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A Proof of Theorem 1

For the sake of completeness, we include the proof of Theorem which was proved by
Mokhtari et al| [2016]. We need the following property of gradient descent.

Lemma 1. Assume that f : X — R is A-strongly convex and L-smooth, and x,, = argmin, ¢ » f(x).
Letv =1ly(u—nVf(u)), wheren < 1/L. We have

1 2\
I/n+ X

v = < lu = x.[.

The constant in the above lemma is better than that in Proposition 2 of [IMokhtari et al. [2016].
Since ||V fi(x)|| < G for any t € [T] and any x € X, we have

T T
> flxe) = fi(x) <G llxe — x5 - (13)
t=1 t=1
We now proceed to bound Zthl |lx: — x;||. By the triangle inequality, we have
T T
Dl = x5 < Hlxen = x5+ D (llxe = xi ll + llxi_y = 1) - (14)
t=1 t=2

Since
x¢ =y (x¢—1 =NV fi1(x¢-1))
using Lemmal[Il we have

llxe = xi_ [l < vllxe—1 — x5 |- (15)
From (I4) and (13), we have
T T T
D olxe = x5l < = x5+ lxeor = xiall+ Pr < llxa = xi [+ Y lIxe — %} || + P
t=1 t=2 t=1
implying
d 1 1
IIx: — %7 < Pr+ lIx1 — %7 (16)
; t 1 — T 1 — 1

We complete the proof by substituting (I6)) into (I3).
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B Proof of Lemmalll

We first introduce the following property of strongly convex functions [Hazan and Kale, 2011].

Lemma 2. Assume that f : X — R is A-strongly convex, and x,, = argmin,cy f(x). Then, we

have N
160 = f0x) 2 Slx— x|, ¥x € &.
From the updating rule, we have
1
v = argmin f(u) + (Vf(w), x - u) + o x — u2
xeX 2’17
According to Lemma 2] we have

1
fw) +(Vf(u),v—u)+ 77Hv —ul?
1 1
<f(u) +(Vf(u),x. —u) + *nllx* —ul® - 77||V —x %
Since f(x) is A-strongly convex, we have

Flw)+ (9 (), %, — ) < 7o) — 5 e —ul]”

On the other hand, the smoothness assumption implies

a7

(18)

19)

fv) <f(0) +(Vf(u),v —u)+ gllV —u* < f(u) +(Vf(u),v —u)+ inllV —ul®. (20)

Combining (18], (I9), and @20), we obtain
A 1 1
Fv) < fx) = Sl —ul* + %HX* —uf? - %HV — x|
Applying Lemma 2l again, we have
A
Fv) = fx) 2 5lv = x|
We complete the proof by substituting (22)) into (2I)) and rearranging.

C Proof of Theorem 2

Since f;(-) is L-smooth, we have

L L
felxe) = fi(xp) <(Vfe(xp) xe — %) + S 1% — x;1* < IV fax) e — x| + 3

Combining with the fact
. . 1 . o .
IV fe(x) % — x| < %I\Vft(xt)ll2 + 5 lxe —x; 12
for any a > 0, we obtain

fi(xe) = fe(xf) < ”Vft( DI+

Summing the above inequality over ¢ = 1, ..., T, we get

T 1 & L+a
th(xt — fi(x7) Z*ZHVft H2 Z”xt—XtHQ
t=1 =

L+« "
2 — i P,

We now proceed to bound Zthl |l x: — x;||%. We have

T

T
Dol = x(IP < = x{ 1P+ 2 (I = xiall® + iy — x711%) -

t=1 t=2
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(22)

e — I

(23)

(24)



Recall the updating rule

]H =1IIr (Zt 1 ant_l(zgfl)) ,i=1,....K.
From Lemmali]l we have
2\ :
41 * *
It =%l < (1= o) el = Xl
which implies
2\

2 K+1 )2
X; — X) z, —X <{l—-—-
|| t t— 1” || t 1|| — < 1/7,] )\

K 1
) [t =364 < S — i
(25)

where we choose K = [1/;77;)‘ In 4] such that

(1 22 >K<e < 2K)\><1
- Xp| ——/———~ —.
I/n+Xx) — P I/n+X) ~ 4

From (24) and 23), we have

T T
1
D lxe =i |1? <llxs — x| + 3 D Ixer = x|l + 257

t=2
1 T
<z — x|+ 5 > lxe = x| + 287

implying
T

Dl = xp|1? < 487 + 2||x1 — x|
t=1
Substituting the above inequality into (23]), we have

th (xe) = felxg) < o~ Z IV £e(x)I1? + 2(L + a) St + (L + ) ||x1 — xj||?

f 1

for all o > 0. Finally, we show that the dynamic regret can still be upper bounded by P7. From the
previous analysis, we have

e 1 1
e = %522 S glixet = i P = e = xiy | < 5l = x|

Then, we can set v = 1/2 in Theorem [Iland obtain

th (x¢) — fe(x7) < 2GPr + 2G| x1 — x7].

