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A Proof of Theorem 1

For the sake of completeness, we include the proof of Theorem 1, which was proved by
Mokhtari et al. [2016]. We need the following property of gradient descent.

Lemma 1. Assume that f : X 7→ R is λ-strongly convex and L-smooth, and x∗ = argmin
x∈X f(x).

Let v = ΠX (u− η∇f(u)), where η ≤ 1/L. We have

‖v − x∗‖ ≤
√

1− 2λ

1/η + λ
‖u− x∗‖.

The constant in the above lemma is better than that in Proposition 2 of Mokhtari et al. [2016].

Since ‖∇ft(x)‖ ≤ G for any t ∈ [T ] and any x ∈ X , we have

T
∑

t=1

ft(xt)− ft(x
∗
t ) ≤ G

T
∑

t=1

‖xt − x∗
t ‖. (13)

We now proceed to bound
∑T

t=1 ‖xt − x∗
t ‖. By the triangle inequality, we have

T
∑

t=1

‖xt − x∗
t ‖ ≤ ‖x1 − x∗

1‖+
T
∑

t=2

(

‖xt − x∗
t−1‖+ ‖x∗

t−1 − x∗
t ‖
)

. (14)

Since
xt = ΠX (xt−1 − η∇ft−1(xt−1))

using Lemma 1, we have
‖xt − x∗

t−1‖ ≤ γ‖xt−1 − x∗
t−1‖. (15)

From (14) and (15), we have

T
∑

t=1

‖xt − x∗
t ‖ ≤ ‖x1 − x∗

1‖+ γ
T
∑

t=2

‖xt−1 − x∗
t−1‖+ P∗

T ≤ ‖x1 − x∗
1‖+ γ

T
∑

t=1

‖xt − x∗
t ‖+ P∗

T

implying
T
∑

t=1

‖xt − x∗
t ‖ ≤ 1

1− γ
P∗
T +

1

1− γ
‖x1 − x∗

1‖. (16)

We complete the proof by substituting (16) into (13).
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B Proof of Lemma 1

We first introduce the following property of strongly convex functions [Hazan and Kale, 2011].

Lemma 2. Assume that f : X 7→ R is λ-strongly convex, and x∗ = argmin
x∈X f(x). Then, we

have

f(x)− f(x∗) ≥
λ

2
‖x− x∗‖2, ∀x ∈ X . (17)

From the updating rule, we have

v = argmin
x∈X

f(u) + 〈∇f(u),x− u〉+ 1

2η
‖x− u‖2.

According to Lemma 2, we have

f(u) + 〈∇f(u),v − u〉+ 1

2η
‖v − u‖2

≤f(u) + 〈∇f(u),x∗ − u〉+ 1

2η
‖x∗ − u‖2 − 1

2η
‖v − x∗‖2.

(18)

Since f(x) is λ-strongly convex, we have

f(u) + 〈∇f(u),x∗ − u〉 ≤ f(x∗)−
λ

2
‖x∗ − u‖2. (19)

On the other hand, the smoothness assumption implies

f(v) ≤f(u) + 〈∇f(u),v − u〉+ L

2
‖v − u‖2 ≤ f(u) + 〈∇f(u),v − u〉+ 1

2η
‖v − u‖2. (20)

Combining (18), (19), and (20), we obtain

f(v) ≤ f(x∗)−
λ

2
‖x∗ − u‖2 + 1

2η
‖x∗ − u‖2 − 1

2η
‖v − x∗‖2. (21)

Applying Lemma 2 again, we have

f(v)− f(x∗) ≥
λ

2
‖v − x∗‖2. (22)

We complete the proof by substituting (22) into (21) and rearranging.

C Proof of Theorem 2

Since ft(·) is L-smooth, we have

ft(xt)− ft(x
∗
t ) ≤〈∇ft(x

∗
t ),xt − x∗

t 〉+
L

2
‖xt − x∗

t ‖2 ≤ ‖∇ft(x
∗
t )‖‖xt − x∗

t ‖+
L

2
‖xt − x∗

t ‖2.

