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A Proof for the Adversarial Ordinal Regression Loss (Theorem 1)

Before proving Theorem 1, we review the game matrix L′xi,w for ordinal regression problems. Below
is the matrix when the number of classes is four:

L′xi,w =

 f1 − fyi f2 − fyi + 1 f3 − fyi + 2 f4 − fyi + 3
f1 − fyi + 1 f2 − fyi f3 − fyi + 1 f4 − fyi + 2
f1 − fyi + 2 f2 − fyi + 1 f3 − fyi f4 − fyi + 1
f1 − fyi + 3 f2 − fyi + 2 f3 − fyi + 1 f4 − fyi

 (11)

=

 f1 f2 + 1 f3 + 2 f4 + 3
f1 + 1 f2 f3 + 1 f4 + 2
f1 + 2 f2 + 1 f3 f4 + 1
f1 + 3 f2 + 2 f3 + 1 f4

− fyi (12)

= L′′xi,w − fyi . (13)

Theorem 1. An adversarial ordinal regression predictor is obtained by choosing parameters w that
minimize the empirical risk of the surrogate loss function:

ALord
w (xi, yi) = max

j,l∈{1,...,|Y|}

fj + fl + j − l
2

− fyi = max
j

fj + j

2
+ max

l

fl − l
2
− fyi , (14)

where fj = w · φ(xi, j) for all j ∈ {1, . . . , |Y|}.

Proof. Our proof strategy is to use the inequalities implied by the definition of ALord
w and then show

that the value of ALord
w is equal to the game value of sub-matrices of L′xi,w. We start by showing

the equality for a small 2 by 2 sub-matrix and build up until we show that the value of ALord
w is

indeed equal to the game value of the whole game matrix L′xi,w. Empirically minimizing ALord
w will

conclude the theorem.

Let us begin the proof by denoting v(G) as the Nash equilibrium value of a game characterized
by game matrix G. We would like to prove that for a zero-sum game characterized by L′xi,w as
described in Eq. (3), v(L′xi,w) = maxj,l∈{1,...,|Y|}

fj+fl+j−l
2 − fyi .

Note that for any game matrix G and any constant c, v(G + c) = v(G) + c. We de-
note L′′xi,w = L′xi,w + fyi . Thus, proving the theorem is equivalent to proving v(L′′xi,w) =

maxj,l∈{1,...,|Y|}
fj+fl+j−l

2 . The matrix L′′xi,w is similar to the matrix in Eq. (3), but without
including the −fyi term in each its cells, i.e.,

L′′xi,w =


f1 f2 + 1 · · · f|Y|−1 + |Y| − 2 f|Y| + |Y| − 1

f1 + 1 f2 · · · f|Y|−1 + |Y| − 3 f|Y| + |Y| − 2
...

...
. . .

...
...

f1 + |Y| − 2 f2 + |Y| − 3 · · · f|Y|−1 f|Y| + 1
f1 + |Y| − 1 f2 + |Y| − 2 · · · f|Y|−1 + 1 f|Y|

 . (15)

Let j∗ and l∗ be the solution of argmaxj,l∈{1,...,|Y|}
fj+fl+j−l

2 (if there are ties, pick any of them)

and let u∗ = maxj,l∈{1,...,|Y|}
fj+fl+j−l

2 =
fj∗+fl∗+j∗−l∗

2 . We know the following inequalities
hold:

fj∗ + fl∗ + j∗ − l∗ ≥ fj + fl + j − l, ∀j, l ∈ {1, . . . , |Y|} (16)
fj∗ + j∗ ≥ fj + j, ∀j ∈ {1, . . . , |Y|} (17)
fl∗ − l∗ ≥ fl − l, ∀l ∈ {1, . . . , |Y|}. (18)

We also know that j∗ ≥ l∗; otherwise, we could just swap them to obtain a larger value.

