
i.e., if for an)ﬁ] a >0,

lim Pr{||0r — Onp| > a} = 0.

n—oo
Definition 3.2. A differentially private mechanism M is asymptotically efficiently private with
respect to an estimated parameter 0, if the mechanism is asymptotically consistent and the private

estimates 61, converge to the corresponding non-private estimates 6 p at the rate O(1/n), i.e., if for
any a > 0 there exist constants C, N such that

Pr{[|0p — Onp| > C/n} < a
foralln > N.

The first part of Theorem [2|follows closely the corresponding result for the Laplace mechanism [3]
Theorem 1]. The theorem shows that the optimal rate for estimating the expectation of exponential
family distributions is O(1/n). This justifies the term asymptotically efficiently private introduced
by [3], when we show that sufficient statistics perturbation by the Gaussian mechanism achieves this
rate.

Theorem 2. The private estimates 0 M of an exponential family posterior expectation parameter 0,
generated by a differentially private mechanism M that achieves (¢, 0)-differential privacy for any

€ > 0,0 € (0,1), cannot converge to the corresponding non-private estimates 0y p at a rate faster
than 1/n. That is, assuming M is (¢, §)-differentially private, there exists no function f(n) such that
limsupnf(n) = 0 and for all o > 0, there exists a constant N such that

Pr{||0pm — Onpl > f(n)} <
foralln > N.

Proof. The non-private estimate of an expectation parameter of an exponential family is [[L]

n
noTo + Zi=1 T

4 Ty = 13
NplT1, .. - (13)
The difference of the estimates from two neighbouring data sets differing by one element is
~ ~ xr —
(bnp|D) = (OnplD) = ——2 (14)

no+n’

where z and y are the corresponding mismatched elements. Let A = max(||z — y/|), and let D and
D’ be neighbouring data sets including these maximally different elements.

Let us assume that there exists a function f(n) such that lim sup nf(n) = 0 and for all a > 0 there
exists a constant /N such that

Pr{||0am — Onp| > f(n)} < (15)
foralln > N.
Fix @ > 0 and choose M > max(N, ng) such that f(n) < A/4n for all n > M. This implies that
. X A A
Onxp|D) — (Onp|D)| = >—>2 . 16
1ONpID) = (Onp D) = = = 5 > 2f(n) (16)

Let us define the region Cp = {t | ||(Onp|D) — t]| < f(n)}.

"We use o in limit expressions instead of usual € to avoid confusion with e-differential privacy.



Based on our assumptions we have

Pr ((éMu)) e CD> >1-a. 17
Combining (T6) and (I3]) we have
Pr ((éMm’) c OD) <a (18)
which implies
Pr ((éMm) € Cp) < exp(€)Pr ((éMm') c CD> +6. (19)
Together these imply that
1—a<exp(e)a+0 (20)
< 6>1—(1+exp(e))a. (1)
Since for fixed €, lim,—0 1 — (1 + exp(e))a = 1, M cannot be (¢, §)-differentially private with any
eand § < 1. O

Before the next theorem, we prove Lemma |1} which is not used in [3].
Lemma 1. Let x € R?, x ~ N(0,02%1). The tail probability of the {1 norm of x obeys

do? 2
Pr(||z|y > t) < m (1 — 7r> . (22)

Proof. ||z||1 = Zf’zl || = Z?zl y;, where x; ~ N(0,0?) and y; follows the half-normal distribu-
tion with variance o2,

It is known that E[y;] = \/2/70 and Var[y;] = 0?(1 — 2/7).
Because y; are independent, E[||z||1] = d E[y;] = \/2/7do and Var[||z||1] = d Var[y;] = do?(1 —
2/m).
Setting a =t — \/2/7do we have
Pr(||z||, > ¢) = Pr (||ch1 >a4t \/2/7rdo)

< Pr(|llzlh - V2/7do| = a)

do? 2
<—(1-=).
(t -2/ 7Td0‘) T
where the last inequality follows from Chebyshev’s inequality. O

3.1.1 Asymptotic efficiency of Gaussian means

Theorem [3] showing one case of asymptotic efficiency of the Gaussian mechanism, corresponds to [3|
Theorem 5], although the proof is somewhat different.

