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A Proofs

Lemma 1. Let L be a C-smooth convex function over the unit simplex ∆K . For any T ≥ 1, after T
steps of the UCB Frank-Wolfe algorithm, it holds that

L(pT )− L(p?) ≤
1

T

T∑
t=1

εt +
C log(eT )

T
,

where εt+1 = (eπt+1 − e?t+1)>∇L(pt) is the error compared to Frank-Wolfe with explicit, known
and observed gradients, i.e., e?t+1

= argmaxp∈∆K
p>∇L(pt).

Remark: If we denote by ‖L‖∞ = supp∈∆K
L(p) and ‖∇L‖∞ = supp∈∆K

‖∇L(p)‖, then the
same statements would hold with (t+ 1)‖L‖∞ or 2‖∇L‖∞ + ‖L‖∞ instead of εt.

Proof of Lemma 1. We apply the update equation in (1) and follow the usual analysis of Frank-Wolfe
in the absence of noise. We denote by ρt the approximation error at any time t

ρt+1 := L(pt+1)− L(p?) = L(pt +
1

t+ 1
(eπt+1

− pt))− L(p?)

By definition of e?t, C-smoothness and finally convexity of L, we obtain

ρt+1 = L(pt)− L(p?) +
1

t+ 1
∇L(pt)

>(e?t+1 − pt) +
C

(t+ 1)2
+

1

t+ 1
∇L(pt)

>(eπt+1 − e?t+1)

≤ (1− 1

t+ 1
)
[
L(pt)− L(p?)

]
+

1

t+ 1
∇L(pt)

>(eπt+1
− e?t+1

) +
C

(t+ 1)2

Finally, introducing the notation εt and multiplying by (t+ 1), we get

(t+ 1)ρt+1 ≤ tρt + εt+1 +
C

(t+ 1)
.

Summing from 1 to T yields the desired result.

Proof of Theorem 2. We use the result of Lemma 1, which yields

L(pT )− L(p?) ≤
1

T

T∑
t=1

εt +
C log(eT )

T
.
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We recall that εt is the error due to the lack of information on the gradient at step t, and we have

εt+1 := (eπt+1 − e?t+1)>∇L(pt) = ∇πt+1L(pt)−∇?t+1L(pt) .

The difference between the two coefficients of the gradient can be controlled by using the definition
of our selection rule, and the relationship between ∇L(pt) and ĝt, similarly to the analysis of the
UCB algorithm for multi-armed bandit problems. Indeed, by definition of ĝt, we have that with
probability at least 1− δt, conditionally to the history

∇πt+1L(pt) ≤ ĝt,πt+1 + αt,πt+1(Tπt+1(t), δt+1)

≤
(
ĝt,πt+1

− αt,πt+1
(Tπt+1

(t), δt+1)
)

+ 2αt,πt+1
(Tπt+1

(t), δt+1)

≤
(
ĝt,?t+1

− αt,?t+1
(Tπt+1

(t), δt+1)
)

+ 2αt,πt+1
(Tπt+1

(t), δt+1)

≤ ∇?t+1L(pt) + 2αt,πt+1(Tπt+1(t), δt+1) ,

as Ûπt+1
≤ Û?t+1

by the definition of our selection rule. With probability δt+1, we also have that
εt+1 ≤ 2‖∇L‖∞ + ‖L‖∞. As a consequence, this yields

Eεt+1 ≤ 2αt,πt+1(Tπt+1(t), δt+1) + δt+1(2‖∇L‖∞ + ‖L‖∞) .

We now bound the approximation error as a function of the precision of the estimate ĝt. Using the
above inequality, we get, by denoting λ := 2‖∇L‖∞ + ‖L‖∞,

E

T∑
t=1

εt ≤ Kλ+ E

T∑
t=K+1

2αt,πt(Tπt(t− 1), δt) +
λ

t2
≤ 2E

T∑
t=K+1

√
6 log(t)

Tπt(t− 1)
+
(
K +

π2

6

)
λ

≤ 2E

K∑
i=1

Ti(T−1)∑
s=1

√
6 log(T )

s
+
(
K +

π2

6

)
λ ≤ 4E

K∑
i=1

√
3Ti(T ) log(T ) +

(
K +

π2

6

)
λ .

We used the fact that the algorithm necessarily select actions in a round robin fashion during the first
K stages.