Combining with the fact

‖∇ft(x
∗
t )‖‖xt − x∗

t ‖ ≤ 1

2α
‖∇ft(x

∗
t )‖2 +

α

2
‖xt − x∗

t ‖2

for any α > 0, we obtain

ft(xt)− ft(x
∗
t ) ≤

1

2α
‖∇ft(x

∗
t )‖2 +

L+ α

2
‖xt − x∗

t ‖2.

Summing the above inequality over t = 1, . . . , T , we get

T
∑

t=1

ft(xt)− ft(x
∗
t ) ≤

1

2α

T
∑

t=1

‖∇ft(x
∗
t )‖2 +

L+ α

2

T
∑

t=1

‖xt − x∗
t ‖2. (23)

We now proceed to bound
∑T

t=1 ‖xt − x∗
t ‖2. We have

T
∑

t=1

‖xt − x∗
t ‖2 ≤ ‖x1 − x∗

1‖2 + 2

T
∑

t=2

(

‖xt − x∗
t−1‖2 + ‖x∗

t−1 − x∗
t ‖2

)

. (24)
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Recall the updating rule

z
j+1
t−1 = ΠX

(

z
j
t−1 − η∇ft−1(z

j
t−1)

)

, j = 1, . . . ,K.

From Lemma 1, we have

‖zj+1
t−1 − x∗

t−1‖2 ≤
(

1− 2λ

1/η + λ

)

‖zjt−1 − x∗
t−1‖2

which implies

‖xt − x∗
t−1‖2 = ‖zK+1

t−1 − x∗
t−1‖2 ≤

(

1− 2λ

1/η + λ

)K

‖xt−1 − x∗
t−1‖2 ≤ 1

4
‖xt−1 − x∗

t−1‖2

(25)

where we choose K = ⌈ 1/η+λ
2λ ln 4⌉ such that

(

1− 2λ

1/η + λ

)K

≤ exp

(

− 2Kλ

1/η + λ

)

≤ 1

4
.

From (24) and (25), we have

T
∑

t=1

‖xt − x∗
t ‖2 ≤‖x1 − x∗

1‖2 +
1

2

T
∑

t=2

‖xt−1 − x∗
t−1‖2 + 2S∗

T

≤‖x1 − x∗
1‖2 +

1

2

T
∑

t=1

‖xt − x∗
t ‖2 + 2S∗

T

implying
T
∑

t=1

‖xt − x∗
t ‖2 ≤ 4S∗

T + 2‖x1 − x∗
1‖2.

Substituting the above inequality into (23), we have

T
∑

t=1

ft(xt)− ft(x
∗
t ) ≤

1

2α

T
∑

t=1

‖∇ft(x
∗
t )‖2 + 2(L+ α)S∗

T + (L+ α)‖x1 − x∗
1‖2

for all α ≥ 0. Finally, we show that the dynamic regret can still be upper bounded by P∗
T . From the

previous analysis, we have

‖xt − x∗
t−1‖2

(25)

≤ 1

4
‖xt−1 − x∗

t−1‖2 ⇒ ‖xt − x∗
t−1‖ ≤ 1

2
‖xt−1 − x∗

t−1‖.

Then, we can set γ = 1/2 in Theorem 1 and obtain

T
∑

t=1

ft(xt)− ft(x
∗
t ) ≤ 2GP∗

T + 2G‖x1 − x∗
1‖.

D Proof of Theorem 5

We will randomly generate a sequence of functions ft : Rd 7→ R, t = 1, . . . , T , where each ft(·)
is independently sampled from a distribution P . For any deterministic algorithm A, it generates a
sequence of solutions xt ∈ X , t = 1, . . . , T , we define the expected dynamic regret as

E [R∗
T ] = E

[

T
∑

t=1

ft(xt)− ft(x
∗
t )

]

.

We will show that there exists a distribution of strongly convex and smooth functions such that for
any fixed algorithm A, we have E[R∗

T ] ≥ E[S∗
T ].

13



For each round t, we randomly sample a vector εt ∈ R
d from the Gaussian distribution N (0, I).

