
Supplementary material

A Convex multi-class loss functions

Table 3: Examples of convex multi-class loss functions ℓ(y,o) ∈ R, where y ∈ [m] is the correct
label and o ∈ R

m is a vector of predicted outputs.

Loss ℓ(y,o) ρc(y,o)

Multi-class logistic log(1 +
∑

c 6=y
exp(oc − oy))

exp(oc−oy)∑
m
l=1

exp(ol−oy)

Smoothed multi-class hinge log(1 +
∑

c 6=y
exp(1 + oc − oy))

exp(1[c 6=y]+oc−oy)∑
m
l=1

exp(1[l 6=y]+ol−oy)

Multi-class squared hinge
∑

c 6=y
max(1 + oc − oy, 0)

2 2max(1 + oc − oy, 0)

The gradient w.r.t. o, denoted ∇ℓ(y,o) ∈ R
m, can be computed by

∇ℓ(y,o) =
∑

c 6=y

ρc(y,o)(ec − ey),

where ec ∈ R
m is a vector whose cth element is 1 and other elements are 0. For the smoothed

multi-class hinge loss and the multi-class squared hinge loss, see [27] and [6], respectively.

B Proofs

B.1 Finite support of an optimal solution (Proposition 1)

General case. We first state a result that holds for arbitrary activation function σ (sigmoid, ReLu,
etc...). The main idea is to use the fact that the penalties considered in Table 1 are atomic [8]. Then,
we can equivalently optimize (2) over the convex hull of a set of atoms and invoke Carathéodory’s
theorem for convex hulls.

Let φh(X) be an n-dimensional vector whose ith element is σ(hTxi). Let us define the sets

A := {ehvT : h ∈ H,v ∈ V} ⊂ R
|H|×m and B := {φh(X)vT : h ∈ H,v ∈ V} ⊂ R

n×m,

where we define the set V as follows:

• l1 case: V := {s ec : s ∈ {−1, 1}, c ∈ [m]}
• l1/l2 case: V := {v ∈ R

m : ‖v‖2 = 1}
• l1/l∞ case: V := {−1, 1}m.

Then (2) is equivalent to

min
U∈R|H|×m

n
∑

i=1

ℓ

(

yi,
∑

h∈H
φh(X)i uh

)

s.t. Ω(U) ≤ τ

= min
U∈R|H|×m

n
∑

i=1

ℓ

(

yi,
∑

h∈H
φh(X)i uh

)

s.t. U ∈ τ · conv(A)

= min
O∈Rn×m

n
∑

i=1

ℓ (yi,oi) s.t. O ∈ τ · conv(B),

where conv(S) is the convex hull of the set S . The matrices U and O are related to each other by

U =
∑

h∈H

∑

v∈V
θh,vehv

T and O =
∑

h∈H

∑

v∈V
θh,vφh(X)vT,

12



for some θ ∈ R
|H|×m such that θh,v ≥ 0 ∀h ∈ H, ∀v ∈ V and

∑

h∈H
∑

v∈V θh,v = 1. By
Carathéodory’s theorem for convex hulls, there exists θ with at most nm + 1 non-zero elements.
Because elements ofA are matrices with a single non-zero row, U contains at most nm+1 non-zero
rows (hidden units).

Case of l1 constraint and squared activation. When σ(a) = a2, given U s.t. ‖U‖1 ≤ τ , the cth

output can be written as

∑

h∈H
σ(hTx)uh,c =

∑

h∈H
(hTx)2uh,c = xT

(

∑

h∈H
uh,chh

T

)

x =: xTWcx.

Following [5, Lemma 10], the nuclear norm of a symmetric matrix M ∈ R
d×d can be defined by

‖M‖∗ = min
λ∈Rd,P∈Rd×d

d
∑

j=1

|λj | ‖pj‖22 s.t. M =

d
∑

j=1

λjpjp
T
j

and the minimum is attained by the eigendecomposition M =
∑d

j=1 λjpjp
T
j and ‖M‖∗ = ‖λ‖1.

Therefore, we can always compute the eigendecomposition of each Wc and use the eigenvectors as
hidden units and the eigenvalues as output layer weights. Moreover, this solution is feasible, since
eigenvectors belong toH and since the l1 norm of all eigenvalues is minimized. Since a matrix can
have at most d eigenvalues, we can conclude that U has at most dm elements. Combined with the
previous result, U has at most min(nm+ 1, dm) non-zero rows (hidden units).

