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Abstract

PAC maximum selection (maxing) and ranking of n elements via random pairwise
comparisons have diverse applications and have been studied under many models
and assumptions. With just one simple natural assumption: strong stochastic tran-
sitivity, we show that maxing can be performed with linearly many comparisons
yet ranking requires quadratically many. With no assumptions at all, we show that
for the Borda-score metric, maximum selection can be performed with linearly
many comparisons and ranking can be performed withO(n logn) comparisons.

1 Introduction

1.1 Motivation

Maximum selection (maxing) and sorting using pairwise comparisons are among the most practical
and fundamental algorithmic problems in computer science. As is well-known, maxing requires
n − 1 comparisons, while sorting takes ⇥(n logn) comparisons.

The probabilistic version of this problem, where comparison outcomes are random, is of significant
theoretical interest as well, and it too arises in many applications and diverse disciplines. In sports,
pairwise games with random outcomes are used to determine the best, or the order, of teams or
players. Similarly Trueskill [1] matches video gamers to create their ranking. It is also used for a
variety of online applications such as to learn consumer preferences with the popular A/B tests, in
recommender systems [2], for ranking documents from user clickthrough data [3, 4], and more. The
popular crowd sourcing website GIFGIF [5] shows how pairwise comparisons can help associate
emotions with many animated GIF images. Visitors are presented with two images and asked to
select the one that better corresponds to a given emotion. For these reasons, and because of its
intrinsic theoretical interest, the problem received a fair amount of attention.

1.2 Terminology and previous results

One of the first studies in the area, [6] assumed n totally-ordered elements, where each comparison
errs with the same, known, probability ↵ < 1

2 . It presented a maxing algorithm that usesO( n
↵2 log

1
� )

comparisons to output the maximum with probability ≥ 1 − �, and a ranking algorithm that uses
O(

n
↵2 log

n
� ) comparisons to output the ranking with probability ≥ 1 − �.

These results have been and continue to be of great interest. Yet this model has two shortcomings.
It assumes that there is only one random comparison probability, ↵, and that its value is known. In
practice, comparisons have different, and arbitrary, probabilities, and they are not known in advance.
To address more realistic scenarios, researchers considered more general probabilistic models.

Consider a set of n elements, without loss of generality [n] def= {1,2, . . . , n}. A probabilistic model,
or model for short, is an assignment of a preference probability pi,j ∈ [0,1] for every i ≠ j ∈
[n], reflecting the probability that i is preferred when compared with j. We assume that repeated
comparisons are independent and that there are no “draws”, hence pj,i = 1 − pi,j .
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If pi,j ≥ 1
2 , we say that i is preferable to j and write i ≥ j. Element i is maximal in a model if i ≥ j

for all j ≠ i. And a permutation `1, . . . ,`n is a ranking if `i ≥ `j for all i ≤ j. Observe that the
first element of any ranking is always maximal. For example, for n = 3, p1,2 = 1�2, p1,3 = 1�3, and
p2,3 = 2�3, we have 1 ≥ 2, 2 ≥ 1, 3 ≥ 1, and 2 ≥ 3. Hence 2 is the unique maximum, and 2,3,1 is
the unique ranking. We seek algorithms that without knowing the underlying model, use pairwise
comparisons to find a maximal element and a ranking.

Two concerns spring to mind. First, there may be two elements i, j with pi,j arbitrarily close to
half, requiring arbitrarily many comparisons just to determine which is preferable to the other. This
concern has a common remedy, that we also adopt. The PAC paradigm, e.g. [7, 8], that requires the
algorithm’s output to be only Probably Approximately Correct.

Let p̃i,j
def
= pi,j −

1
2 be the centered preference probability. Note that p̃i,j ≥ 0 iff i is preferable to

j. If p̃i,j ≥ −✏ we say that i is ✏-preferable to j. For 0 < ✏ < 1�2, an element i ∈ [n] is ✏-maximum
if it is ✏-preferable to all other elements, namely, p̃i,j ≥ −✏ ∀j ≠ i. Given ✏ > 0, 12 ≥ � > 0, a
PAC maxing algorithm must output an ✏-maxima with probability ≥ 1 − �, henceforth abbreviated
with high probability (WHP). Similarly, a permutation `1, . . . ,`n of {1, . . . ,n} is an ✏-ranking if `i
is ✏-preferable to `j for all i ≤ j, and a PAC ranking algorithm must output an ✏-ranking WHP. Note
that in this paper, we consider � ≤ 1

2 , the more practical regime. For larger values of �, one can use
our algorithms with � = 1

2 .