Using εt, we create a function

ft(x) = 2 ‖x− τεt‖2
which is both strongly convex and smooth. Notice that xt is independent from εt, and thus we can
bound the expected dynamic regret as follows:

E [R∗
T ] =

T
∑

t=1

E [ft(xt)− ft(x
∗
t )] = 2

T
∑

t=1

E
[

‖xt‖2 + dτ2
]

≥ 2dTτ2.

We furthermore bound S∗
T as follows

E[S∗
T ] =

T
∑

t=2

E
[

‖εt − εt−1‖2τ2
]

= 2d(T − 1)τ2.

Therefore, E[R∗
T ] ≥ E[S∗

T ]. Hence, for any given algorithm A, there exists a sequence of functions

f1, . . . , fT , such that
∑T

t=1 ft(xt)− ft(x
∗
t ) = Ω(S∗

T ).

E Proof of Theorem 6

The proof is similar to that of Theorem 1.

We need the following property of gradient descent when applied to semi-strongly convex and
smooth functions [Necoara et al., 2015], which is analogous to Lemma 1 developed for strongly
convex functions.

Lemma 3. Assume that f(·) is L-smooth and satisfies the semi-strong convexity condition in (8).
Let v = ΠX (u− η∇f(u)), where η ≤ 1/L. We have

‖v −ΠX∗(v)‖ ≤
√

1− β

1/η + β
‖u−ΠX∗

(u)‖.

Since ‖∇ft(x)‖ ≤ G for any t ∈ [T ] and any x ∈ X , we have
T
∑

t=1

ft(xt)−
T
∑

t=1

min
x∈X

ft(x) =
T
∑

t=1

ft(xt)− ft
(

ΠX∗

t
(xt)

)

≤ G
T
∑

t=1

∥

∥xt −ΠX∗

t
(xt)

∥

∥ . (26)

We now proceed to bound
∑T

t=1 ‖xt −ΠX∗

t
(xt)‖. By the triangle inequality, we have

T
∑

t=1

∥

∥xt −ΠX∗

t
(xt)

∥

∥ ≤
∥

∥x1 −ΠX∗

1
(x1)

∥

∥+

T
∑

t=2

(
∥

∥

∥
xt −ΠX∗

t−1
(xt)

∥

∥

∥
+
∥

∥

∥
ΠX∗

t−1
(xt)−ΠX∗

t
(xt)

∥

∥

∥

)

.

(27)

Since
xt = ΠX (xt−1 − η∇ft−1(xt−1))

using Lemma 3, we have
∥

∥

∥
xt −ΠX∗

t−1
(xt)

∥

∥

∥
≤ γ

∥

∥

∥
xt−1 −ΠX∗

t−1
(xt−1)

∥

∥

∥
. (28)

From (27) and (28), we have
T
∑

t=1

∥

∥xt −ΠX∗

t
(xt)

∥

∥

≤
∥

∥x1 −ΠX∗

1
(x1)

∥

∥+ γ

T
∑

t=2

∥

∥

∥
xt−1 −ΠX∗

t−1
(xt−1)

∥

∥

∥
+

T
∑

t=2

∥

∥

∥
ΠX∗

t−1
(xt)−ΠX∗

t
(xt)

∥

∥

∥

≤
∥

∥x1 −ΠX∗

1
(x1)

∥

∥+ γ

T
∑

t=1

∥

∥xt −ΠX∗

t
(xt)

∥

∥+ P∗
T

implying
T
∑

t=1

∥

∥xt −ΠX∗

t
(xt)

∥

∥ ≤ 1

1− γ
P∗
T +

1

1− γ

∥

∥x1 −ΠX∗

1
(x1)

∥

∥ . (29)

We complete the proof by substituting (29) into (26).
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F Proof of Lemma 3

For the sake of completeness, we provide the proof of Lemma 3, which can also be found in the
work of Necoara et al. [2015].

The analysis is similar to that of Lemma 1. Define

ū = ΠX∗(u), and v̄ = ΠX∗(v).