We first focus on the cases where j∗ 6= l∗. We analyze three different games that are characterized by
subsets of matrix L′′xi,w and show that the value of those games is u∗.
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Case 1: Let G1 be a game characterized by a 2 by 2 matrix with values that are taken from rows and
columns j∗ and l∗ of matrix L′′xi,w, i.e.,

G1 =

[
fl∗ fj∗ + j∗ − l∗

fl∗ + j∗ − l∗ fj∗

]
. (19)

We will show that v(G1) = u∗. Let p be the vector of adversary’s mixed strategy, then finding v(G1)
is equivalent with solving the following optimization:

maxV (20)
s.t. V ≤ pl∗fl∗ + pj∗(fj∗ + j∗ − l∗) = pl∗fl∗ + pj∗fj∗ + pj∗(j∗ − l∗)

V ≤ pl∗(fl∗ + j∗ − l∗) + pj∗fj∗ = pl∗fl∗ + pj∗fj∗ + pl∗(j∗ − l∗).

We now analyze the optimization above. Let pl∗ = 0.5 − α and pj∗ = 0.5 + α for some α where
−0.5 ≤ α ≤ 0.5. The optimization above become:

maxV (21)
s.t. V ≤ (0.5− α)fl∗ + (0.5 + α)fj∗ + (0.5 + α)(j∗ − l∗)

= 0.5 (fl∗ + fj∗ + j∗ − l∗) + α [(fj∗ − fl∗) + (j∗ − l∗)]
V ≤ (0.5− α)fl∗ + (0.5 + α)fj∗ + (0.5− α)(j∗ − l∗)

= 0.5 (fl∗ + fj∗ + j∗ − l∗) + α [(fj∗ − fl∗)− (j∗ − l∗)] .

Since j∗ 6= l∗, based on Eq. (16), we know that:

fj∗ + fl∗ + j∗ − l∗ ≥ fj∗ + fj∗ + j∗ − j∗ ⇔ (fj∗ − fl∗)− (j∗ − l∗) ≤ 0, (22)
fj∗ + fl∗ + j∗ − l∗ ≥ fl∗ + fl∗ + l∗ − l∗ ⇔ (fj∗ − fl∗) + (j∗ − l∗) ≥ 0. (23)

Therefore, the optimal solution is to set α = 0, since setting nonzero α will decrease the right-hand
side of one of the constraints and hence decrease the value of V . Thus, the solution is achieved when
we set pl∗ = pj∗ = 0.5, which results in a game value of fj∗+fl∗+j∗−l∗

2 = u∗.3

Case 2: Let G2 be a game characterized by a |Y| by 2 matrix with values that are taken from column
j∗ and l∗ of matrix L′′xi,w, i.e.,

G2 =



fl∗ + l∗ − 1 fj∗ + j∗ − 1
...

...
fl∗ fj∗ + j∗ − l∗

fl∗ + 1 fj∗ + j∗ − l∗ − 1
...

...
fl∗ + j∗ − l∗ − 1 fj∗ + 1
fl∗ + j∗ − l∗ fj∗

...
...

fl∗ + |Y| − l∗ fj∗ + |Y| − j∗


. (24)

Finding v(G2) is equivalent to solving a similar optimization to that of Eq (20) with |Y| constraints
corresponding to each row of matrix G2 instead of just two. We can easily see that the solution is
achieved if we set pl∗ = pj∗ = 0.5 as in the previous case. The right hand side of any m-th constraint
m < l∗ or m > j∗ is dominated, i.e., it has value greater than or equal to u∗, and the right hand
side of any m-th constraint l∗ < m < l∗ is equal to u∗. Assigning other values to pl∗ and pj∗ will
decrease the right-hand side of some of the m-th (l∗ ≤ m ≤ j∗) constraints (as explained in case 1),
and hence decrease the value of V . Therefore, we can conclude that v(G2) = u∗.

Case 3: Let G3 be a game characterized by a |Y| by 3 matrix with values that are taken from columns
j∗, l∗, and any other column m in matrix L′′xi,w. We consider three variations of the game, G1

3 where

3In this analysis and other analyses in this proof, we omit the analysis for the trivial cases where the terms
associated with α (in the case above: (fj∗ − fl∗) + (j∗ − l∗) and (fj∗ − fl∗)− (j∗ − l∗)) are zero. In this
case, the value of α can be anything, but the game value remain the same.
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m < l∗, G2
3 where l∗ < m < j∗, and G3

3 where m > j∗. Below is the game matrix for the first
variation:

G1
3 =



...
...