The second concern is that not all models have a ranking, or even a maximal element. For example,
for p1,2 = p2,3 = p3,1 = 1, or the more opaque yet interesting non-transitive coins [9], each element
is preferable to the cyclically next, hence there is no maximal element and no ranking.

A standard approach, that again we too will adopt, to address this concern is to consider structured
models. The simplest may be parametric models, of which one of the more common is Placket
Luce (PL) [10, 11], where each element i is associated with an unknown positive number ai and
pi,j =

ai

ai+aj
. [12] derived a PAC maxing algorithm that uses O( n✏2 log

n
✏� ) comparisons and a PAC

ranking algorithm that uses O( n✏2 logn log
n
✏� ) comparisons for any PL model. Related results for

the Mallows model under a non-PAC paradigm were derived by [13].

But significantly more general, and more realistic, non-parametric, models may also have max-
ima and rankings. A model is strongly stochastically transitive (SST), if i ≥ j and j ≥ k imply
pi,k ≥ max(pi,j , pj,k). By simple induction, every SST model has a maximum element and a rank-
ing. And one additional property, that is perhaps more difficult to justify, has proved helpful in
constructing maxing and sorting PAC algorithms. A tournament satisfies the stochastic triangle
inequality if i ≥ j and j ≥ k imply that p̃i,k ≤ p̃i,j + p̃j,k.

In Section 4 we show that if a model has a ranking, then an ✏-ranking can be found WHP via
O(

n2

✏2 log n
� ) comparisons. For all models that satisfy both SST and triangle inequality, [7] derived

a PAC maxing algorithm that uses O( n✏2 log
n
✏� ) comparisons. [14] eliminated the log n

✏ factor and
showed that O� n

✏2 log
1
�
� comparisons suffice and are optimal, and constructed a nearly-optimal

PAC ranking algorithm that uses O(n logn(log logn)3
✏2 ) comparisons for all � ≥ 1

n , off by a factor
of O((log logn)3) from optimum. Lower-bounds follow from an analogy to [15, 6]. Observe
that since the PL model satisfies both SST and triangle inequality, these results also improve the
corresponding PL results.

Finally, we consider models that are not SST, or perhaps don’t have maximal elements, rankings,
or even their ✏-equivalents. In all these cases, one can apply a weaker order relation. The Borda
score s(i) def

=
1
n ∑j pi,j is the probability that i is preferable to another, randomly selected, element.

Element i is Borda maximal if s(i) = maxj s(j), and ✏-Borda maximal if s(i) ≥ maxj s(j) − ✏. A
PAC Borda-maxing algorithm outputs an ✏-Borda maximal element WHP (with probability ≥ 1− �).
Similarly, a Borda ranking is a permutation i1, . . . ,in such that for all 1 ≤ j ≤ n−1, s(ij) ≥ s(ij+1).
An ✏-Borda ranking is a permutation where for all 1 ≤ j ≤ k ≤ n, s(ij) ≥ s(ik) − ✏. A PAC
Borda-ranking algorithm outputs an ✏-Borda ranking WHP.

Recall that Borda scores apply to all models. As noted in [16, 17, 8, 18] considering elements with
nearly identical Borda scores shows that exact Borda-maxing and ranking requires arbitrarily many
comparisons. [8] derived a PAC Borda ranking, and therefore also maxing, algorithms that use
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O(
n2

✏2 ) comparisons. [19] derived a O(n logn
✏2 log(n� )) PAC Borda ranking algorithm for restricted

setting. However note that several simple models, including p1,2 = p2,3 = p3,1 = 1 do not belong to
this model.

[20, 21, 22] considered deterministic adversarial versions of this problem that has applications
in [23]. Finally, we note that all our algorithms are adaptive, where each comparison is cho-
sen based on the outcome of previous comparisons. Non-adaptive algorithms were discussed
in [24, 25, 26, 27].

