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1 A Lower Bound on Average-Linkage-Clustering

This section is devoted to proving the following Lemma[3.2] a lower bound on the performance of
average linkage clustering.

Proof (of Lemma[3.2): Our strategy is to trick Average Linkage into collapsing the entire graph
into a star graph, while the optimum hierarchical clustering treats the graph as multiple disjoint star
graphs. As a warm-up, consider the following graph, depicted in Figure[I] The graph has two special
nodes, v and v. There is an edge between u and v of weight w,,,, = 1 + J for some small § > 0.
There are also unit weight edges between v and 5 — 1 other nodes, and unit weight edges between v
and the remaining 5 — 1 nodes.

If this is G, then Average Linkage will first merge u and v together, scoring a revenue gain of
(1 +6)(n —2) = O(n). After this first merge, all nodes appear identical and it does not matter
what order they are merged into cluster {u,v}. Average Linkage will score an additional revenue
gain of (n —3) 4+ (n —4) + --- + 1 < 1n?. Meanwhile, the optimal clustering may merge
u with its other neighbors first and v with its other neighbors first, scoring a revenue gain of
2[(n—2)+ (n—3)+--+ (n/2)] = 2n? — O(n). Since Average Linkage has a final revenue of
in% + O(n) while OPT has a final revenue of 2n? — O(n), as n grows the approximation ratio

2
approaches £ from above.

We then improve the ratio to % considering a clique on & vertices instead of just v and v, and giving
each node a neighborhood of n/k — 1 other vertices. The general graph is depicted in Figure

In the remaining analysis, we treat k as a constant that is hidden by big-O notation. Average Linkage
still greedily merges the clique first, scoring a total revenue gain of:

(149 (10 =2)+ Dn = 3) + -+ (k= )n — k)] < '’ = On)

However, after merging the clique, Average Linkage is in the same situation as before and can only

score %nQ additional revenue.
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Figure 1: Hard graph for Average Linkage (general k case).

In this modified graph, the optimal hierarchical clustering can merge each clique node with its 3 — 1
neighbors before merging the clique nodes with each other. However, doing so means that:

reve(T7) > k [(n_ 2+ (n—3)+ -+ (Tn)}
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Following the same analysis as the previous example, our approximation will approach % as k grows
to infinity. This completes the proof. |

2 Random Hierarchical Clustering

In this section, we bound the performance of a random divisive algorithm. In each step, the algorithm
is given a cluster and divides the points into two clusters A and B where a point is added in each step
uniformly at random. We show that this algorithm is a %-approximation to our revenue function and
further this is tight.

Data: Vertices V, weights w : £ — R=°
Initialize clusters C + {V'};
while some cluster C' € C has more than one vertex do
Let A, B be a uniformly random 2-partition of C;
SetC «+ CU{A,B}\ {C};
end
Algorithm 1: Random Hierarchical Clustering

Theorem 2.1. Consider a graph G = (V, E) with nonnegative edge weights w : E — R=°. Let
the hierarchical clustering T* be a maximizer of revg(-) and let T be the hierarchical clustering
returned by Algorithm[I] Then:

El[revg(T)] > %revG (T*)



Proof. We begin by pretending that A or B empty is a valid partition of C, and address this detail at
the end of the proof. If so, we can generate A, B with the following random process: for each vertex
v € C, flip a fair coin to decide if it goes into A or into B.

Now, consider an edge (i, j) € E. The algorithm will score a revenue of w;;|nonleaves(T[iV j])|.
Thus, we need to determine the expected value of [nonleaves(T[i V j])|. How often does one of
the n — 2 other nodes besides i and j become a nonleaf of T'[¢ V j]? Fix all all coin flips made for 4
and let k # 4, j be a point. The point k£ will become a nonleaf if 7 matches more coin flips than &
does. The number of matched coin flips is a geometric random variable with parameter 1/2. There is
a 1/2 chance of matching for zero coin flips, a 1/4 chance of matching for one coin flip, and so on.
Hence the probability of equality is 1/4 + 1/16 + 1/64 + - - - = 1/3. By symmetry, the remaining
2/3 probability is split bewteen j matching for more and k& matching for more. Hence each of the
other n — 2 nodes k has exactly a 1/3 chance of being a nonleaf. As a result,
n—2
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Elrevg(T)] = 3 E Wi > grevG(T )
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since it is impossible to have more than n — 2 nonleaves.

Finally, we address the possibility of A or B being empty. This is equivalent to a node in 7" having a
single child. In this case, reve(T) is unchanged if we merge the node with that child, since this does
not change leaves(T[i V j]) for any edge (i, j). Hence if A or B is empty we can safely redraw.
Hence our random process is equivalent to uniformly drawing over all partitions. This completes the
proof. O

We now establish that this is tight.

Lemma 2.2. There exists a graph G = (V, E) with nonnegative edge weights w : E — R=°, such
that if the hierarchical clustering T* is an optimal solution of revg(-) and T is the hierarchical
clustering returned by Algorithm([l]

E[reva(T)] = %revc (T*)

Proof. In the proof of Lemma[2.T| we showed that

Efreve(T)] = r ; 2 Zwij.

This naturally suggests a tight example: any graph where the optimal hierarchical clustering T can
capture all edges (7, j) € F with non-zero weight using only clusters of size 2. In other words, in any
graph where the edges form a matching, the bound is tight. O
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