...
fm fl∗ + l∗ −m fj∗ + j∗ −m
...

...
...

fm + l∗ −m fl∗ fj∗ + j∗ − l∗
...

...
...

fm + j∗ −m fl∗ + j∗ − l∗ fj∗
...

...
...


. (25)

Let us analyze the optimization for finding the game value for G1
3, in particular the l∗-th and j∗-th

constraints:

maxV (26)

s.t.
...
V ≤ pm(fm + l∗ −m) + pl∗fl∗ + pj∗(fj∗ + j∗ − l∗)
V ≤ pm(fm + j∗ −m) + pl∗(fl∗ + j∗ − l∗) + pj∗fj∗

....

Let us use the notation similar to Case 1. Let pm = β, pl∗ = 0.5− α− β and pj∗ = 0.5 + α where
−0.5 ≤ α ≤ 0.5; 0 ≤ β ≤ 1; and −0.5 ≤ α+ β ≤ 0.5. We can write the constraints above as:

V ≤ 0.5 (fl∗ + fj∗ + j∗ − l∗) + α [(fj∗ − fl∗) + (j∗ − l∗)] + β [(fm −m)− (fl∗ − l∗)]
V ≤ 0.5 (fl∗ + fj∗ + j∗ − l∗) + α [(fj∗ − fl∗)− (j∗ − l∗)] + β [(fm −m)− (fl∗ − l∗)] .

Since (fj∗ − fl∗) + (j∗ − l∗) ≥ 0; (fj∗ − fl∗) − (j∗ − l∗) ≤ 0; and (fm −m) − (fl∗ − l∗) ≤ 0,
the optimal solution is setting α = 0, and β = 0. Since pm = β = 0, we leave with the same game
matrix as G2. Therefore v(G1

3) = u∗.

For G3
3, we let pm = β, pl∗ = 0.5− α and pj∗ = 0.5 + α− β where −0.5 ≤ α ≤ 0.5; 0 ≤ β ≤ 1;

and −0.5 ≤ α− β ≤ 0.5. Similar to the previous case, l∗-th and j∗-th constraints can be written as:

V ≤ 0.5 (fl∗ + fj∗ + j∗ − l∗) + α [(fj∗ − fl∗) + (j∗ − l∗)] + β [(fm +m)− (fj∗ + j∗)]

V ≤ 0.5 (fl∗ + fj∗ + j∗ − l∗) + α [(fj∗ − fl∗)− (j∗ − l∗)] + β [(fm +m)− (fj∗ + j∗)] .

Due to a similar reason as in the previous case, and (fm +m)− (fj∗ + j∗) ≤ 0, the optimal solution
is to set α = 0, and β = 0, and hence v(G3

3) = u∗.

For G2
3, we will analyze the l∗-th, m-th, and j∗-th constraint. Let pm = β, pl∗ = 0.5 − α and

pj∗ = 0.5 + α− β where −0.5 ≤ α ≤ 0.5; 0 ≤ β ≤ 1; and −0.5 ≤ α− β ≤ 0.5. The constraints
can be written as:

V ≤ 0.5 (fl∗ + fj∗ + j∗ − l∗) + α [(fj∗ − fl∗) + (j∗ − l∗)] + β [(fm +m)− (fj∗ + j∗)]

V ≤ 0.5 (fl∗ + fj∗ + j∗ − l∗) + α [fj∗ − fl∗ + j∗ + l∗ − 2m] + β [(fm +m)− (fj∗ + j∗)]

V ≤ 0.5 (fl∗ + fj∗ + j∗ − l∗) + α [(fj∗ − fl∗)− (j∗ − l∗)] + β [(fm −m)− (fj∗ − j∗)] .