Applying Cauchy-Schwarz inequality and the fact that
∑
i Ti(t) = t yield the desired result.

Proof of Proposition 3. We adapt the proof of Theorem 2, using that C = 0 and that εt = 0 when-
ever πt = ?t = ?. We obtained that

ET (L(pT )− L(p?)) ≤ 4E

K∑
i=1

√
3Ti(T ) log(T ) +

(π2

6
+K

)
λ

However, in this particular case, we have T (L(pT )− L(p?)) =
∑
i 6=? ∆i Ti. We therefore obtain

E
∑
i6=?

∆i Ti ≤ 4
√

3
√

log(T )E
∑
i 6=?

√
Ti+

(π2

6
+K

)
λ ≤

(∑
i6=?

48 log(T )

∆i

)1/2

E
(∑
i 6=?

∆i Ti

)1/2

+
(π2

6
+K

)
λ ,

by Cauchy-Schwarz inequality. Standard algebra yields

EL(pT )− L(p?) = E
1

T

∑
i 6=?

∆i Ti ≤
48 log(T )

T

∑
i 6=?

1

∆i
+ 2
(π2

6
+K

)
λ

of Proposition 3. We adapt again the proof of Theorem 2. First of all, notice that εt ≤ 0 whenever
πt = i?, so that we obtain the following equation

ET
(
L(pT )− L(p?)

)
≤ 4E

∑
i 6=i?

√
3Ti(T ) log(T ) +

(
K +

π2

6

)
λ+ C log(eT ) .

Using the fact that L is Lipschitz and that p? = ei? , it also holds that

T
(
L(pT )− L(p?)

)
≥ T

(
pT − p?

)>∇L(p?) =
∑
i 6=i?

Ti∆i(L)
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Cauchy-Schwartz inequality yields again that

E
∑
i 6=i?

Ti∆i(L) ≤ 48
∑
i 6=i?

log(T )

∆i(L)
+ 2
(
K +

π2

6

)
λ+ 2C log(eT )

It remains to lower bound the lhs by the regret. Since L is C-smooth, we get also that

T
(
L(pT )− L(p?)

)
≤ T

(
pT − p?

)>∇L(p?) + CT‖pT − p?|‖2

=
∑
i 6=i?

Ti∆i(L) +
C

T

∑
i6=i∗

T 2
i +

C

T

(∑
i6=i∗

Ti
)2

≤
∑
i 6=i?

Ti∆i(L) +
CK

T

∑
i6=i∗

T 2
i .

As a consequence, it remains to compute a quantity γ such that

E
∑
i6=i?

Ti∆i(L) +
CK

T

∑
i 6=i∗

T 2
i ≤ γE

∑
i 6=i?

Ti∆i(L)

or at least that for all i 6= i?
CK

T
ET 2

i ≤ (γ − 1)ETi∆i(L),

in particular this is ensured for γ = 1 + c(1+K)
min ∆i(L) which gives the result.

Proof of Theorems 5. Recall that we assumed than on top of being smooth (C-Lipschitz gradient),
the mapping L is µ-strongly convex and minimized in the relative interior of the simplex. Let η be
the distance of p? to the relative boundary of the simplex then the following Lemma due to ? yields

∇L(pt)
>(pt − e?t+1

) ≥
√

2µη2
√
L(pt)− L(p?) and C ≥ µη2

This implies that

L(pt+1)− L(p?) = L(pt)− L(p?) +
1

t+ 1
∇L(pt)

>(e?t+1
− pt) +

C

(t+ 1)2
+

1

t+ 1
∇L(pt)

>(eπt+1
− e?t+1

)

≤ L(pt)− L(p?)−
√

2µη2

t+ 1

√
L(pt)− L(p?) +

C

(t+ 1)2
+
εt+1

t+ 1

To ease up reading, we introduce the notations, α =
√

2µη2 and and ρt = L(pt) − L(p?) so that
the previous equation rewrites in

ρt+1 ≤ ρt − α
√
ρt

t+ 1
+

C

(t+ 1)2
+
εt+1

t+ 1
,

which rewrites again, using the function ψ(x) = x2 − αx, into

(t+ 1)ρt+1 ≤ tρt +
[
ψ(
√
ρt)− ψ(

εt+1

α
)
]

+
ε2
t+1

α2
+

C

t+ 1
.

