
A Details on Node Signatures

Each node has a “signature,” such that nodes with identical signatures can be batched together. With
few exceptions, nodes can only be batched together if they perform the same operation, so the identity
of the operation the node performs will be a necessary part of the signature. In addition, there may be
additional constraints on what nodes can be batched together based on the nature of the operation to
be performed. We demonstrate the signatures for a few illustrative classes of operations below:

Component-wise operations such as “tanh” or “log” will perform exactly the same work regardless
of the shape of the tensors involved. For these simple operations, the signature is simply
the identity of the operation (e.g. tanh or log) with no additional constraints. This is
also true for component-wise operations that take multiple arguments such as sums or
component-wise multiplications, as long as they do not involve broadcasting, which will be
discussed in the following items.

Dimension-sensitive operations require additional restrictions. For example, matrix multiplies
can generally only be performed on inputs where the dimensions match, so if we have
several Wihi operations we will only be able to batch them together if Wi and hi are the
same dimension across all elements i. In these cases, we explicitly specify the necessary
dimensions in the signature (e.g. mult-256⇥256-256 if Wi was a 256⇥256 matrix and
bi was a length-256 vector), preventing inputs with incompatible dimensions from being
processed together.

Operations with shared elements such as a matrix–vector multiply Whi where same matrix is
applied to all the vectors, are both common and the source of most potential gains from
operation batching. The reason why these operations are important is because we can
perform explicit optimizations such as concatenating all of the hi vectors into a matrix H
and performing a single matrix–matrix multiplication WH. To take advantage of this, if
W is represented as node nW, we can define a signature mult-nW-256, where operations
that share their left side but may have different right sides are grouped together. Matrix
multiplication can have either a shared or un-shared signature.

Unbatchable operations are operations that either cannot be batched together trivially, or would
not benefit significantly from batching.

One thing that should be noted is that for some nodes, like the matrix multiplies Ax in the example
or affine transforms Ax + y, which signature to use is not clear. If some of the elements are shared
parameters, it would be preferable to use a signature that shares these parameters to take advantage
of efficient implementations such as the one mentioned above. However, if all of the elements of
the multiply or affine transform are unique, then it is better to use the simpler dimension-sensitive
operations.

In our implementation, we use a simple heuristic: because multiplies and affine transforms in neural
networks tend to have the parameters in the positions of A and y, and the elements in the x position
tend to be input-dependent, we use signatures that share the elements in the A and y positions but do
not share the elements in the x position.

B Optimizations for Fast Graph Calculation

In order to ensure that the increased complexity of automatic batching does not introduce unacceptable
overhead in our calculation, we took care to efficiently implement the different parts of the algorithm
using sophisticated but fairly standard optimization techniques. These include:

• Minimizing the number of memory allocations and preferring stack allocation of fixed-size
memory to heap allocation of variable-sized memory.

• Implementing specialized linked-list-style data structures in contiguous memory to avoid
expensive-to-construct vectors of vectors.

• Computing node signatures as integer hash values instead of strings.
• Implementing optimized GPU kernels to perform sparse-to-dense and dense-to-sparse

memory copies for use when copying operations results to/from contiguous memory for use
in batched nodes.
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Details of all of these optimizations can be found in the open source implementation in DyNet.8

C Experimental Settings

The first three experiments are based on implementations in the DyNet benchmark repository,9.

BiLSTM (bilstm-tagger-bulk): As our tagging data, we use data from the named entity recog-
nition task Models were trained and tested on the WikiNER English Corpus [22], and all
words with frequency less than five were treated as unknowns. The network was single-layer
with word embeddings and LSTMs in either direction containing 256 nodes each.

BiLSTM w/char (bilstm-tagger-withchar-bulk): The settings for the BiLSTM tagger with
character embeddings are the same as above, but with the addition of character-based LSTMs
for unknown words. The character embeddings are of size 64, and the character LSTMs are
128 in both directions.

Tree-structured LSTMs (treenn-bulk): Tree LSTMs are trained on the Stanford Sentiment Tree-
bank regression task [30]. These similarly use word embedding and node sizes of 256. The
models are trained to predict the labels at the each node in the tree.

For our final experiment, we modified a version of the publicly available transition-based version
(barchybrid) of the BISTPARSER10[14]. Our modified code is available in the DyNet benchmark
repository.

Transition-based Dependency Parsing: The parser was modified to perform aggregate batching by
running several parsers in-parallel and aggregating decisions in a given time-step across the
different parsers. In contrast to the other benchmarks in this paper which are implemented
in C++, this is a python-based implementation. We measure the training time of one
iteration over the training set of the publicly available English Universal Dependencies
Treebank,11 containing 12K sentences. We use the default settings of the parser (100 dim
word embeddings, 25 dim POS embeddings, 25 dim relation embeddings, 200 dim LSTM
layers, and a 100 dim hidden layer in the prediction MLP), as well as the flags –-userlmost
–-userl –-bibi-lstm.

8
http://dynet.io/

9
https://github.com/neulab/dynet-benchmark

10
http://www.github.com/elikip/bist-parser/

11
https://github.com/UniversalDependencies/UD_English
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