From the optimality condition of v, we have

f(u) + 〈∇f(u),v − u〉+ 1

2η
‖v − u‖2

≤f(u) + 〈∇f(u), ū− u〉+ 1

2η
‖ū− u‖2 − 1

2η
‖v − ū‖2.

(30)

From the convexity of f(x), we have

f(u) + 〈∇f(u), ū− u〉 ≤ f(ū). (31)

Combining (30), (31), and (20), we obtain

f(v) ≤ f(ū) +
1

2η
‖ū− u‖2 − 1

2η
‖v − ū‖2. (32)

From the semi-strong convexity of f(·), we further have

f(v)− f(ū) ≥ β

2
‖v − v̄‖2 .

Substituting the above inequality into (32), we have

1

2η
‖ū− u‖2 ≥ 1

2η
‖v − ū‖2 + β

2
‖v − v̄‖2 ≥

(

1

2η
+

β

2

)

‖v − v̄‖2

which completes the proof.

G Proof of Theorem 7

The proof is similar to that of Theorem 2. In the following, we just provide the key differences.

Following the derivation of (23), we get

T
∑

t=1

ft(xt)−
T
∑

t=1

min
x∈X

ft(x) ≤
1

2α

T
∑

t=1

∥

∥∇ft
(

ΠX∗

t
(xt)

)∥

∥

2
+

L+ α

2

T
∑

t=1

∥

∥xt −ΠX∗

t
(xt)

∥

∥

2

≤ 1

2α
G∗

T +
L+ α

2

T
∑

t=1

∥

∥xt −ΠX∗

t
(xt)

∥

∥

2

(33)

for any α > 0.

To bound
∑T

t=1 ‖xt −ΠX∗

t
(xt)‖2, we have

T
∑

t=1

∥

∥xt −ΠX∗

t
(xt)

∥

∥

2 ≤
∥

∥x1 −ΠX∗

1
(x1)

∥

∥

2
+ 2

T
∑

t=2

(

∥

∥

∥
xt −ΠX∗

t−1
(xt)

∥

∥

∥

2

+
∥

∥

∥
ΠX∗

t−1
(xt)−ΠX∗

t
(xt)

∥

∥

∥

2
)

.

(34)

From Lemma 3 and the updating rule

z
j+1
t−1 = ΠX

(

z
j
t−1 − η∇ft−1(z

j
t−1)

)

, j = 1, . . . ,K

we have
∥

∥

∥
z
j+1
t−1 −ΠX∗

t−1
(zj+1

t−1)
∥

∥

∥

2

≤
(

1− β

1/η + β

)

∥

∥

∥
z
j
t−1 −ΠX∗

t−1
(zjt−1)

∥

∥

∥

2

, j = 1, . . . ,K
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which implies
∥

∥

∥
xt −ΠX∗

t−1
(xt)

∥

∥

∥

2

=
∥

∥

∥
zK+1
t−1 −ΠX∗

t−1
(zK+1

t−1 )
∥

∥

∥

2

≤
(

1− β

1/η + β

)K
∥

∥

∥
xt−1 −ΠX∗

t−1
(xt−1)

∥

∥

∥

2

≤ 1

4

∥

∥

∥
xt−1 −ΠX∗

t−1
(xt−1)

∥

∥

∥

2
(35)

where we choose K = ⌈ 1/η+β
β ln 4⌉ such that

(

1− β

1/η + β

)K

≤ exp

(

− Kβ

1/η + β

)

≤ 1

4
.

From (34) and (35), we have

T
∑

t=1

∥

∥xt −ΠX∗

t
(xt)

∥

∥

2 ≤
∥

∥x1 −ΠX∗

1
(x1)

∥

∥

2
+

1

2

T
∑

t=2

∥

∥

∥
xt−1 −ΠX∗

t−1
(xt−1)

∥

∥

∥

2

+ 2S∗
T

≤
∥

∥x1 −ΠX∗

1
(x1)

∥

∥

2
+

1

2

T
∑

t=1

∥

∥xt −ΠX∗

t
(xt)

∥

∥

2
+ 2S∗

T

(36)

implying
T
∑

t=1

∥

∥xt −ΠX∗

t
(xt)

∥

∥

2 ≤ 4S∗
T + 2

∥

∥x1 −ΠX∗

1
(x1)

∥

∥

2
.