Recall that we still have the guarantee that ρt ≤
∑t
s=1 εs+

C
s+1

t , but we aim at proving some fast rates
of convergence, of the type

E ρT ≤ O
(∑

sEε
2
s

T

)
.

Assume for the moment that ρT ≥ α2

4 , then Cauchy-Schwarz inequality implies that( T∑
s=1

εs +
C

s+ 1

)2

≤ T
T∑
s=1

(εs +
C

s+ 1
)2 ≤ 4

α2

T∑
s=1

(εs +
C

s+ 1
)

T∑
s=1

(ε+
C

s+ 1
)2

≤
T∑
s=1

(ε+
C

s+ 1
)

8

α2

( T∑
s=1

ε2
s +

C2π2

6

)
,

3



and thus

ρT ≤
∑T
s=1 εs + C

s+1

T
≤ 8

α2

∑T
s=1 ε

2
s

T
+

14C2

α2

1

T
(1)

As a consequence, the claim holds if ρT ≥ α2/4 and we will, from now on, assume that ρT ≤ α2/4.

We denote by τ0 the last time before T where ρτ ≥ α2/4 and we now consider several cases for the
remaining of the proof.

Case1. If we can prove that
∑t
s=1 ε

2
s

t ≥ ε2
t+1, for example if εt is guaranteed to decrease

Then, for any t ≥ τ0, we get that if ρt ≥ 1
α2

∑t
s=1 ε

2
s

t ≥ εt+1

α2 ( by assumption), then

(t+ 1)ρt+1 ≤ tρt +
ε2
t+1

α2
+

C

t+ 1
.

Thus, if we denote by τ1 the last time where ρτ < 1
α2

∑τ
s=1 ε

2
s

τ , we obtain that, as long as τ1 ≥ τ0,

TρT ≤ τ1ρτ1 + ετ1+1 +
1

α2

T∑
s=τ1+2

ε2
s +

C

s+ 1

≤ 1

α2

T∑
s=1

ε2
s + ετ1+1 −

ε2
τ1+1

α2
+ C log(eT )

which gives the result we wanted as

TρT ≤
1

α2

T∑
s=1

ε2
s +

α2

4
+ C log(eT ) (2)

On the contrary, if τ0 ≥ τ1, then the same computations give

TρT ≤ τ0ρτ0 +
α2

4
+

1

α2

T∑
s=τ0+1

ε2
s +

C

s+ 1

Using the fact that δτ0 ≥ α2/4, we also have that

τ0δτ0 ≤
8

α2

τ0∑
s=1

ε2
s +

14C2

α2

thus, combining the two cases τ1 ≥ τ0 and τ0 ≤ τ1, we now obtain that

TρT ≤
8

α2

T∑
s=1

ε2
s +

14C2

α2
+
α2

4
+ C log(eT ) (3)

Case 2. If it is not necessarily true that
∑t
s=1 ε

2
s

t ≥ ε2
t , for example if εt does not necessarily

decrease or can make big jumps

Notice first that if ε2

α2 ≤ ρt ≤ α2

4 , the latter holding because of t ≥ τ0, then one has

(t+ 1)ρt+1 ≤ tρt +
ε2
t+1

α2
+

C

t+ 1
.

As a consequence, denoting by τ2 the last stage before T such that ρτ <
ε2τ
α2 and assuming that

τ2 ≥ τ0, we obtain following the same computations as before that

tρt ≤
τ2ε

2
τ2

α2
+

1

α2

t∑
s=τ2+1

ε2
s +

α2

4
+ C log(et) . (4)
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If τ2 ≤ τ0, then we get that

TρT ≤ τ0ρτ0 +
1

α2

T∑
s=τ0+1

ε2
s +

α2

4
+ C log(eT )

thus

TρT ≤
8

α2

T∑
s=1

ε2
s +

14C2

α2
+
α2

4
+ C log(eT ), (5)

which was our objective. Hence it only remains to upper-bound τ2ε2
τ2 in Equation (4), i.e., when

τ2 ≥ τ0. To do that, we are going to use a second time the assumptions on L.