For the l1/l2 and l1/l∞ penalties, we cannot make this argument, since applying the eigendecompo-
sition might increase the penalty value and therefore make the solution infeasible.

B.2 Convergence analysis (Theorem 1)

In this section, we include a convergence analysis of the conditional gradient algorithm with multi-
plicative approximation in the linear minimization oracle. The proof follows mostly from [15] with a
trick inspired from [1] to handle multiplicative approximations. Finally, we also include a detailed
comparison with the analysis of GECO [26] and Block-FW [18].

We focus on constrained optimization problems of the form

min
x∈D

f(x),

where f is convex and β-smooth w.r.t. Ω and D := {x : Ω(x) ≤ τ}.
Curvature and smoothness constants. The convergence analysis depends on the following standard
curvature constant

Cf,D := sup
x,s∈D
γ∈[0,1]

y=x+γ(s−x)

2

γ2
(f(y)− f(x)− 〈y − x,∇f(x)〉) .

Intuitively, this is a measure of non-linearity of f : the maximum deviation between f and its
linear approximations over D. The assumption of bounded Cf,D is closely related to a smoothness
assumption on f . Following [15, Lemma 7], for any choice of norm Ω, Cf,D can be upper-bounded
by the smoothness constant β as

Cf,D ≤ diamΩ(D)2β.

Using D = {x : Ω(x) ≤ τ}, we obtain

diamΩ(D) = sup
x,y∈D

Ω(x− y) ≤ sup
x,y∈D

Ω(x) + Ω(y) ≤ 2τ

and therefore
Cf,D ≤ 4τ2β. (7)

Linear duality gap. Following [15], we define the linear duality gap

gD(x) := max
s∈D
〈x− s,∇f(x)〉.

13



Since f is convex and differentiable, we have that

f(s) ≥ f(x) + 〈s− x,∇f(x)〉. (8)

Let us define the primal error
hD(x) := f(x)−min

x∈D
f(x).

Minimizing (8) w.r.t. s ∈ D on both sides we obtain

gD(x) ≥ hD(x).

Hence gD(x) can be used as a certificate of optimality about x.

Bounding progress. Let x ∈ D be the current iterate and y = x + γ(s − x) be our update. The
definition of Cf,D implies

f(y) ≤ f(x) + γ〈s− x,∇f(x)〉+ γ2

2
Cf,D.

We now use that s is obtained by an exact linear minimization oracle (LMO)

s = argmin
s∈D

〈s,∇f(x)〉

and therefore 〈s− x,∇f(x)〉 = −gD(x). Combined with gD(x) ≥ hD(x), we obtain

f(y) ≤ f(x)− γhD(x) +
γ2

2
Cf,D.

Subtracting minx∈D f(x) on both sides, we finally get

hD(y) ≤ (1− γ)hD(x) +
γ2

2
Cf,D.

Primal convergence. Since we use a fully-corrective variant of the conditional gradient method, our
algorithm enjoys a convergence rate at least as good as the variant with fixed step size. Following
[15, Theorem 1] and using (7), for every t ≥ 1, the iterates satisfy

f(x(t))−min
x∈D

f(x) ≤ 2Cf,D
t+ 2

≤ 8τ2β

t+ 2
.

Thus, we can obtain an ǫ-accurate solution if we run the algorithm for t ≥ 8τ2β
ǫ − 2 iterations.

Linear minimization with multiplicative approximation. We now extend the analysis to the case
of approximate linear minimization. Given x ∈ D, we assume that an approximate LMO outputs a
certain s ∈ D such that

〈−s,∇f(x)〉 ≥ νmax
s′∈D
〈−s′,∇f(x)〉,

for some multiplicative factor ν ∈ (0, 1] (higher is more accurate). Since x and y = x+ γ(s− x)
are in D, we have like before

f(y) ≤ f(x) + γ〈s− x,∇f(x)〉+ γ2

2
Cf,D.

Following the same trick as [1, Appendix B], we now absorb the multiplicative factor ν in the
constraint

〈−s,∇f(x)〉 ≥ max
s′∈D′

〈−s′,∇f(x)〉,

where we defined D′ := {x : Ω(x) ≤ τν} = νD (i.e., the ball is shrunk by a factor ν). We therefore
obtain 〈s− x,∇f(x)〉 ≤ −gD′(x). Similarly as before, this implies that

f(y) ≤ f(x)− γhD′(x) +
γ2

2
Cf,D.

Subtracting minx∈D′ f(x) on both sides, we get

hD′(y) ≤ (1− γ)hD′(x) +
γ2

2
Cf,D.

14



We thus get that iterate x(t) satisfies x(t) ∈ D and

f(x(t)) ≤ min
x∈D′

f(x) +
8τ2β

t+ 2
.