We know that (fj∗−fl∗)+(j∗− l∗) ≥ 0; (fj∗−fl∗)−(j∗− l∗) ≤ 0 and (fm+m)−(fj∗ +j∗) ≤ 0.
If it is the case that fj∗−fl∗ + j∗+ l∗−2m ≤ 0, or (fm−m)− (fj∗− j∗) ≤ 0, or both, it will force
both α and β to be 0. If both of them are positive, we need an additional analysis as the following.

We focus on the m-th, and j∗-th constraints. Since we want to check if there is a combination of α
and β values that make the game value greater than u∗, α and β have to satisfy the following:

α [fj∗ − fl∗ + j∗ + l∗ − 2m] + β [(fm +m)− (fj∗ + j∗)] ≥ 0 (27)

⇔ α ≥ (fj∗ + j∗)− (fm +m)

fj∗ − fl∗ + j∗ + l∗ − 2m
β =

(fj∗ + j∗)− (fm −m)− 2m

(fj∗ + j∗)− (fl∗ − l∗)− 2m
β ≥ β, (28)
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α [(fj∗ − fl∗)− (j∗ − l∗)] + β [(fm −m)− (fj∗ − j∗)] ≥ 0 (29)

⇔ β ≥ (j∗ − l∗)− (fj∗ − fl∗)

(fm −m)− (fj∗ − j∗)
α =

(fl∗ − l∗)− (fj∗ − j∗)
(fm −m)− (fj∗ − j∗)

α ≥ α. (30)

We know that (fj∗ +j∗)−(fm−m)−2m ≥ (fj∗ +j∗)−(fl∗−l∗)−2m, and (fl∗−l∗)−(fj∗−j∗) ≥
(fm −m) − (fj∗ − j∗). If at least one of those inequalities is strict, e.g., the first inequality, it is
better to set α = β = 0, since in order to increase the value of RHS of the m-th constraint α has to
be strictly greater than β, which will decrease the RHS of the j∗-th constraint and thus decrease the
game value. If both are equal, then many solutions exist, i.e., α = β, but the game value remains
the same, i.e. u∗, since in this case α [fj∗ − fl∗ + j∗ + l∗ − 2m] + β [(fm +m)− (fj∗ + j∗)] =
α [(fj∗ − fl∗)− (j∗ − l∗)] + β [(fm −m)− (fj∗ − j∗)] = 0. Therefore v(G2

3) = u∗.

Note that we omit the analysis for the trivial cases when the terms associated with α and β are zero.
In those cases, any value of α and β will satisfy the constraints, but the game value remain the same.

Conclusion: We are now ready to analyze the game value for L′′xi,w. Since adding any column
m ∈ {1, . . . , |Y|}\{l∗, j∗} to G2 will not change the game value, then adding the combination of
them will not change the game value either. Therefore, we can conclude that v(L′′xi,w) = u∗.

For the case that j∗ = l∗, we know that maxj,l∈{1,...,|Y|}
fj+fl+j−l

2 = fj∗ . It is clear that fj∗ is the
solution for the game that is defined by column j∗ from matrix L′′xi,w. For any other column m, if we
include it in the game, the corresponding j∗-th constraint become (we let pm = β, and pj∗ = 1− β):

V ≤ fj∗ + β [(fm −m)− (fj∗ − j∗)] if m < j∗, or (31)
V ≤ fj∗ + β [(fm +m)− (fj∗ + j∗)] if m > j∗. (32)

Since we know that (fj∗ − j∗) ≥ (fm −m), and (fj∗ + j∗) ≥ (fm +m), the optimal solution is
to set β = 0, and the game value remain the same. We can also generalize it to all combination of
column m ∈ {1, . . . , |Y|}\{j∗} to show that v(L′′xi,w) = fj∗ = u∗.

Therefore, we can conclude that the value of the game matrix v(L′′xi,w) =

maxj,l∈{1,...,|Y|}
fj+fl+j−l

2 , which proves the theorem.