2 Results and Outline

Our goal is to find the minimal assumptions that enable efficient algorithms for these problems. In
particular, we would like to see if we can eliminate the somewhat less-natural triangle inequality.
With two algorithmic problems: maxing and ranking, and one property–SST and one special metric–
Borda scores, the puzzle consists of four main questions.

1) With just SST (and no triangle inequality) are there: a) PAC maxing algorithms with O(n) com-
parisons? b) PAC ranking algorithms with near O(n logn) comparisons? 2) With no assumptions
at all, but for the Borda-score metric, are there: a) PAC Borda-maxing algorithms with O(n) com-
parisons? b) PAC Borda-ranking algorithms with near O(n logn) comparisons?

We essentially resolve all four questions. 1a) Yes. In Section 3, Theorem 6, we use SST alone to
derive a O� n

✏2 log
1
�
� comparisons PAC maxing algorithm. Note that this is the same complexity

as with triangle inequality, and it matches the lower bound. 1b) No. In Section 4, Theorem 7, we
show that there are SST models where any PAC ranking algorithm with ✏ ≤ 1�4 requires ⌦(n2

)

comparisons. This is significantly higher than the roughly O(n logn) comparisons needed with
triangle inequality, and is close to the O(n2 logn) comparisons required without any assumptions.
2a) Yes. In Section 5, Theorem 8, we derive a PAC Borda maxing algorithm that without any model
assumptions requires O� n

✏2 log
1
�
� comparisons which is order optimal. 2b) Yes. In Section 5,

Theorem 9, we derive a PAC Borda ranking algorithm that without any model assumptions requires
O�

n
✏2 log

n
�
� comparisons.

Beyond the theoretical results sections, in Section 6, we provide experiments on simulated data. In
Section 7, we discuss the results.

3 Maxing

3.1 SEQ-ELIMINATE

Our main building block is a simple, though sub-optimal, algorithm SEQ-ELIMINATE that sequen-
tially eliminates one element from input set to find an ✏-maximum under SST.

SEQ-ELIMINATE usesO� n
✏2 log

n
�
� comparisons and w.p.≥ 1−�, finds an ✏-maximum. Even for sim-

pler models [15] we know that an algorithm needs ⌦� n
✏2 log

1
�
� comparisons to find an ✏-maximum

w.p.≥ 1− �. Hence the number of comparisons used by SEQ-ELIMINATE is optimal up to a constant
factor when � ≤ 1

n but can be logn times the lower bound for � = 1
2 .

By SST, any element that is ✏-preferable to absolute maximum element of S is an ✏-maximum of
S. Therefore if we can reduce S to a subset S′ of sizeO( n

logn) that contains an absolute maximum
of S using O� n

✏2 log
1
�
� comparisons, we can then use SEQ-ELIMINATE to find an ✏-maximum of

S′ and the number of comparisons is optimal up to constants. We provide one such reduction in
subsection 3.2.

Sequential elimination techniques have been used before [13] to find an absolute maximum. In
such approaches, a running element is maintained, and is compared and replaced with a competing
element in S if the latter is found to be better with confidence ≥ 1 − ��n. Note that if the running
and competing elements are close to each other, this technique can take an arbitrarily long time to
declare the winner. But since we are interested in finding only an ✏-maximum, SEQ-ELIMINATE
circumvents this issue. We later show that SEQ-ELIMINATE needs to update the running element
r with the competing element c if p̃c,r ≥ ✏ and retain r if p̃c,r ≤ 0. If 0 < p̃c,r < ✏, replacing or

3



retaining r doesn’t affect the performance of SEQ-ELIMINATE significantly. Thus, in other words
we’ve reduced the problem to testing whether p̃c,r ≤ 0 or p̃c,r ≥ ✏.

Assuming that testing problem always returns the right answer, since SEQ-ELIMINATE never re-
places the running element with a worse element, either the output is the absolute maximum b∗ or b∗
is never the running element. If b∗ is eliminated against running element r then p̃b∗,r ≤ ✏ and hence
r is an ✏-maximum and since the running element only gets better, the output is an ✏-maximum.

We first present a testing procedure COMPARE that we use to update the running element in SEQ-
ELIMINATE.

3.1.1 COMPARE

COMPARE(i, j, ✏l, ✏u, �) takes two elements i and j, and two biases ✏u > ✏l, and with confidence
≥ 1 − �, determines whether p̃i,j is ≤ ✏l or ≥ ✏u.