Substituting the above inequality into (33), we have

T
∑

t=1

ft(xt)−
T
∑

t=1

min
x∈X

ft(x) ≤
1

2α
G∗

T + 2(L+ α)S∗
T + (L+ α)

∥

∥x1 −ΠX∗

1
(x1)

∥

∥

2
, ∀α ≥ 0.

Finally, we show that the dynamic regret can still be upper bounded by P∗
T . From the previous

analysis, we have
∥

∥

∥
xt −ΠX∗

t−1
(xt)

∥

∥

∥

(35)

≤ 1

2

∥

∥

∥
xt−1 −ΠX∗

t−1
(xt−1)

∥

∥

∥
.

Then, we can set γ = 1/2 in Theorem 6 and obtain

T
∑

t=1

ft(xt)−
T
∑

t=1

min
x∈X

ft(x) ≤ 2GP∗
T + 2G

∥

∥x1 −ΠX∗

1
(x1)

∥

∥ .

H Proof of Theorem 8

The inequality (12) follows directly from the result in Section 2.2.X.C of Nemirovski [2004]. To
prove the rest of this theorem, we will use the following properties of self-concordant functions and
the damped Newton method [Nemirovski, 2004].

Lemma 4. Let f(x) be a self-concordant function, and ‖h‖x =
√

h⊤∇2f(x)h. Then, all points
within the Dikin ellipsoid Wx centered at x, defined as Wx = {x′ : ‖x′ − x‖x ≤ 1}, share similar
second order structure. More specifically, for a given point x and for any h with ‖h‖x ≤ 1, we have

(1− ‖h‖x)2 ∇2f(x) � ∇2f(x+ h) � ∇2f(x)

(1− ‖h‖x)2
. (37)

Define x∗ = argmin
x
f(x). Then, we have

‖x− x∗‖x∗ ≤ λ(x)

1− λ(x)
(38)

where λ(x) =

√

x⊤ [∇2f(x)]
−1

x.

Consider the the damped Newton method: v = u− 1
1+λ(u)

[

∇2f(u)
]−1 ∇f(u). Then, we have

λ(v) ≤ 2λ2(u). (39)
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We will also use the following inequality frequently

‖x‖2t = x⊤∇2ft(x
∗
t )x

=x⊤
[

∇2ft−1(x
∗
t−1)

]
1

2

[

∇2ft−1(x
∗
t−1)

]− 1

2 ∇2ft(x
∗
t )

[

∇2ft−1(x
∗
t−1)

]− 1

2

[

∇2ft−1(x
∗
t−1)

]
1

2 x

(10)

≤ µx⊤∇2ft−1(x
∗
t−1)x = µ‖x‖2t−1.

(40)

We will assume that for any t ≥ 2,

‖xt − x∗
t ‖t ≤

1

6
(41)

which will be proved at the end of the analysis.

According to the Taylor’s theorem, for any t ≥ 2, we have

ft(xt)− ft(x
∗
t ) =

1

2
(xt − x∗

t )
⊤∇2ft(ξt)(xt − x∗

t )

where ξt is a point on the line segment between xt and x∗
t . Now, using the property of self-

concordant functions, we have

∇2ft(ξt) = ∇2ft(x
∗
t + ξt − x∗

t )
(37)

� 1

(1− ‖ξt − x∗
t ‖t)2

∇2ft(x
∗
t ) �

1

(1− ‖xt − x∗
t ‖t)2

∇2ft(x
∗
t )

where we use the inequality in (41) to ensure ‖xt − x∗
t ‖t ≤ 1. We thus have

ft(xt)− ft(x
∗
t ) ≤

‖xt − x∗
t ‖2t

2(1− ‖xt − x∗
t ‖t)2

(41)

≤ ‖xt − x∗
t ‖2t .