Since we assumed that L was µ-strongly convex and minimized in the interior of the simplex, it
holds that

‖pt − p∗‖2 ≤
1

µ

(
L(pt)− L(p∗)

)
≤ 1

µ

∑t
s=1 εs
t

As a consequence, this yields that

pi∗ −

√
1

µ

∑t
s=1 εs
t

≤ pit ≤ pi∗ +

√
1

µ

∑t
s=1 εs
t

We are now going to make the assumption that the horizon T is known in advance, and that εs ≤(
log(T/δ)
Tπs (s−1)

)β
with probability at least 1 − δγ , for some β ≤ 1/2 and γ > 0. This implies, by the

union bound, that with probability at least 1− TKδγ ,

1

t

t∑
s=1

εs ≤
1

1− β

(K log(T/δ)

t

)β
,

hence

tpi∗ − t

√
1

µ

1

1− β

(K log(T/δ)

t

)β
≤ Ti(t) ≤ tpi∗ + t

√
1

µ

1

1− β

(K log(T/δ)

t

)β
in particular, if K log(T/δ)

t ≤
(
µ(1− β)η

2

4

)1/β

, i.e., if t ≥ τδ := K log(T/δ)

(µ(1−β) η
2

4 )1/β
,

tδ

2
≤ tpi∗

2
≤ Ti(t) ≤

3tpi∗
2

and thus,

tε2
t ≤ t

( log(T/δ)

tη/2

)2β

≤
(2 log(T/δ)

η

)2β

t1−2β ≤
(2 log(T/δ)

η

)2β

T 1−2β , ∀t ≥ τδ.

Concluding.

To wrap things up, we consider the three different cases. With probability at least 1− TKδγ ,

If τ2 ≤ τ0 then: we have proved that

TρT ≤
8

α2

T∑
s=1

ε2
s +

α2

4
+ C log(eT )

If τ0 ≤ τδ ≤ τ2 then: using the above upper-bound on τ2ε2
τ2 , we get

TρT ≤
1

α2

(2 log(T/δ)

η

)2β

T 1−2β +
1

α2

T∑
s=1

ε2
s +

α2

4
+ C log(eT ) .
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If τ0 ≤ τ2 ≤ τδ then: going back to the original induction yields

TρT ≤ τδρτδ +
1

α2

T∑
s=1

ε2
s +

α2

4
+ C log(eT ) .

Taking the maximum of all those terms gives that, with probability at least 1− TKδγ ,

ρT ≤
log(T/δ)

T

K‖L‖∞
(µ(1− β)η

2

4 )1/β
+

1

α2

(2 log(T/δ)

ηT

)2β

+
8

α2

1

T

T∑
s=1

ε2
s +

α2

4T
+
C log(eT )

T
(6)

A simple sommation over t yields that,

1

T

∑
ε2
s ≤

1

T

∑( log(T/δ)

Ti(s)

)2β

≤ 1

1− 2β

(K log(T/δ)

T

)2β

if β <
1

2

and
1

T

∑
ε2
s ≤

1

T

∑ log(T/δ)

Ti(s)
≤ K log(T/δ) log(T )

T
if β =

1

2

As a consequence, if β < 1/2

EρT ≤ δγTK‖L‖∞ +
log(T/δ)

T

K‖L‖∞
(µ(1− β)η

2

4 )1/β
+

1

α2

( log(T/δ)

T

)2β[22β

η2β
+

8K2β

1− 2β

]
+
α2

4T
+
C log(eT )

T

and if β = 1/2

EρT ≤ δγTK‖L‖∞ +
log(T/δ)

T

[K‖L‖∞
(µη

2

8 )2
+

2

α2η

]
+

1

α2

K log(T/δ) log(T )

T
+
α2

4T
+
C log(eT )

T

choosing δγ = T−(2β+1) yields that, if β < 1
2 ,

EL(pT )− L(p?) ≤ c1,β
log(T )

T 2β
+ c2,β

( log(T )

T

)2β

+
c3,β
T 2β

where

c1,β =
2(β + 1)K‖L‖∞
γ(µ(1− β)η

2

4 )1/β
+C, c2,β =

1

α2

(2(β + 1)

γ

)2β[22β

η2β
+

8K2β

1− 2β

]
, c3,β = K‖L‖∞+

α2

4
+C.

For β = 1/2, the choice of δγ = T−2 yields

EL(pT )− L(p?) ≤ c1
log2(T )

T
+ c2

log(T )

T
+ c3

1

T

where

c1 =
3K

γα2
, c2 =

3

γα2

[K‖L‖∞
(µη

2

8 )2
+

2

α2η

]
+ C, c3 = K‖L‖∞ +

α2

4
+ C.