For this, COMPARE compares the two elements 2�(✏u − ✏l)2 log(2��) times. Let p̂i,j be the fraction
of times i beats j, and let ˆ̃pi,j

def
= p̂i,j −

1
2 . If ˆ̃pi,j < (✏l + ✏u)�2, COMPARE declares p̃i,j ≤ ✏l (returns

1), and otherwise it declares p̃i,j ≥ ✏u (returns 2).

Due to lack of space, we present the algorithm COMPARE in Appendix A.1 along with certain
improvements for better performance in practice .

In the Lemma below, we bound the number of comparisons used by COMPARE and prove its cor-
rectness. Proof is in A.2.

Lemma 1. For ✏u > ✏l, COMPARE(i, j, ✏l, ✏u, �) uses ≤ 2(✏u−✏l)2 log 2
� comparisons and if p̃i,j ≤ ✏l,

then w.p.≥ 1 − �, it returns 1, else if p̃i,j ≥ ✏u, w.p.≥ 1 − �, it returns 2.

Now we present SEQ-ELIMINATE that uses the testing subroutine COMPARE and finds an ✏-
maximum.

3.1.2 SEQ-ELIMINATE Algorithm

SEQ-ELIMINATE takes a variable set S, selects a random running element r ∈ S and repeatedly
uses COMPARE(c, r,0, ✏, ��n) to compare r to a random competing element c ∈ S � r. If COMPARE
returns 1 i.e., deems p̃c,r ≤ 0, it retains r as the running element and eliminates c from S, but if
COMPARE returns 2 i.e., deems p̃c,r ≥ ✏, it eliminates r from S and updates c as the new running
element.

Algorithm 1 SEQ-ELIMINATE

1: inputs
2: Set S, bias ✏, confidence �
3: n← �S�
4: r ← a random c ∈ S, S = S � {r}
5: while S ≠ � do
6: Pick a random c ∈ S, S = S � {c}.
7: if COMPARE(c, r,0, ✏, �

n) = 2 then
8: r ← c
9: end if

10: end while
11: return r

We now bound the number of comparisons used by SEQ-ELIMINATE(S, ✏, �) and prove its correct-
ness. Proof is in A.3.

Theorem 2. SEQ-ELIMINATE(S, ✏, �) uses O� �S�✏2 log �S�� � comparisons, and w.p.≥ 1− � outputs an
✏-maximum.
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3.2 Reduction

Recall that, for � ≤ 1
n , SEQ-ELIMINATE is order-wise optimal. For � ≥ 1

n , here we present a
reduction procedure that uses O� n

✏2 log
1
�
� comparisons and w.p.≥ 1 − �, outputs a subset S′ of size

O(
√
n logn) and an element a such that either a is a 2✏�3-maximum or S′ contains an absolute

maximum of S. Combining the reduction with SEQ-ELIMINATE results in an order-wise optimal
algorithm.

We form the reduced subset S′ by pruning S. We compare each element e ∈ S with an anchor
element a, test whether p̃e,a ≤ 0 or p̃e,a ≥ 2✏�3 using COMPARE, and retain all elements e for which
COMPARE returns the second hypothesis. For S′ to be of size O(

√
n logn) we’d like to pick an

anchor element that is among the top O(
√
n logn) elements. But this can be computationally hard

and we show that it suffices to pick an anchor that is not ✏�3-preferable to at most O(
√
n logn)

elements in S.

An element a is called an (✏, n′)-good anchor if a is not ✏-preferable to at most n′ elements, i.e.,
�{e ∶ e ∈ S and p̃e,a > ✏}� ≤ n

′.
We now present the subroutine PICK-ANCHOR that finds a good anchor element.

3.2.1 Picking Anchor Element

PICK-ANCHOR(S,n′, ✏, �) uses O� n
n′✏2 log

1
� log

n
n′� � comparisons and w.p.≥ 1 − �, outputs an

(✏, n′)-good anchor element. PICK-ANCHOR first picks randomly a set Q of n
n′ log

2
� elements

from S without replacement. This ensures that w.p.≥ 1 − �, Q contains at least one of the top n′
elements. We then use SEQ-ELIMINATE to find an ✏-maximum of Q.