B Proof in the Consistency Analysis (Theorem 2 & Theorem 3)

Theorem 2. The minimizer vector f∗ of EY |X∼P
[
ALord

f (X, Y )|X = x
]

satisfies the loss reflective
property, i.e., it complements the absolute error by starting with a negative integer value, then
increasing by one until reaching zero, and then incrementally decreases again.

Proof. We start the proof by analyzing the minimizer f∗ using Py , P (y|x) as follows:

f∗ = argmin
f

EY |X∼P
[
ALord

f (X, Y )|X = x
]

(33)

= argmin
f

∑
y

Py

[
max

j,l∈{1,...,|Y|}

fj + fl + j − l
2

− fy
]

(34)

= argmin
f

[∑
y

Py max
j,l∈{1,...,|Y|}

fj + fl + j − l
2

−
∑
y

Pyfy

]
(35)

= argmin
f

[
max

j,l∈{1,...,|Y|}

fj + fl + j − l
2

−
∑
y

Pyfy

]
. (36)

In this proof, we employ a constraint to the potential function, max fj(x) = 0, in order to remove
redundant solutions, as adding any constant c to f does not change the value of both argmax fj(x),
and EY |X∼P

[
ALord

f (X, Y )|X = x
]
:

max
j,l∈{1,...,|Y|}

fj + c+ fl + c+ j − l
2

−
∑
y

Py(fy + c) (37)
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=c+ max
j,l∈{1,...,|Y|}

fj + fl + j − l
2

− c−
∑
y

Py(fy) (38)

= max
j,l∈{1,...,|Y|}

fj + fl + j − l
2

−
∑
y

Py(fy). (39)

Let j∗ and l∗ be the solution of argmaxj,l∈{1,...,|Y|}
fj+fl+j−l

2 . We will start from the first
case where j∗ = l∗. In this case, the minimization in Eq. (36) can be reduced to
argminf

[
maxj∈{1,...,|Y|} fj −

∑
y Pyfy

]
. Since j∗ = l∗, we know that the following inequali-

ties hold:
fj∗ ≥ fj ∀j ∈ {1, . . . , |Y|} (40)

fj∗ + j∗ ≥ fj + j, ∀j ∈ {1, . . . , |Y|} (41)
fj∗ − j∗ ≥ fj − j, ∀j ∈ {1, . . . , |Y|}. (42)

Therefore, by Eq. (40) and constraint max fj(x) = 0, we have fj∗ = 0. Then by Eq. (41), for any
i > 0, fj∗+i ≤ fj∗ − i = −i; and also by Eq. (42), for any i > 0, fj∗−i ≤ fj∗ − i = −i. Since
we want to minimize fj∗ −

∑
y Pyfy = −

∑
y Pyfy, the optimal solution is to set fj∗+i = −i and

fj∗−i = −i for any i > 0. Therefore we get vector f∗ that satisfies the loss reflective property, i.e., it
complements the absolute error by starting with a negative integer value, then increasing by one until
reaching zero, and then incrementally decreases again.

We next analyze the second case where j∗ 6= l∗. In this case, the following inequalities hold:
fj∗ + j∗ ≥ fj∗+i + j∗ + i ⇔ fj∗+i ≤ fj∗ − i, ∀i ∈ {−j∗ + 1, . . . , |Y| − j∗} (43)
fl∗ − l∗ ≥ fl∗+i − l∗ − i ⇔ fl∗+i ≤ fl∗ + i, ∀i ∈ {−l∗ + 1, . . . , |Y| − l∗}. (44)

We also know that for any m ∈ {1, . . . , |Y|} the following holds:
m < l∗ ⇒fm ≤ fl∗ − (l∗ −m) and fm ≤ fj∗ + (j∗ −m) (45)
m > j∗ ⇒fm ≤ fj∗ − (m− j∗) and fm ≤ fl∗ + (m− l∗) (46)

l∗ < m < j∗ ⇒fm ≤ fl∗ + (m− l∗) and fm ≤ fj∗ + (j∗ −m). (47)
The relation between fj∗ and fl∗ in the following also holds:

fj∗ ≤ fl∗ + j∗ − l∗ (48)
fl∗ ≤ fj∗ + j∗ − l∗. (49)