Theorem 3. (¢, d)-differentially private estimate of the mean of a d-dimensional Gaussian variable
x bounded by ||z;||1 < B in which the Gaussian mechanism is used to perturb the sufficient statistics,
is asymptotically efficiently private.

Proof. Following [3 Theorem 3], it is trivial to show that
c
lupp — pnpl < ﬁH‘SHM
where § = (01, ...,04)" € RP with §; ~ N (0,0?) holds when we utilize the Gaussian mechanism

instead of the Laplace mechanism. This allows us to bound the corresponding tail probabilities by
using Lemma



Therefore, given o > 0, we can guarantee that

C 1
PT{HMDP —unpl > } < P1”{||5||1 >
n n

by choosing C' according to LemmalT] O

C

n

} _Pr{fo > CY < 23)

3.2 Asymptotic efficiency of DP linear regression

Theorem [ that establishes asymptotic efficiency for DP linear regression using the Gaussian mech-
anism, for the most part follows [3, Theorem 8]. We concentrate here more closely only on the
differing parts.

Theorem 4. (¢, §)-differentially private inference of the posterior mean of the weights of linear
regression with the Gaussian mechanism used to perturb the sufficient statistics is asymptotically
efficiently private.

Proof. Following the proof of [3| Theorem 7] with minimal changes we have

lupp — pnplly < [[(Ao + A(nZz + A)) T AS||,
, (24

1 1 -t 1 N\t
—AN+A|lTZ+ —A — | —Ao+ Azz
n n n 1

where A is the noise contribution from the Gaussian mechanism added to the sufficient statistics TZ
(see Section[2]in this supplement).
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As in [3, Theorem 7], the first term can be bounded as
_ C N
(Ao + A(nzz + A)) 7' AS||, < ;1 | @=) 7|, 1611 (25)
where ¢; > 1, for large enough n.

As done in the proof of Theorem 3] given o > 0, Lemma [I] can be used to ensure that

C
Pr{||(A0+A(nm:+A))1A61 > nl} < %, (26)
by choosing a suitable C'.

Again, following [13} Theorem 7], the second term can be bounded as

1 1 -t 1 N\t 1
—ANg+A(ZZ+-A — | Ao+ AZz ATy + —AoBo
n n n n 1

C2 -1 — \—1 —
< = -
< 2@ 1al, @ 7| 1z,

where, as in Eq. (25)), the bound is valid for ¢, > 1 as n gets large enough.

[|Al]1 here is the ¢;-norm of the symmetric matrix A, that is comprised of a vector of d(d + 1)/2
unique noise terms, each generated independently from a Normal distribution according to the
Gaussian mechanism. Denoting this vector by v, a bound to the matrix norm is given by ||A[; <

(vl

Therefore, given o > 0, we can again use Lemmaﬂ]to find a suitable Cy s.t.

Pr{ Al > C: . <Pr{ |vll, > Cs . <% @
|| il & || e, |2
By combining Egs. and we get
Pr{loe ~ el > SEE Y <o @8)
O



4 GDSC dataset description

The data were downloaded from the Genomics of Drug Sensitivity in Cancer (GDSC) project, release
6.1, March 2017, http://www.cancerrxgene.org/. We use gene expression and drug sensitivity data.
The gene expression dimensionality is reduced to 10 genes used for the actual prediction task, based
on prior information about their mutation counts in cancer (we use the same procedure as [3[]). The
dataset used for learning contains 940 cell lines and drug sensitivity data for 265 drugs. Some of the
values are missing, so the actual number of observations varies between the drugs. We use a test set
of size 100 and the rest of the available data for learning.

Since we want to focus on the relative expression of the genes, each data point is normalized to have
£o-norm of 1. In the distributed setting this can be done by each client without breaching privacy.
After the scaling, we know that all dimensions are bounded by [—1, 1], except the target. For the
target dimension, the true range varies between the drugs. The average width of the ranges is 8.6.

We assume a range of [-7.5,7.5] for the marginal std estimation needed for the projection, and use a
symmetric bound given by [—[max |y||, [max |y|]] for the non-projected baseline methods (DDP,
TA). The exact bound for the baseline methods varies between the drugs while the average is 6.8. In
other words, the projected methods add somewhat more extra noise to the results on average. We also
tested the performance using a fixed bound for the non-projected methods as with the UCI data, but
the results did not change markedly (not included in the paper).
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