Let the absolute maximum element of Q be denoted as q∗. Now an ✏-maximum of Q is ✏-preferable
to q∗. Further, if Q contains an element in the top n′ elements, there exists n − n′ elements worse
than q∗ in S. Thus by SST, the ✏-maximum of Q is also ✏-preferable to these n − n′ elements and
hence the output of PICK-ANCHOR is an (✏, n′)-good anchor element. PICK-ANCHOR is shown in
appendix A.4

We now bound the number of comparisons used by PICK-ANCHOR and prove its correctness. Proof
is in A.5.
Lemma 3. PICK-ANCHOR(S,n′, ✏, �) uses O� n

n′✏2 log
1
� log

n
n′� � comparisons and w.p.≥ 1 − �,

outputs an (✏, n′)-good anchor element.

Remark 4. Note that PICK-ANCHOR(S, cn, ✏, �) usesOc�
1
✏2
�log 1

�
�
2
� comparisons where the con-

stant depends only on c but not on n. Hence it is advantageous to use this method to pick near-
maximum element when n is large.

We now present PRUNE that takes an anchor element as input and prunes the set S using the anchor.

3.2.2 Pruning

Given an (✏l, n′)-good anchor element a, w.p.≥ 1 − ��2, PRUNE(S, a, n′, ✏l, ✏u, �) outputs a subset
S′ of size ≤ 2n′. Further, any element e that is at least ✏u-better than a i.e., p̃e,a ≥ ✏u is in S′
w.p.≥ 1 − ��2.

PRUNE prunes S in multiple rounds. In each round t, for every element e in S, PRUNE tests whether
p̃e,a ≤ ✏l or p̃e,a ≥ ✏u using COMPARE(e, a, ✏l, ✏u, ��2

t+1
) and eliminates e if the first hypothesis i.e.,

p̃e,a ≤ ✏l is returned. By Lemma 1, an element e that is ✏u better than a i.e., p̃e,a ≥ ✏u passes the
tth round of pruning w.p.≥ 1 − ��2t+1. Thus by union bound, the probability that such an element
is not present in the pruned set is ≤ ∑∞t=1 ��2t+1 ≤ ��2.

Now for element e that is not ✏l-better than a i.e., p̃e,a ≤ ✏l, by Lemma 1, the first hypothesis
is returned w.p.≥ 1 − ��4. Hence w.h.p., the number of such elements (not ✏l-better elements) is
reduced by a factor of � after each round. Since a is an (✏l, n′)-good anchor element, there are at
most n′ elements atleast ✏l-better than a. Thus the number of elements left in the pruned set after
round t is at most n′ + n�t. Thus PRUNE succeeds eventually in reducing the size to ≤ 2n′ (in
≤ log1�� n

n′ rounds).
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Algorithm 2 PRUNE

1: inputs
2: Set S, element a, size n′, lower bias ✏l, upper bias ✏u, confidence �.
3: t← 1
4: S1 ← S
5: while �St� > 2n

′ and t < log2 n do
6: Initialize: Qt ← �

7: for e in St do
8: if COMPARE(e, a, ✏l, ✏u, ��2

t+1
) = 1 then

9: Qt ← Qt�{e}
10: end if
11: end for
12: St+1 ← St �Qt

13: t← t + 1
14: end while
15: return St.

We now bound the number of comparisons used by PRUNE and prove its correctness. Proof is in
A.6.
Lemma 5. If n′ ≥ √6n logn, � ≥ 1

n and a is an (✏l, n′)-good anchor element, then w.p.≥ 1 − �
2 ,

PRUNE(S, a, n′, ✏l, ✏u, �) uses O� n(✏u−✏l)2 log 1
� � comparisons and outputs a set of size less than

2n′. Further if a is not an ✏u-maximum of S then w.p.≥ 1 − �
2 , the output set contains an absolute

maximum element of S.

3.3 Full Algorithm

We now present the main algorithm, OPT-MAXIMIZE that w.p.≥ 1−�, usesO� n
✏2 log

1
�
� comparisons

and outputs an ✏-maximum. For � ≤ 1
n , SEQ-ELIMINATE uses O( n✏2 log

1
� ) comparisons and hence

we directly use SEQ-ELIMINATE. Below we assume � > 1
n .