As a result
T
∑

t=1

ft(xt)− ft(x
∗
t ) ≤ f1(x1)− f1(x

∗
1) +

T
∑

t=2

‖xt − x∗
t ‖2t . (42)

We first bound the dynamic regret by S∗
T . To this end, we have

T
∑

t=2

‖xt−x∗
t ‖2t ≤

T
∑

t=2

2
(

‖xt − x∗
t−1‖2t + ‖x∗

t − x∗
t−1‖2t

)
(40)

≤ 2µ

T
∑

t=2

‖xt−x∗
t−1‖2t−1+2S∗

T . (43)

We proceed to bound
∑T

t=2 ‖xt − x∗
t−1‖2t−1. Since xt is derived by applying the damped Newton

method multiple times to the initial solution xt−1, we need to first bound λt−1(xt−1). To this end,
we establish the following lemma.

Lemma 5. Let f(x) be a self-concordant function, and x∗ = argmin
x
f(x). If ‖u− x∗‖x∗ < 1/2

, we have

λ(u) ≤ 1

1− 2‖u− x∗‖x∗

‖u− x∗‖x∗ .

The above lemma implies

λt−1(xt−1) ≤
1

1− 2‖xt−1 − x∗
t−1‖t−1

‖xt−1 − x∗
t−1‖t−1

(41)

≤ min

(

3

2
‖xt−1 − x∗

t−1‖t−1,
1

4

)

.

(44)

Recall the updating rule

z
j+1
t−1 = z

j
t−1 −

1

1 + λt−1(z
j
t−1)

[

∇2ft−1(z
j
t−1)

]−1

∇ft−1(z
j
t−1), j = 1, . . . ,K.

From Lemma 4, we have

λt−1(z
j+1
t−1)

(39)

≤ 2λ2
t−1(z

j
t−1), j = 1, . . . ,K.
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Since λt−1(z
1
t−1) = λt−1(xt−1) ≤ 1/4. By induction, it is easy to verify

λt−1(z
j
t−1) ≤

1

4
, j = 1, . . . ,K,K + 1. (45)

Therefore,

λt−1(xt) = λt−1(z
K+1
t−1 ) ≤ 1

2
λt−1(z

K
t−1) ≤ · · · ≤ 1

2K
λt−1(z

1
t−1) =

1

2K
λt−1(xt−1). (46)

Again, using Lemma 4, we have

‖xt − x∗
t−1‖t−1

(38)

≤ λt−1(xt)

1− λt−1(xt)

(45),(46)

≤ 4

3

1

2K
λt−1(xt−1)

(44)

≤ 2

2K
‖xt−1 − x∗

t−1‖t−1

implying

‖xt − x∗
t−1‖2t−1 ≤ 4

4K
‖xt−1 − x∗

t−1‖2t−1. (47)

Combining (43) with (47), we have

T
∑

t=2

‖xt − x∗
t ‖2t ≤ 8µ

4K

T
∑

t=3

‖xt−1 − x∗
t−1‖2t−1 + 2µ‖x2 − x∗

1‖21 + 2S∗
T

≤1

2

T
∑

t=2

‖xt − x∗
t ‖2t + 2µ‖x2 − x∗

1‖21 + 2S∗
T

(48)

where we use the fact 8µ
4K

≤ 1/2. From (48), we have

T
∑

t=2

‖xt − x∗
t ‖2t ≤4µ‖x2 − x∗

1‖21 + 4S∗
T

(12)

≤ 1

36
+ 4S∗

T . (49)

Substituting (49) into (42), we obtain

T
∑

t=1

ft(xt)− ft(x
∗
t ) ≤ 4S∗

T + f1(x1)− f1(x
∗
1) +

1

36
.