Let f0 be any potential function which falls into the second case (the solution of (j∗, l∗) =

argmaxj,l∈{1,...,|Y|}
f0
j +f0

l +j−l
2 satisfies j∗ 6= l∗) where f0 does not satisfy the loss reflective prop-

erty. Let us define h(f) =
fj∗+fl∗+j∗−l∗

2 −
∑
y Pyfy. We will show that we can construct f1 as

follows. Starting from f1 = f0 we increase all the values of f1
m for m ∈ {1, . . . , |Y|}\{l∗, j∗}

such that it satisfies the constraints above with equality for the one that has minimum value. For
example, in a 7-class ordinal regression where l∗ = 2 and j∗ = 6, one of possible value for f0

is [−3,−1.4,−0.8,−0.2,−0.7, 0,−1.2]T which satisfies all the constraints above. In this case f1

will be [−2.4,−1.4,−0.4, 0.6, 1, 0,−1]T. Since the value of fj∗+fl∗+j∗−l∗
2 remains the same and

the value of
∑
y Pyfy is increasing, we know that h(f1) < h(f0). We know that in f1, fj − fj−1

is equal to 1 or -1, except for a pair (a, b), where l∗ ≤ a < b ≤ j∗. In the example above

a = 4, b = 5, f1
a = 0.6, and f1

b = 1. We also know that
f1
j∗+f1

l∗+j∗−l∗

2 =
f1
a+f1

b +1
2 .

We now construct f2 from f1 as follows. If
∑a
y=1 Py ≤ 0.5, we set f2

j = f1
j − (f1

a − f1
b + 1) for

j ∈ {1, . . . , a} and set f2
j = f1

j for j ∈ {b, . . . , |Y|}; otherwise we set f2
j = f1

j for j ∈ {1, . . . , a}
and set f2

j = f1
j − (f1

b − f1
a + 1) for j ∈ {b, . . . , |Y|}. For the example above, if

∑a
y=1 Py ≤ 0.5

then f2 = [−3,−2,−1, 0, 1, 0,−1], otherwise f2 = [−2.4,−1.4,−0.4, 0.6,−0.4,−1.4,−2.4]. We
claim that h(f2) ≤ h(f1) as shown for the case that

∑a
y=1 Py ≤ 0.5 (the other case follows in a

similar way):

h(f2) = max
j,l∈{1,...,|Y|}

f2
j + f2

l + j − l
2

−
∑
y

Pyf
2
y = f2

b −
∑
y

Pyf
2
y (50)
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= f2
b −

a∑
y=1

Pyf
2
y −

|Y|∑
y=b

Pyf
2
y (51)

= f1
b −

a∑
y=1

Py
[
f1
y − (f1

a − f1
b + 1)

]
−
|Y|∑
y=b

Pyf
1
y (52)

= f1
b +

a∑
y=1

Py
[
f1
a − f1

b + 1
]
−
∑
y

Pyf
1
y (53)

≤ f1
b + 0.5

[
f1
a − f1

b + 1
]
−
∑
y

Pyf
1
y =

f1
a + f1

b + 1

2
−
∑
y

Pyf
1
y = h(f1). (54)

Finally, we construct f3 = f2−maxj f
2
j . Since adding a constant to any f does not change the value of

h(f), we know that h(f3) = h(f2). We also know that f3 satisfies the loss reflective property described
above. As an example, in the case

∑a
y=1 Py ≤ 0.5, then f3 = [−4,−3,−2,−1, 0,−1,−2].

Since for any f0 that falls into the second case where the solution for (j∗, l∗) =

argmaxj,l∈{1,...,|Y|}
f0
j +f0

l +j−l
2 satisfies j∗ 6= l∗ and f0 does not satisfy the loss reflective property,

we can construct f3 which satisfies the loss reflective property and having the value of h(f3) < h(f0),
then f0 cannot be the minimizer. Therefore, we can conclude that in the first and second cases, the
minimizer has to satisfy the loss reflective property which complete the proof of the theorem.