D Proof of Theorem 3
We will randomly generate a sequence of functions f; : R +— R, ¢ = 1,..., T, where each f;(-)

is independently sampled from a distribution P. For any deterministic algorithm A, it generates a
sequence of solutions x; € X, ¢ = 1,...,T, we define the expected dynamic regret as

th x¢) — fi Xt)] :

We will show that there exists a distribution of strongly convex and smooth functions such that for
any fixed algorithm A, we have E[R}.] > E[S7].
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For each round ¢, we randomly sample a vector ¢, € R? from the Gaussian distribution A/(0, I).
Using ¢4, we create a function

fulx) =2|x —7e,|”
which is both strongly convex and smooth. Notice that x; is independent from ¢, and thus we can
bound the expected dynamic regret as follows:

w1 =D Blfi(xe) = fulx)] =2 B [|xel|* +dr®] > 2477°.
t=1 t=1

We furthermore bound &7 as follows

T
=Y E[ller — era*r?] = 2d(T — 1)7?
t=2

Therefore, E[R}.] > E[S5]. Hence, for any given algorithm A, there exists a sequence of functions

fisooy frosuch that S0 fi(x) — fo(xF) = Q(S3).

E Proof of Theorem

The proof is similar to that of Theorem [Tl

We need the following property of gradient descent when applied to semi-strongly convex and
smooth functions [Necoara et al), 2013], which is analogous to Lemma [1 developed for strongly
convex functions.

Lemma 3. Assume that f(-) is L-smooth and satisfies the semi-strong convexity condition in (8).
Let v =Ty (u—nV f(u)), where n < 1/L. We have

B
1/n+p8

Since ||V fi(x)|| < Gfor any t € [T ] and any x € X, we have

th(xt Zmlnft th (x¢) = fo (s (x¢)) <GZHXt I ()| (26)
t=1

t=1

v =Ty (V)] < [[u— Iy, (w)]].

We now proceed to bound Zt 1 ||Xt —Ilx» (xt) |l. By the triangle inequality, we have

).

Zth s (x1)]| < |31 — e (31 H—i—Z(‘xt Mz, (x0)|| + [, () = T (x0)
t=1 on
Since
x¢ = My (x¢—1 =NV fi1(x¢-1))
using Lemma 3] we have
[ = T, x| <3 e = T (i) (28)
From @27) and 28)), we have
T
D e = Tz (x0)|
t=1
T T
< |lx1 = s (x1)]| + WZ thq — xr | thl)H + Z HHX;_l(Xt) — My (xt)
t=2 t=2
T
< lxr = oy o) |+ D [l = T ()| + 7
t=1
implying
XT:HX Mg ()| € T Ph o+ o [~ T ()| (29)
0~ M o)l = 7= Pr o+ 7 o = oy ()]

t=1
We complete the proof by substituting (29) into 26)).
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F Proof of Lemma

For the sake of completeness, we provide the proof of Lemma [3l which can also be found in the
work of INecoara et al) [2015].
The analysis is similar to that of Lemmal[ll Define

a =1y (u), and v =y« (v).

From the optimality condition of v, we have

f(u) + (VF(u),v - ) + %nv —ul?

1 1 (30)
<f(u)+ (Vf(u),a—u) + %Ilf1 —ul® - %IIV -l
From the convexity of f(x), we have
fu) +(Vf(u),u—u) < f(a). (1)
Combining (30), 31)), and @20), we obtain
1 1
fv) < @) + g llo =l = v -l (32)
From the semi-strong convexity of f(-), we further have
_ B _
fv) = f@) =5 lv - VI
Substituting the above inequality into (32), we have
1 1 1
pla—ulP > v —al?+ S v - o1 2 (5 + 5 ) Iv -
which completes the proof.
G Proof of Theorem 7]
The proof is similar to that of Theorem[2l In the following, we just provide the key differences.
Following the derivation of (23)), we get
T T T
1 2 L+ao 2
th(xt Zmlnft %ZHVJ% (th* (Xt))“ + 2 ZHXt —HXt*(Xt)H
t=1 t=1 t=1
, (33)
1 .., L+ao 2
S9a0rt Ty 2 Ik~ T b
for any o > 0.
To bound 371, [[x¢ — s (%)% we have
T