Here OPT-MAXIMIZE first finds an (✏�3,
√
6n logn)-good anchor element a using

PICK-ANCHOR(S,
√
6n logn, ✏�3, �4). Then using PRUNE(S, a,

√
6n logn, ✏�3,2✏�3, �4) with

a, OPT-MAXIMIZE prunes S to a subset S′ of size ≤ 2
√
6n logn such that if a is not a 2✏�3

maximum i.e. p̃b∗,a > 2✏�3, S′ contains the absolute maximum b∗ w.p.≥ 1 − ��2. OPT-MAXIMIZE
then checks if a is a 2✏�3 maximum by using COMPARE(e, a,2✏�3, ✏, ��(4n)) for every element
e ∈ S′. If COMPARE returns first hypothesis for every e ∈ S′ then OPT-MAXIMIZE outputs a or else
OPT-MAXIMIZE outputs SEQ-ELIMINATE(S′, ✏, �4).
Note that only one of these three cases is possible: (1) a is a 2✏�3-maximum, (2) a is not an ✏-
maximum and (3) a is an ✏-maximum but not a 2✏�3-maximum. In case (1), since a is a 2✏�3-
maximum, by Lemma 1, w.p.≥ 1 − ��4, COMPARE returns the first hypothesis for every e ∈ S′ and
OPT-MAXIMIZE outputs a. In both cases (2) and (3), as stated above, w.p.≥ 1 − ��2, S′ contains
the absolute maximum b∗. Now in case (2) since a is not an ✏-maximum, by Lemma 1, w.p.≥
1− ��(4n), COMPARE(b∗, a,2✏�3, ✏, ��(4n)) returns the second hypothesis. Thus OPT-MAXIMIZE
outputs SEQ-ELIMINATE(S′, ✏, ��4), which w.p.≥ 1 − ��4, returns an ✏-maximum of S′ (recall that
an ✏-maximum of S′ is an ✏-maximum of S if S′ contains b∗). Finally in case (3), OPT-MAXIMIZE
either outputs a or SEQ-ELIMINATE(S′, ✏, ��4) and either output is an ✏-maximum w.p.≥ 1 − �.
In the below Theorem, we bound comparisons used by OPT-MAXIMIZE and prove its correctness.
Proof is in A.7.
Theorem 6. W.p.≥ 1 − �, OPT-MAXIMIZE(S, ✏, �) uses O( n✏2 log

1
� ) comparisons and outputs an

✏-maximum.

4 Ranking
Recall that [14] considered a model with both SST and stochastic triangle inequality and derived
an ✏-ranking with O�n logn(log logn)3

✏2 � comparisons for � = 1
n . By constrast, we consider a more
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Algorithm 3 OPT-MAXIMIZE

1: inputs
2: Set S, bias ✏, confidence �.
3: if � ≤ 1

n then
4: return SEQ-ELIMINATE(S, ✏, �)
5: end if
6: a← PICK-ANCHOR(S,

√
6n logn, ✏�3, �4)

7: S′ ← PRUNE(S, a,
√
6n logn, ✏�3,2✏�3, �4)

8: for element e in S′ do
9: if COMPARE(e, a, 2✏3 , ✏,

�
4n) = 2 then

10: return SEQ-ELIMINATE(S′, ✏, �4)
11: end if
12: end for
13: return a

general model without stochastic triangle inequality and show that even a 1�4-ranking with just SST
takes ⌦(n2

) comparisons for � ≤ 1
8 .

To establish the lower bound, we reduce the problem of finding 1�4-ranking to finding a coin with
bias 1 among n(n−1)

2 −1 other fair coins. For this, we consider the following model with n elements
{a1, a2, ..., an}: p̃a1,an =

1
2 , p̃ai,aj = µ(0 < µ < 1�n

10
), when i < j and (i, j) ≠ (1, n). Note that

this model satisfies SST but not stochastic triangle inequality. Also note that any ranking where a1
precedes an is an 1�4-ranking and thus the algorithm only needs to order a1 and an correctly. Now
the output of a comparison between any two elements other than a1 and an is essentially a fair coin
toss (since µ is very small). Thus if we output a ranking without querying comparison between a1
and an, then the ranking is correct w.p.≈ 1

2 since a1 and an must necessarily be ordered correctly.
Now if an algorithm uses only n2

�20 comparisons then the probability that the algorithm queried at
least one comparison between a1 and an is less than 1

2 and hence cannot achieve a confidence of 7
8 .