Remark: We assumed that the horizon T was known. If it is not the case, there are two possible
ways to deal with that issue to get an anytime algorithm

Use the Doubling Trick in the algorithm: The doubling trick is rather classical in online learning,
and it consists in running several successive and independent instances of the same algo-
rithm on block of stages of length that increases sufficiently fast enough (so that the error
incurred on the first blocks disappears while averaging), but not too fast enough (so that
the error during the last block is compensated by the small error cumulated so far on the
previous blocks). Its main advantages are that it is simple to describe, to analyze and that
it gives the same guarantees of the known horizon, up to some multiplicative constant. The
latter depends on the speed of convergence achieved in the known horizon, and it might
require careful tuning. The main drawback of the doubling trick is that it regularly discards
all the past data and forgets the learning done so far.

In our setting, the correct size of blocks are proportional to Tj = e( 1
1−β )j .
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Use the Doubling Trick in the analysis. Instead of using the doubling trick in the algorithm, we
will prove in the following that we can somehow use it in the analysis of the anytime
variant of the algorithm. We first consider the case where β = 1/2, and we assume that it

holds that, for some fixed θ > 0 and for every s ∈ N, εs ≤
(
θ log(s)
Ti(s)

)β
with probability at

least 1− 1
s6 .

The immediate consequence of that property is that

1

T
E

T∑
s=1

ε2
s ≤

1

T
E

T∑
s=1

(θ log(T )

Ti(s)

)2β

+
1

s6
≤ 2

1− 2β

(Kθ log(T )

T

)2β 1

T

where the last inequality is loose for β < 1/2 and

1

T
E

T∑
s=1

ε2
s ≤

1

T
E

T∑
s=1

θ log(T )

Ti(s)
+

1

s6
≤ 2

Kθ log2(T )

T

for β = 1/2.

In order to upper-bound Eτ2ε
2
τ2 , we are going to decompose the set of stages in blocks

Bj = {t ∈ [Tj−1 + 1, Tj ]} where Tj = be( 1
1−β )jc. As a consequence:

P
{
∀k ≤ K, ∀s ∈ Bj , εks ≤

(θ log(s)

Tk(s)

)β}
≥ 1−K

∑
s∈Bj

1

s5
=: 1− pj .

Hence, with probability at least 1− (pj + pj+1), it holds that for all t ∈ Bj+1

1

t

t∑
s=1

εs ≤
Tj−1

t
+

1

t

t∑
s=Tj−1+1

(θ log(s)

Tis(s)

)β
≤ 1

tβ
+

2

1− β

(Kθ log(t)

t

)β
,

since t ≥ Tj + 1 ≥ T
1

1−β
j−1 .

Following the same argument as in the case where the horizon was known, this implies that
with probability at least 1− (pi + pi+1), for all t ∈ Bi+1,

T it ≥ tpi? − t

√
1

µ

( 1

tβ
+

2

1− β

(Kθ log(t)

t

)β)
.

In particular, let τβ,? be such that

√
1
µ

(
1
tβ

+ 2
1−β

(
Kθ log(t)

t

)β)
≤ η

2 for all t ≥ τβ,? and

jβ,? be the index of the block to which τβ,? belongs. Then we have that

∀j ≥ jβ,?, P
{
∀t ∈ Bj+1, tε

2
t ≤

(2θ log(t)

δ

)2β

t1−2β
}
≥ 1− (pj + pj+1)

It follows that

Eτ2ε
2
τ21{τ2 ≥ Tj?} ≤

(2θ log(t)

η

)2β

t1−2β+
∑
j=j∗

Tj+1(pj+pj+1) ≤ 2
(2θ log(t)

η

)2β

t1−2β ,

where, again, the last inequality is loose but compact. This yields the anytime version of
the previous theorem, that, for β < 1/2

∀t ∈ N, EL(pt)− L(p?) ≤ c′1,β
( log(t)

t

)2β

+ c′2,β
log(t)

t
+ c′3,β

1

t

with c′1,β = 2
α2

(
2θ
η

)2β
+ 8

α2
2

1−2β

(
Kθ
)2β

, c′2,β = C and c′3,β = Tjβ,?‖L‖∞ + α2

4 + C.