Xt — HX* 1(Xt H + HH Xt) HX* Xt H >

(34)

Sl =t e < o =23

t=1

From Lemma[3land the updating rule

ziﬂl =1Ilx (zt 1 nvft—l(zgq)) ,i=1,..., K

we have

1 1 B
-t @] < (1- 525

2
. j=1,....K

Zg— 17 HX;‘,I (Zi—1) ‘

I/n+p
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which implies

e = M G| = [ttt =, )|
- 11 e I Y
<(1- =T (D] < = ket — T (x4
_( 1/77_’_5) ‘Xt 1 thl(xt 1)H = 4’Xt 1 thl(Xt 1)”
where we choose K = [MTJrﬁln 4] such that
K
K 1
(i) 2o )=
1/n+p 1/n+p
From and (33), we have
T
2
ZHXt—HX;(Xt)H < |lx1 = My (3 H + th 1= Ty (%1 H + 287
t=1
L i (36)
< Jlxr = Mg ()| +§Z|!Xt—ﬂxz(><t)!| +257
t=1
implying

T
3 I = T (e[ < 485+ 2 s = T o)

Substituting the above inequality into (33)), we have
. 1 2
_ < —GF * — * > 0.
Zl Fu(xe) t;xm& fi(%) € 5-GT + 2L+ )8t + (L +a) [[x1 — Tly; (x1)||”, Va > 0

Finally, we show that the dynamic regret can still be upper bounded by P;. From the previous
analysis, we have

<5

th My (x¢) x¢—1 — Hax 1(Xt71)H~

Then, we can set ¥ = 1/2 in Theorem[6l and obtain

T T
> filxe) - meeig fi(x) < 2GP; + 2G ||x1 — Tz (x1)]] -
= t=1

H Proof of Theorem

The inequality (I2) follows directly from the result in Section 2.2.X.C of INemirovski [2004]. To
prove the rest of this theorem, we will use the following properties of self-concordant functions and
the damped Newton method [Nemirovski, 2004].

Lemma 4. Let f(x) be a self-concordant function, and ||h||x = \/h"V?f(x)h. Then, all points
within the Dikin ellipsoid Wy centered at x, defined as Wy = {x' : ||x’ — x||x < 1}, share similar
second order structure. More specifically, for a given point x and for any h with ||h||x < 1, we have

V2f(x)
2 o2 2
Define x* = argmin,, f(x). Then, we have
" A(x)
e S Y (38)

where A(x) = \/xT [V2f(x)] "
Consider the the damped Newton method: v =u — 1+>\(11 (V2f(u)] - V f(u). Then, we have
A(v) < 20%(u). (39)
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We will also use the following inequality frequently
||X||t = XTVth(Xt)X
1 _1 _1
V()] VP feea(xion)] 2 VAL(xE) [V2 foa(xio0)] 7 V2 feoa(xi20)] 7 x

(010
< ,uXTV2ft—1(X:—1)X = pllxll7_;.

N

(40)
We will assume that for any ¢ > 2,

y 1
[xe —x (e < 5 (41)
which will be proved at the end of the analysis.

According to the Taylor’s theorem, for any ¢ > 2, we have

* 1 * *
Ffe(xe) = folxt) = 5 (xe — x;) V2 fil&) (e — x7)
where & is a point on the line segment between x; and x;. Now, using the property of self-
concordant functions, we have
1 1
(=& —x¢[e)? (1= = = x7]10)?

where we use the inequality in @I to ensure ||x; — x}||; < 1. We thus have

V2 (6) = Vi(xl 6 —x1) 2 V2, (xt) < V2, (x0)

x; — x¥||?
fuloer) — ) < A=l

2
=2 - xi - el

As a result

T T
D i) = o) < o) = D) + 3 I = xi “2)

t=2

We first bound the dynamic regret by S7. To this end, we have

o * (12 o * 2 * * 2 o * 2 *
Z [l =%z |7 < 22 (th = xp_alli 1% - xt—l”t) < Q.UZ % =xi_1 7= +257. (43)
t=2 t=2

We proceed to bound 2322 llx; —x;_1]|7_;. Since x; is derived by applying the damped Newton
method multiple times to the initial solution x;_1, we need to first bound A;_1(x;_1). To this end,
we establish the following lemma.

Lemma 5. Let f(x) be a self-concordant function, and x* = argmin,_ f(x). If ||lu — x*|
, we have

x <1/2

Au) < L

=1_ 2Hu _ X*Hx* ||11 - X*”x*'

The above lemma implies

1
Ar—1(x4—1) <

Tl =2k =Xl 4

(44)

@ /3 1
iy = xialeer S min (Sl =%l 7).