Theorem 3. The adversarial ordinal regression surrogate loss ALord from Eq. (5) is Fisher consistent.

Proof. We denote h(f) , EY |X∼P
[
ALord

f (X, Y )|X = x
]
. Based on Theorem 2, the minimization

argminh(f) reduces to the minimization over the set that contains all f that satisfies the loss reflective
property and maxj fj = 0. Note that the set contains only |Y| items. In the case of argmaxj fj = j∗,
we know that f that satisfies the loss reflective property has values fj = −|j∗ − j|, and hence:

h(f) =
∑
y

Py

[
max

j,l∈{1,...,|Y|}

fj + fl + j − l
2

− fy
]
=
∑
y

Py [fj∗ − fy] = fj∗ −
|Y|∑
y=1

Pyfy (55)

= −
|Y|∑
y=1

Pyfy = −
|Y|∑
y=1

Py (−|j∗ − y|) =
|Y|∑
y=1

Py|j∗ − y|.

Therefore, the minimizer f∗ = argminh(f) satisfies argmaxj f
∗
j (x) ⊆ argminj

∑
y Py |j − y| and

implies Fisher consistency.

C Primal Optimization in Details

To optimize the regularized adversarial ordinal regression loss in the primal, we employ stochastic
average gradient (SAG) methods [37, 38]. SAG has been shown to converge faster than standard
stochastic gradient optimization [37, 38]. In this section, we focus on the adversarial adversarial
ordinal regression with multiclass representation (ALord-mc

w ). A version for the thresholded regression
representation follows in a similar way.

Given the regularization constant λ and the learning rate α, the standard batch gradient update for
risk minimization can be written as:

wt+1 = wt − α

[
1

n

n∑
i=1

gti + λwt

]
= (1− αλ)wt − α

n

n∑
i=1

gti , (56)

where gi is the loss gradient with respect to i-th example. The idea of SAG is to use the gradient
of each example from the last iteration where it was selected to take a step. However, the naïve
implementation of SAG requires storing the gradient of each sample, which may be expensive in
terms of the memory requirements.
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Algorithm 1 SAG for adversarial ordinal regression with multiclass representation

1: Input: training dataset with pairs {xi, yi}, learning rate α, regularization constant λ
2: m← 0 {the number of sampled pairs so far}
3: d← 0 {for storing

∑m
i=1 gi}

4: ji ← 0, li ← 0 for i = 1, 2, . . . , n
5: repeat
6: Sample i from {1, . . . , n}
7: j∗, l∗ ← argmaxj,l

wj ·xi+wl·xi+j−l
2 −wyi · xi

8: if it is the first time we sample i then
9: m← m+ 1

10: dj∗ ← dj∗ + 1
2xi, dl∗ ← dl∗ + 1

2xi
11: dyi ← dyi − xi
12: else
13: dji ← dji − 1

2xi, dli ← dli − 1
2xi

14: dj∗ ← dj∗ + 1
2xi, dl∗ ← dl∗ + 1

2xi
15: end if
16: ji ← j∗, li ← l∗

17: w← (1− αλ)w − α
md

18: until converge

Fortunately, for ALord-mc
w , we can drastically reduce this memory requirement by not directly storing

the gradient using the following technique. Let j∗, l∗ = argmaxj,l
wj ·xi+wl·xi+j−l

2 − wyi · xi.
Assuming that j∗ 6= l∗ 6= yi, we know that the sub-gradients are: ∇wj∗ = 1

2xi, ∇wl∗ = 1
2xi, and

∇wyi
= −xi, while ∇wk

= 0 for k ∈ {1, . . . , |Y|}\{j∗, l∗, yi}. Therefore, instead of storing the
sub-gradient, we can just store j∗ and l∗. Let us denote ji and li for i = 1, 2, . . . , n as the storage
for each example’s last j∗ and l∗. We also construct a vector d which has the same length as our
parameter vector w to store the sum of the latest gradients, i.e. d =

∑m
i=1 gi, where m is the number

of training pairs {xi, yi} sampled so far. Using this notation, Algorithm 1 describes this technique
for implementing SAG for adversarial ordinal regression loss with multiclass representation.