For β = 1/2, we get

∀t ∈ N, EL(pt)− L(p?) ≤ c′1
log2(t)

t
+ c2

log(t)

t
+ c3

1

t
,

where c′1 = 16Kθ
α2 , c′2 = 4θ

ηα2 + C and c′3 = Tj1/2,?‖L‖∞ + α2

4 + C.
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Lemma 2. Let Zs, s ∈ {1, . . . , T} be i.i.d. random variable in [0, 1] of expectation EZs = Z, then,
with probability at least 1 − δ, Z ≥ Zτ/2 where the random stage τ ≤ T is the first such that

Zτ ≥
√

2 log(2T/δ)/τ . As, it also holds that Zτ ≥ Z−
√

2 log(T/δ)
2t , thus 3Zτ/2 ≥ Z, we get that

Zτ/2 ≤ Z ≤ 3Zτ/2, for some random τ ≤ 9 log(2T/δ)/(2Z2) + 1

This lemma is a direct consequence of Hoeffding’s inequalty.

Proof of Theorem 7. Let ν ∈ (0, 1/29), K > 64 log(2)/ν and T > 4ν2K4. We assume for sim-
plicity that K is even. For θ ∈ ∆K , we consider Lθ(p) = µ

2 ‖p − θ‖
2. We treat first the case of

µ = 1. For all ε ∈ {−1, 1}K/2, we consider the vector θε such that for all i ∈ [K/2]

θε,2i−1 =
1

K
+ εi

√
νK

T
and θε,2i =

1

K
− εi

√
νK

T
.

Note that for all ε ∈ {−1, 1}K/2, p?ε = θε ∈ ∆K and that ∇Lθ(p) = p − θ, so that an observation
fromN (θi, 1) for the i-th action constitutes a bandit feedback for the i-th coefficient of the gradient
with deviation bound α(Ti, δ) =

√
2 log(1/δ)/Ti.

LetM be a subset of {−1, 1}K/2 such that for all ε, ε′ ∈M, we have ρ(ε, ε′) ≥ K/8 and for which
log(|M|) ≥ K/64, whose existence is guaranteed by the Varshamov-Gilbert lemma. We have for
ε, ε′ ∈M that ν/4 ·K2T ≤ ‖θε− θε′‖22 ≤ νK2/T . We consider the subsets Cε of the unit simplex
defined by

Cε =
{
p ∈ ∆K : ‖p− θε‖22 <

ν

16

K2

T

}
.

By construction ofM, these sets are disjoint.

For any algorithm, on the events where Tj(T ) > 2T/K > T/K + 2
√
νK2T for some j ∈ K

we have that p̂T /∈ Cε. On the events for which Tj(T ) ≤ 2T/K for all j ∈ [K], we have that p̂T
can only depend (possibly in a random manner) on an observation from N⊗N (θε, IK), where N ≤
2T/K. We have that KL(N⊗N (θε, IK),N⊗N (θε′ , IK)) = N‖θε − θε′‖22 ≤ νNK2/T ≤ 2νK.
Considering together these two events, we obtain as a consequence of Fano’s inequality that

inf
p̂

max
ε∈M

Pε(p̂T /∈ Cε) ≥ 1− 2νK + log(2)

K/64
≥ 1− 129ν ,

As a consequence, we have that

inf
p̂

max
ε∈M

{
E[Lθε(p̂T )]− Lθε(p?ε)

}
≥ 1

2
(1− 129ν)

ν

16

K2

T
,

which yields the desired result.

Proof of Proposition 9. For θ ∈ [1/3, 2/3], take the class of functions Lθ : R3 → R

Lθ(p) =
1

2

(
p1 − θ

)2
+

1

2

(
p2 − (1− θ)

)2
+

1

2
p2

3 .

Consider the case where the mixed feedback for the three actions are drawings from respectively
N (0, 1),N (0, 1), and N (θ, 1). We consider the set

Cθ =
{
p ∈ ∆3 : ‖p− p?θ‖22 ≤

c

T 2/3

}
.

For any algorithm, on the event where T3(T ) > T 2/3, we have ‖pT − p?θ‖22 ≥ 1/T 2/3 and pT /∈ Cθ.
On the event where T3 ≤ T 2/3, we have that p̂T can only depend on a drawing from N⊗N (θ, 1),
where N ≤ T 2/3. In this case, we have that

inf
p̂

sup
θ∈[1/3,2/3]

Eθ[(p̂T,1 − θ)2] ≥ c′

N
.

Overall this yields the desired result.
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