We can therefore obtain an x(t) ∈ D such that f(x(t))−minx∈D′ f(x) ≤ ǫ if we run our algorithm

for t ≥ 8τ2β
ǫ − 2 iterations with constraint parameter τ and multiplicative factor ν. Put differently,

we can obtain an x(t) ∈ 1
νD such that f(x(t)) − minx∈D f(x) ≤ ǫ if we run our algorithm for

t ≥ 8τ2β
ǫν2 − 2 iterations with constraint parameter τ

ν and multiplicative factor ν.

Comparison with the analysis of GECO. GECO [26] is a greedy algorithm with fully-corrective
refitting steps for learning a sparse vector from possibly infinitely-many features, similarly to our
algorithm. However, unlike our algorithm, GECO does not constrain the norm of its iterates (i.e.,
there is no parameter τ ), which can lead to severe overfitting in practice. Following [26, Theorem 1],

GECO obtains a certain x(t) (unbounded) such that

f(x(t))− f(x) ≤ ǫ ∀x, ∀t ≥ 2‖x‖21β
ǫν2

− 1. (9)

In comparison, for the l1-constrained case, our algorithm learns an x(t) such that ‖x(t)‖1 ≤ τ
ν and

f(x(t))− min
‖x‖1≤τ

f(x) ≤ ǫ ∀t ≥ 8τ2β

ǫν2
− 2.

We see that our algorithm and GECO have similar guarantees, with the difference that GECO does
not constrain its iterates.

GECO was used to learn single-output polynomial networks in [20]. Combining (9) together with

‖x‖∞‖x‖0 ≥ ‖x‖1, it was shown that GECO can learn the parameters x(t) (unbounded) of a
single-output polynomial network with l∞ unit ball constraint and squared activation such that

f(x(t))− min
‖x‖∞≤1

f(x) ≤ ǫ ∀x, ∀t ≥ 2‖x‖20β
ǫν2

− 1.

However, if we run our algorithm with an l1 constraint, it can learn an x(t) such that ‖x(t)‖1 ≤ 1
ν

and

f(x(t))− min
‖x‖∞≤1

f(x) ≤ f(x(t))− min
‖x‖1≤1

f(x) ≤ ǫ ∀t ≥ 8β

ǫν2
− 2.

Clearly, our algorithm with an l1 constraint uses fewer iterations than GECO for learning polynomial
networks with l∞ unit ball constraint and more than ‖x‖0 = 3 hidden units.

Comparison with the analysis of Block-FW. [18] analyze a block Frank-Wolfe method with “mul-
tiplicative” approximations in the linear minimization oracle. However, they require a different
condition, namely:

〈x− s,∇f(x)〉 ≥ κ ·max
s′∈D
〈x− s′,∇f(x)〉

⇔〈−s,∇f(x)〉 ≥ κ ·max
s′∈D
〈−s′,∇f(x)〉+ 〈x,∇f(x)〉(κ− 1),

for some κ ∈ (0, 1]. Under this condition, they show that the algorithm converges to an ǫ-approximate
solution in O( 1ǫ ) iterations. A disadvantage of the above condition is that it contains an additive term
that depends on the current iterate x and so it is difficult to give guarantees on κ in general.

C Computing an optimal solution of the linearized subproblem (l1/l∞ case)

We describe how to compute an optimal hidden unit h⋆ in the l1/l∞ case, albeit with exponential
complexity in m. Because of its exponential complexity in m (the number of outputs), clearly, this
method should only be used to evaluate other (polynomial-time) algorithms.

Recall that we want to solve

max
h∈H

f1(h) =

m
∑

c=1

|hT
Γch|.

15



Now, if we knew the sign sc := sign(h⋆T
Γch

⋆), we could rewrite the problem as

max
h∈H

f1(h) =

m
∑

c=1

sch
T
Γch = hT

(

m
∑

c=1

scΓc

)

h,

whose optimal solution is the dominant eigenvector of the symmetric matrix
∑m

c=1 scΓc. The idea
is then simply to find the dominant eigenvector for all possible 2m sign vectors and choose the
eigenvector that achieves largest objective value.