Proof sketch in B.1.
Theorem 7. There exists a model that satisfies SST for which any algorithm requires ⌦(n2

) com-
parisons to find a 1�4-ranking with probability ≥ 7�8.

We also present a trivial ✏-ranking algorithm in Appendix B.2 that for any stochastic model with
ranking (Weak Stochastic Transitivity), uses O(n

2

✏2 log n
� ) comparisons and outputs an ✏-ranking

w.p.≥ 1 − �.

5 Borda Scores

We show that for general models, usingO( n✏2 log
1
� ) comparisons w.p.≥ 1−�, we can find an ✏-Borda

maximum and using O( n✏2 log
n
� ) comparisons w.p.≥ 1 − �, we can find an ✏-Borda ranking.

Recall that Borda score s(e) of an element e is the probability that e is preferable to an element
picked randomly from S i.e., s(e) = 1

n ∑f∈S p̃e,f . We first make a connection between Borda
scores of elements and the traditional multi armed bandit setting. In the Bernoulli multi armed
setting, every arm a is associated with a parameter q(a) and pulling that arm results in a reward
B(q(a)), a Bernoulli random variable with parameter q(a). Observe that we can simulate our
pairwise comparisons setting as a traditional bandit arms setting by comparing an element with a
random element where in our setting, for every element e, the associated parameter is s(e). Thus
PAC optimal algorithms derived under traditional bandit setting work for PAC Borda score setting
too. [28] and several others derived a PAC maximum arm selection algorithms that useO( n✏2 log

1
� )

comparisons and find an arm with parameter at most ✏ less than the highest. This implies an ✏-Borda
maxing algorithm with the same complexity. Proof follows from reduction to Bernoulli multi-armed
bandit setting.
Theorem 8. There exists an algorithm that uses O( n✏2 log

1
� ) comparisons and w.p.≥ 1 − �, outputs

an ✏-Borda maximum.
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For ✏-Borda ranking, we note that if we compare an element e with 2
✏2 log

2n
� random elements, w.p.

≥ 1 − ��n, the fraction of times e wins approximates the Borda score of e to an additive error of
✏
2 . Ranking based on these approximate scores results in an ✏-Borda ranking. We present BORDA-
RANKING in C.1 that uses 2n

✏2 log 2n
� comparisons and w.p.≥ 1−� outputs an ✏-Borda ranking. Proof

in C.1.
Theorem 9. BORDA-RANKING(S, ✏, �) uses 2n

✏2 log 2n
� comparisons and w.p.≥ 1 − � outputs an

✏-Borda ranking.

6 Experiments

In this section we validate the performance of our algorithms using simulated data. Since we es-
sentially derived a negative result for ✏-ranking, we consider only our ✏-maxing algorithms - SEQ-
ELIMINATE and OPT-MAXIMIZE for experiments. All results are averaged over 100 runs.
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Figure 1: Comparison of SEQ-ELIMINATE and OPT-MAXIMIZE

Similar to [14, 7], we consider the stochastic model pi,j = 0.6 ∀i < j. We use maxing algorithms to
find 0.05-maximum with error probability � = 0.1. Note that i = 1 is the unique 0.05-maximum un-
der this model. In Figure 1, we compare the performance of SEQ-ELIMINATE and OPT-MAXIMIZE
over different ranges of n. Figures 1(a), 1(b) show that for small n i.e., n ≤ 1300 SEQ-ELIMINATE
performs well and for large n i.e., n ≥ 1300, OPT-MAXIMIZE performs well. Since we are using
� = 0.1, the experiment suggests that for � � 1

n1�3 , OPT-MAXIMIZE uses fewer comparisons as com-
pared to SEQ-ELIMINATE. Hence it would be beneficial to use SEQ-ELIMINATE for � ≤ 1

n1�3 and
OPT-MAXIMIZE for higher values of �. In further experiments, we use � = 0.1 and n < 1000 so we
use SEQ-ELIMINATE for better performance.