Recall the updating rule

, , 1 . -1 ,
zji_lzz]_ _—_— v2 _ ZJ_ :| V _ Z]_ 5 217,K
t—1 t—1 1_’_)\#1(471) Tt 1( t 1) ft 1( t 1) J
From Lemmal] we have

Al 2 2 ), =1 K.

17



Since A\;_1(z}_;) = M\—1(x¢_1) < 1/4. By induction, it is easy to verify
j=1,... K, K +1. 45)

Therefore,

1 1 1
A () = A1 (2771) < S (75)) < < g dea (i) = g (). (46)

Again, using Lemmald] we have
G N_q(xy) ©EED4 1 & 2 .
l[xe —x7_1l[e-1 < m < 32K)\t 1(x¢-1) < 27‘|Xt—1_xt—1”t—1
implying
* 4 *
lx: — Xtﬂ”?ﬂ < 47|‘th1 - thlHi%fl' 47)

Combining (@3)) with (@7), we have

ZIIXt—Xth ZHXt 1= X;[[Fo + 2ulxe — %7+ 257
o - (48)
<3 D ke = X7 117 + 2ullxo — X717 + 257
t=2
where we use the fact f—ﬁ < 1/2. From (@8), we have
a * (12 * (12 * m 1 *
Dl = xillf <dullxz = xillf +4S; < o + 457 (49)
t=2
Substituting (@9) into (@2)), we obtain
N 1
th xt) = fi(x}) < AST + fi(x1) — fl(X1)+%-
Next, we bound the dynamic regret by Ps.. From @I) and #2)), we immediately have
th (x¢) = fi(x}) < fa(x1) = Fr(x]) Z e — %7 |- (50)
To bound the last term, we have
T T
S e = x5l <> (ke = x5y lle + x5 = x7_4l4)
t=2 t=2
a0 T
< \FZ % = x{_qlle-1 + Vaullx2 = x7ly + Pr
=3
@I [ L
< 4T<Z||Xt 1= Xy [le—1 + o tPr
t=3
1 « 1
< §Z||Xt = Xille+ 45 +Pr
t=2
which implies
Zth—xth +27DT. (51)
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Combining (30) and (31)), we have

thxt A6 < 5Ph+ Rba) — A + o

Finally, we prove that the inequality in () holds. For ¢ = 2, we have

1 @ 1
<
72 — 36
Now, we suppose @I is true for t = 2, ..., k. We show (@I) holds for t = k + 1. We have

_*2<2 _*22*_*2 {2 _o*||2
l[x2 — x5(|5 <2[|x2 — x7 |2 + 2[|x] — %55 pllx2 — x7||7 +

k41 = Xk llR 1 < 2lxngn — xR + 205 — x5 1740

T gt~ X1+ 7y 2 i — i+ s < 2l X+ 7 < e
72 4K 72 T 2 72~ 36
I Proof of Lemma
By the mean value theorem for vector-valued functions, we have
Vfi(u)=Vf(u) - Vf(x / V2f (x* +7(u—x*)) (u—x*)dr. (52)

Define 1

g(x) =x" [V f(u)] " x

which is a convex function of x. Then, we have

N2 (u) = (Vf(w), [V2f(w)] " Vf(w)) = g (VF(w)

Dy ([ ra-x o) < [o(V 6 ra-x) o) ar
(53)

where the last step follows from Jensen’s inequality.

Define {; = x* + 7(u — x*) which lies in the line segment between u and x*. In the following, we
will provide an upper bound for

g (V2f(E)(u—x7) = (u—x)TV2f(E) [V2F ()] V2F(E) (u—x7).

Following Lemmall we have

2 72 * * G 1 2 * 1 2 *
V(&) =Vif(x" +& —x") = 1— & x*)zv f(X)j(l—Hu—X*Hx*)Qv f(x),
(54)
o @ fu-& |3 Ju — x*||%-
lu—¢& e, < T-o—x ) S T ux ) < 1, (55)

&D — _
Vif(u) = V2f(& +u—§&) = (1 —|u—&e )’V f(ff) <1 2/|u — x

N 2
il | Rl | £ S IS v £ ).
1—||u—x*||x*> f&)

(56)

As a result

g (V) u—x") 2 (

1—|lu

) (0 =x), V2 f(&)(u = x))

! || *| §
u—Xx
(1 2”“ X*||X*)2

We complete the proof by substituting (37) into (33).

(57)

IA@

x* .
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