D Implementation details

In practice, penalized formulations are more convenient to handle than constrained ones. Here, we
discuss why we can safely replace constrained formulations by penalized formulations in the refitting
step. We use the output layer refitting objective as an example. It is well known that there exists
λ > 0 such that this objective is equivalent to

min
V ∈Rt×m

F (V ,H(t)) + λΩ(V ).

Unfortunately, the relation between τ and λ is a priori unknown. However, it is easy to see that the
constant factor τ in (3) is absorbed by the output layer in our refitting step. This means that we need
to know the actual value of τ for the refitting step but not for the hidden unit selection step. As long
as we compute a full regularization path, we may therefore use a penalized formulation in a practical
implementation. We do so for both refitting objectives we discussed.

For both refitting objectives, we use FISTA, an accelerated projected gradient method with O(1/t2)
convergence rate, where t is the iteration number. We set the maximum number of iterations to 1000
and the stopping criterion’s tolerance to 10−3.

E Datasets

For our multi-class experiments, we used the following four publicly available datasets [12].

Name n d m

segment 2,310 19 7

vowel 528 10 11

satimage 4,435 36 6

letter 15,000 16 26

For recommender system experiments, we used the following two publicly available datasets [14].

Name n d m

Movielens 100k 100,000 (ratings) 2,625 = 943 (users) + 1,682 (movies) 5

Movielens 1M 1,000,209 (ratings) 9,940 = 6,040 (users) + 3,900 (movies) 5

The task is to predict ratings between 1 and 5 given by users to movies, i.e., y ∈ {1, . . . , 5}. The
design matrix X was constructed following [25]. Namely, for each rating yi, the corresponding xi is
set to the concatenation of the one-hot encodings of the user and item indices. Hence the number of
samples n is the number of ratings and the number of features is equal to the sum of the number of
users and items. Each sample contains exactly two non-zero features. It is known that factorization
machines are equivalent to matrix factorization when using this representation [25].

16



F Additional experimental results

F.1 Multi-class squared hinge loss results

We also compared the multi-class logistic (ML) loss to the multi-class squared hinge (MSH) loss.
The MSH loss achieves comparable test accuracy to the ML loss. However, it can often be much
faster to train, since it does not require expensive exponential and logarithm calculations.

Table 4: Comparison betwen multi-class squared hinge (MSH) and logistic (ML) losses.

Constraint Loss
Conditional gradient (full refitting) Conditional gradient (output-layer refitting)

segment vowel satimage letter segment vowel satimage letter

MSH
96.01 87.83 89.98 92.03 95.67 79.13 88.99 91.25

l1 (21) (8) (22) (130) (21) (25) (21) (149)

(#units)
ML

96.71 87.83 89.80 92.29 97.05 80.00 89.71 91.01

(41) (12) (25) (150) (20) (21) (40) (139)

MSH
96.01 86.96 90.25 91.57 95.67 85.22 89.98 92.03

l1/l2 (15) (8) (12) (94) (25) (19) (50) (149)

(#units)
ML

96.71 89.57 89.08 91.81 96.36 85.22 89.71 92.24

(40) (15) (18) (106) (21) (15) (50) (150)

MSH
95.84 85.22 89.80 92.27 97.05 86.09 88.90 91.20

l1/l∞ (16) (18) (29) (149) (28) (33) (24) (119)

(#units)
ML

96.71 86.96 88.99 92.35 96.19 86.96 89.35 91.68

(24) (15) (20) (149) (16) (41) (41) (128)

F.2 Full vs. output layer refitting comparison

In this experiment, we compare output layer refitting with full refitting of both the hidden and output
layers. Empirically, we observe that full refitting does not always outperform output layer refitting in
terms of objective value but it does so in terms of test accuracy.

1 7 50
10 2

10 1

100

101

Re
la

tiv
e 

ob
j. 

di
ff.

segment

1 7 50
Max. hidden units

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

1 7 50

10 3

10 2

10 1

100

101
vowel

1 7 50
Max. hidden units

0.2

0.4

0.6

0.8

1.0
1 7 50

10 2

10 1

100

101
satimage

1 7 50
Max. hidden units

0.2

0.4

0.6

0.8

1.0
1 15 150

10 2

10 1

100

101

letter

1 15 150
Max. hidden units

0.00

0.25

0.50

0.75

1.00

Figure 5: Relative objective difference from best (top) and multi-class test set accuracy values
(bottom) when performing output layer refitting (dashed) and full, non-convex refitting (solid),
optimizing a penalized l1/l2 objective with λ = 0.1.

17