We compare SEQ-ELIMINATE with BTM-PAC [7], KNOCKOUT [14], MallowsMPI [13], and
AR [16] . KNOCKOUT and BTM-PAC are PAC maxing algorithms for models with SST and
stochastic triangle inequality requirements. AR finds an element with maximum Borda score. Mal-
lows finds the absolute best element under Weak Stochastic Transitivity.

We again consider the model: pi,j = 0.6∀i < j and try to find a 0.05-maximum with error probability
� = 0.1. Note that this model satisfies both SST and stochastic triangle inequality and under this
model all these algorithms can find an ✏-maximum. From Figure 2(a), we can see that BTM-PAC
performs worse for even small values of n and from Figure 2(b), we can see that AR performs worse
for higher values of n. One possible reason is that BTM-PAC is tailored for reducing regret in the
bandit setting and in the case of AR, Borda scores of elements become approximately the same with
increasing number of elements, leading to more comparisons. For this reason, we drop BTM-PAC
and AR for further experiments.

We also tried PLPAC [12] but it fails to achieve required accuracy of 1 − � since it is designed
primarily for Plackett-Luce. For example, we considered the previous setting pi,j = 0.6 ∀i < j with
n = 100 and tried to find a 0.09-maximum with � = 0.1. Even though PLPAC used almost same
number of comparisons (57237) as SEQ-ELIMINATE (56683), PLPAC failed to find 0.09-maxima
20 out of 100 runs whereas SEQ-ELIMINATE found the maximum in all 100 runs.

In figure 3, we compare algorithms SEQ-ELIMINATE, KNOCKOUT [14] and MallowsMPI [13]
for models that do not satisfy stochastic triangle inequality. In Figure 3(a), we consider the stochastic
model p1,j = 1

2 + q̃ ∀j ≤ n�2, p1,j = 1 ∀j > n�2 and pi,j =
1
2 + q̃ ∀1 < i < j where q̃ ≤ 0.05 and

we pick n = 10. Observe that this model satisfies SST but not stochastic triangle inequality. Here
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Figure 2: Comparison of Maxing Algorithms with Stochastic Triangle Inequality

again, we try to find a 0.05-maximum with � = 0.1. Note that any i ≤ n�2 is a 0.05 maximum. From
Figure 3(a), we can see that MallowsMPI uses more comparisons as q̃ decreases since MallowsMPI
is not a PAC algorithm and tries to find the absolute maximum. Even though KNOCKOUT performs
better than MallowsMPI, it fails to output a 0.05 maximum with probability 0.12 for q̃ = 0.001
and 0.26 for q̃ = 0.0001. Thus KNOCKOUT can fail when the model doesn’t satisfy stochastic
triangle inequality. We give an explanation for this behavior in Appendix D. By constrast, even
for q̃ = 0.0001, SEQ-ELIMINATE outputted a 0.05 maximum in all runs and outputted the abosulte
maximum in 76% of trials. We can also see that SEQ-ELIMINATE uses much fewer comparisons
compared to the other two algorithms.

In Figure 3(b), we compare SEQ-ELIMINATE and MallowsMPI on the Mallows model, a model
which doesn’t satisfy stochastic triangle inequality. Mallows model can be specified with one pa-
rameter �. We consider n = 10 elements and find a 0.05-maximum with error probablility � = 0.05.
From Figure 3(b) we can see that the performance of MallowsMPI gets worse as � approaches 1,
since comparison probabilities get close to 1

2 whereas SEQ-ELIMINATE is not affected.
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Figure 3: Comparison of SEQ-ELIMINATE and MALLOWSMPI over Mallows Model

One more experiment is presented in Appendix E.

7 Conclusion

We extended the study of PAC maxing and ranking to general models which satisfy SST but not
stochastic triangle inequality. For PAC maxing, we derived an algorithm with linear complexity.
For PAC ranking, we showed a negative result that any algorithm needs ⌦(n2

) comparisons. We
thus showed that removal of stochastic triangle inequality constraint does not affect PAC maxing
but affects PAC ranking. We also ran experiments over simulated data and showed that our PAC
maximum selection algorithms are better than other maximum selection algorithms.

For unconstrained models, we derived algorithms for PAC Borda maxing and PAC Borda ranking
by making connections with traditional multi-armed bandit setting.
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