D Dual Optimization in Details

Based on Equation 5, the primal optimization of regularized adversarial ordinal regression loss can
be written as:

min
w

1

2
‖w‖2 + C

n∑
i=1

[
max

j∈1,...,|Y|

w · φ(xi, j) + j

2
+ max
j∈1,...,|Y|

w · φ(xi, j)− j
2

−w · φ(xi, yi)

]
(57)

= min
w

1

2
‖w‖2 +

C

2

n∑
i=1

max
j∈1,...,|Y|

(w · φ(xi, j)−w · φ(xi, yi) + j) (58)

+
C

2

n∑
i=1

max
j∈1,...,|Y|

(w · φ(xi, j)−w · φ(xi, yi)− j) .

The optimization above is equivalent with the following constrained optimization:

min
w

1

2
‖w‖2 +

C

2

n∑
i=1

ξi +
C

2

n∑
i=1

δi (59)

subject to: ξi ≥ w · φ(xi, j)−w · φ(xi, yi) + j ∀i ∈ {1, . . . n}; j ∈ {1, . . . , |Y|}
δi ≥ w · φ(xi, j)−w · φ(xi, yi)− j ∀i ∈ {1, . . . n}; j ∈ {1, . . . , |Y|}.
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The Lagrangian for the optimization above is:

L =
1

2
‖w‖2 +

C

2

n∑
i=1

ξi +
C

2

n∑
i=1

δi −
n∑
i=1

|Y|∑
j=1

αi,j [ξi −w · φ(xi, j) + w · φ(xi, yi)− j] (60)

−
n∑
i=1

|Y|∑
j=1

βi,j [δi −w · φ(xi, j) + w · φ(xi, yi) + j].

The KKT conditions:

∇wL = w −
n∑
i=1

|Y|∑
j=1

αi,j [−φ(xi, j) + φ(xi, yi)]−
n∑
i=1

|Y|∑
j=1

βi,j [−φ(xi, j) + φ(xi, yi)] = 0

=⇒ w =

n∑
i=1

|Y|∑
j=1

(αi,j + βi,j) [φ(xi, yi)− φ(xi, j)]

∇ξiL =
C

2
−
|Y|∑
j=1

αi,j = 0 =⇒
|Y|∑
j=1

αi,j =
C

2

∇δiL =
C

2
−
|Y|∑
j=1

βi,j = 0 =⇒
|Y|∑
j=1

βi,j =
C

2

∀i, j, αi,j [ξi −w · φ(xi, j) + w · φ(xi, yi)− j] = 0

=⇒ αi,j = 0 ∨ ξi = w · φ(xi, j)−w · φ(xi, yi) + j

∀i, j, βi,j [δi −w · φ(xi, j) + w · φ(xi, yi) + j] = 0

=⇒ βi,j = 0 ∨ δi = w · φ(xi, j)−w · φ(xi, yi)− j.

Rearranging the Lagrangian formula and then plugging the definition of w in terms of the dual
variables and applying the constraints yields:

L =

n∑
i=1

|Y|∑
j=1

j(αi,j − βi,j) (61)

− 1

2

n∑
i,k=1

|Y|∑
j,l=1

(αi,j + βi,j) (αk,l + βk,l) (φ(xi, j)− φ(xi, yi)) · (φ(xk, l)− φ(xl, yk)) .

Therefore, the dual optimization can be written as:

max
α,β

∑
i,j

j(αi,j − βi,j) (62)

− 1

2

∑
i,j,k,l

(αi,j + βi,j) (αk,l + βk,l) (φ(xi, j)− φ(xi, yi)) · (φ(xk, l)− φ(xl, yk))

subject to:αi,j ≥ 0;βi,j ≥ 0;
∑
j

αi,j = C
2 ;
∑
j

βi,j = C
2 ; i, k ∈ {1, . . . , n}; j, l ∈ {1, . . . , |Y|}.
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