Next, we bound the dynamic regret by P∗
T . From (41) and (42), we immediately have

T
∑

t=1

ft(xt)− ft(x
∗
t ) ≤ f1(x1)− f1(x

∗
1) +

1

6

T
∑

t=2

‖xt − x∗
t ‖t. (50)

To bound the last term, we have

T
∑

t=2

‖xt − x∗
t ‖t ≤

T
∑

t=2

(

‖xt − x∗
t−1‖t + ‖x∗

t − x∗
t−1‖t

)

(40)

≤√
µ

T
∑

t=3

‖xt − x∗
t−1‖t−1 +

√
µ‖x2 − x∗

1‖1 + P∗
T

(47),(12)

≤
√

4µ

4K

T
∑

t=3

‖xt−1 − x∗
t−1‖t−1 +

1

12
+ P∗

T

≤ 1

2

T
∑

t=2

‖xt − x∗
t ‖t +

1

12
+ P∗

T

which implies
T
∑

t=2

‖xt − x∗
t ‖t ≤

1

6
+ 2P∗

T . (51)

18



Combining (50) and (51), we have

T
∑

t=1

ft(xt)− ft(x
∗
t ) ≤

1

3
P∗
T + f1(x1)− f1(x

∗
1) +

1

36
.

Finally, we prove that the inequality in (41) holds. For t = 2, we have

‖x2 − x∗
2‖22 ≤2‖x2 − x∗

1‖22 + 2‖x∗
1 − x∗

2‖22
(11),(40)

≤ 2µ‖x2 − x∗
1‖21 +

1

72

(12)

≤ 1

36
.

Now, we suppose (41) is true for t = 2, . . . , k. We show (41) holds for t = k + 1. We have

‖xk+1 − x∗
k+1‖2k+1 ≤ 2‖xk+1 − x∗

k‖2k+1 + 2‖x∗
k − x∗

k+1‖2k+1

(11),(40)

≤ 2µ‖xk+1 − x∗
k‖2k +

1

72

(47)

≤ 8µ

4K
‖xk − x∗

k‖2k +
1

72
≤ 1

2
‖xk − x∗

k‖2k +
1

72
≤ 1

36
.

I Proof of Lemma 5

By the mean value theorem for vector-valued functions, we have

∇f(u) = ∇f(u)−∇f(x∗) =

∫ 1

0

∇2f (x∗ + τ(u− x∗)) (u− x∗) d τ. (52)

Define
g(x) = x⊤

[

∇2f(u)
]−1

x

which is a convex function of x. Then, we have

λ2(u) =
〈

∇f(u),
[

∇2f(u)
]−1 ∇f(u)

〉

= g (∇f(u))

(52)
= g

(
∫ 1

0

∇2f (x∗ + τ(u− x∗)) (u− x∗) d τ

)

≤
∫ 1

0

g
(

∇2f (x∗ + τ(u− x∗)) (u− x∗)
)

d τ

(53)

where the last step follows from Jensen’s inequality.

Define ξτ = x∗ + τ(u− x∗) which lies in the line segment between u and x∗. In the following, we
will provide an upper bound for

g
(

∇2f(ξτ )(u− x∗)
)

= (u− x∗)⊤∇2f(ξτ )
[

∇2f(u)
]−1 ∇2f(ξτ )(u− x∗).

Following Lemma 4, we have

∇2f(ξτ ) = ∇2f(x∗ + ξτ − x∗)
(37)

� 1

(1− ‖ξτ − x∗‖x∗)2
∇2f(x∗) � 1

(1− ‖u− x∗‖x∗)2
∇2f(x∗),

(54)

‖u− ξτ‖2ξτ
(54)

≤ ‖u− ξτ‖2x∗

(1− ‖u− x∗‖x∗)2
≤ ‖u− x∗‖2

x
∗

(1− ‖u− x∗‖x∗)2
< 1, (55)

∇2f(u) = ∇2f(ξτ + u− ξτ )
(37)

� (1− ‖u− ξτ‖ξτ )2∇2f(ξτ )
(55)

�
(

1− 2‖u− x∗‖x∗

1− ‖u− x∗‖x∗

)2

∇2f(ξτ ).

(56)

As a result

g
(

∇2f(ξτ )(u− x∗)
)

(56)

≤
(

1− ‖u− x∗‖x∗

1− 2‖u− x∗‖x∗

)2
〈

(u− x∗),∇2f(ξτ )(u− x∗)
〉

(54)

≤ 1

(1− 2‖u− x∗‖x∗)2
‖u− x∗‖2

x
∗ .

(57)

We complete the proof by substituting (57) into (53).
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